Abstract

Authors

T. Popoviciu
Institutul de Calcul

Keywords

?

Paper coordinates

T. Popoviciu, Some inequalities between means, Mathematica (Cluj), 1(24) (1959), pp. 81-93 (in Russian).

PDF

About this paper

Journal

Mathematica Cluj

Publisher Name

Published by the Romanian Academy  Publishing House

DOI
Print ISSN

1222-9016

Online ISSN

2601-744X

google scholar link

??

Paper (preprint) in HTML form

1959 a -Popoviciu- Mathematica - Some inequalities between means (in Russian)
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

CONCERNING SOME INEQUALITIES BETWEEN MEANS

TIBERIU POPOVIC
Cluj
    • Let a sequence (finite or infinite) of numbers
      (1) be given. a 1 , a 2 , a 1 , a 2 , a_(1),a_(2),dotsa_{1}, a_{2}, \ldotsa1,a2,
      Assuming that the terms of sequence (1) are non-negative, let A n = a 1 + a 2 + + a n n A n = a 1 + a 2 + + a n n A_(n)=(a_(1)+a_(2)+dots+a_(n))/(n)A_{n}=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}An=a1+a2++annarithmetic mean and G n = a 1 a 2 a n n G n = a 1 a 2 a n n G_(n)=root(n)(a_(1)a_(2)dotsa_(n))G_{n}=\sqrt[n]{a_{1} a_{2} \ldots a_{n}}Gn=a1a2anngeometric mean of the first n n nnnmembers a 1 , a 2 , , a n a 1 , a 2 , , a n a_(1),a_(2),dots,a_(n)a_{1}, a_{2}, \ldots, a_{n}a1,a2,,anof this sequence. L. Chakalov proved [1] the following two properties:
      I. Sequence
      (2) n ( A n - G n ) , n = 1 , 2 , n A n - G n , n = 1 , 2 , n(A_(n)-G_(n)),quad n=1,2,dotsn\left(A_{n}-G_{n}\right), \quad n=1,2, \ldotsn(An-Gn),n=1,2,
      is non-decreasing.
      II. If sequence (1) is non-decreasing, then sequence
      (3) n 2 n - 1 ( A n - G n ) , n = 2 , 3 , n 2 n - 1 A n - G n , n = 2 , 3 , (n^(2))/(n-1)(A_(n)-G_(n)),quad n=2,3,dots\frac{n^{2}}{n-1}\left(A_{n}-G_{n}\right), \quad n=2,3, \ldotsn2n-1(An-Gn),n=2,3,
      is also non-decreasing.
      To generalize these properties, we studied the monotonicity of sequences obtained from (2), (3), replaced the geometric mean G n G n G_(n)G_{n}Gnthrough "quasi-arithmetic", more general.
    • Throughout we assume that f = f ( x ) f = f ( x ) f=f(x)f=f(x)f=f(x)is a function of one real variable x x xxxand continuous on the open interval I I III. If f f fffstrictly monotone (increasing or decreasing) function, then its inverse function F = F ( x ) F = F ( x ) F=F(x)F=F(x)F=F(x)is also defined, continuous and strictly monotone in the same sense as f f fff(i.e. increasing respectively decreasing) on ​​the open interval I I I^(')I^{\prime}IIn particular, this is the case if f f fffcloud-
gives a derivative that does not vanish on I I IIIIn this case F F FFFalso has a derivative that does not vanish over the entire interval I I I^(')I^{\prime}I, and has the same sign as the derivative function f f fff.
If the members of the sequence (1) belong to the interval I I III, and if f f fffstrictly monotone function, then the quasi-arithmetic mean
(4) M n ( f ) = F ( f ( a 1 ) + f ( a 2 ) + + f ( a n ) n ) (4) M n ( f ) = F f a 1 + f a 2 + + f a n n {:(4)M_(n)(f)=F((f(a_(1))+f(a_(2))+dots+f(a_(n)))/(n)):}\begin{equation*} M_{n}(f)=F\left(\frac{f\left(a_{1}\right)+f\left(a_{2}\right)+\ldots+f\left(a_{n}\right)}{n}\right) \tag{4} \end{equation*}(4)Mn(f)=F(f(a1)+f(a2)++f(an)n)
first n n nnnmembers of the sequence (1) are defined for n = 1 , 2 , n = 1 , 2 , n=1,2,dotsn=1,2, \ldotsn=1,2,
Before going further, we note that in some cases we can continue the definition of a function by continuity f f fffand average M n ( f ) M n ( f ) M_(n)(f)M_{n}(f)Mn(f)at one end of the interval I I III, assumed to be finite. In this case, the function f f fffand the average (4) will have a very definite value (either proper or improper), even if some or all numbers a a aaacoincide with such an end. For example, in the case of the geometric mean, to which the mean (4) for the function is reduced f = ln x f = ln x f=ln xf=\ln xf=lnxwe can take M n ( f ) = - 0 M n ( f ) = - 0 M_(n)(f)=-0M_{n}(f)=-0Mn(f)=-0, if at least one of the numbers a 1 , a 2 , , a n a 1 , a 2 , , a n a_(1),a_(2),dots,a_(n)a_{1}, a_{2}, \ldots, a_{n}a1,a2,,anis equal to 0 . Below we will not dwell on such continuations, because the results related to the monotonicity of sequences of the type under consideration retain, generally speaking, their force and are obtained by passing to the limit. Thus, for example, it is sufficient to prove the monotonicity of sequence (2) in the case of positivity of all a i a i a_(i)a_{i}aiand from this we conclude that the property remains true even in the case when the numbers a a aaanon-negative.
3. - Has a place following
THEOREM 1. - If a function f f fffstrictly monotone if the term of the sequence (1) belongs to the interval I and if the sequence (1) is monotone, then the sequence
(5) M n ( f ) , n = 1 , 2 , (5) M n ( f ) , n = 1 , 2 , {:(5)M_(n)(f)","quad n=1","2","dots:}\begin{equation*} M_{n}(f), \quad n=1,2, \ldots \tag{5} \end{equation*}(5)Mn(f),n=1,2,
also monotone in the same sense.
If, under these conditions, the members of sequence (1) are not all equal between the messages, then sequence (5) is strictly monotone, starting from some index n n n^(**)n^{*}n).
The conditions of the theorem distinguish 4 alternatives, since the function f f fffmay be increasing or decreasing, and the sequence (1) may be non-decreasing or increasing.
Let us prove the theorem under the assumption that f f fffan increasing function and the sequence (1) is non-decreasing. Let, in general,
a 1 a 2 a m - 1 a m a m + 1 f ( a i ) f ( a n ) , i = 1 , 2 , , n - 1 a 1 a 2 a m - 1 a m a m + 1 f a i f a n , i = 1 , 2 , , n - 1 {:[a_(1) <= a_(2) <= dots <= a_(m-1) <= a_(m) <= a_(m+1) <= dots],[f(a_(i)) <= f(a_(n))","quad i=1","2","dots","n-1]:}\begin{aligned} & a_{1} \leqq a_{2} \leqq \ldots \leqq a_{m-1} \leqq a_{m} \leqq a_{m+1} \leqq \ldots \\ & f\left(a_{i}\right) \leqq f\left(a_{n}\right), \quad i=1,2, \ldots, n-1 \end{aligned}a1a2am-1amam+1f(ai)f(an),i=1,2,,n-1
(6)
(6)
(6)
*) In other words, there is such a natural number m m mmm, that the sequence M n ( f ) , n = m , m + 1 M n ( f ) , n = m , m + 1 M_(n)(f),n=m,m+1M_{n}(f), n=m, m+1Mn(f),n=m,m+1strictly monotone.
from here we deduce
(7) f ( a 1 ) + f ( a 2 ) + + f ( a n - 1 ) n - 1 f ( a 1 ) + f ( a 2 ) + + f ( a n ) n (7) f a 1 + f a 2 + + f a n - 1 n - 1 f a 1 + f a 2 + + f a n n {:(7)(f(a_(1))+f(a_(2))+dots+f(a_(n-1)))/(n-1) <= (f(a_(1))+f(a_(2))+dots+f(a_(n)))/(n):}\begin{equation*} \frac{f\left(a_{1}\right)+f\left(a_{2}\right)+\ldots+f\left(a_{n-1}\right)}{n-1} \leqq \frac{f\left(a_{1}\right)+f\left(a_{2}\right)+\ldots+f\left(a_{n}\right)}{n} \tag{7} \end{equation*}(7)f(a1)+f(a2)++f(an-1)n-1f(a1)+f(a2)++f(an)n
therefore and
M n - 1 ( f ) M n ( f ) M n - 1 ( f ) M n ( f ) M_(n-1)(f) <= M_(n)(f)M_{n-1}(f) \leqq M_{n}(f)Mn-1(f)Mn(f)
If n m n m n >= mn \geq mnm, then equality is impossible for any value f f fffin formulas (6), and therefore it is not possible either in formula (7) or in formula (8).
Thus, the theorem is proven in the alternative under consideration. The theorem is proved similarly in the other three alternatives.
4. - Below, we will need some well-known properties of ordinary convex functions (first order) or second-order convex functions.
Function φ = φ ( x ) φ = φ ( x ) varphi=varphi(x)\varphi=\varphi(x)φ=φ(x), defined on the interval I I III, is called non-concave, respectively non-convex of the same order, if its divided difference ( n + 1 ) ( n + 1 ) (n+1)(n+1)(n+1)-th order on any points (different) from I I IIIremains non-negative, respectively, non-positive, all the time. If we denote by [ x 1 , x 2 , , x n + 2 ; φ ] x 1 , x 2 , , x n + 2 ; φ [x_(1),x_(2),dots,x_(n+2);varphi]\left[x_{1}, x_{2}, \ldots, x_{n+2} ; \varphi\right][x1,x2,,xn+2;φ]divided difference ( n + 1 ) ( n + 1 ) (n+1)(n+1)(n+1)-th order function φ φ varphi\varphiφat points or nodes (various) x 1 , x 2 , , x n + 2 x 1 , x 2 , , x n + 2 x_(1),x_(2),dots,x_(n+2)x_{1}, x_{2}, \ldots, x_{n+2}x1,x2,,xn+2, then non-concavity, respectively non-convexity n n nnn-th order function φ φ varphi\varphiφon the interval I I IIIcharacterized by inequality
(9) [ x 1 , x 2 , , x n + 2 ; φ ] 0 , correspondingly 0  (9)  x 1 , x 2 , , x n + 2 ; φ 0 ,  correspondingly  0 " (9) "quad[x_(1),x_(2),dots,x_(n+2);varphi] >= 0,quad" resp. " <= 0\text { (9) } \quad\left[x_{1}, x_{2}, \ldots, x_{n+2} ; \varphi\right] \geqq 0, \quad \text { resp } \leqq 0 (9) [x1,x2,,xn+2;φ]0, correspondingly 0
at any (different) nodes x 1 , x 2 , , x n + 2 I x 1 , x 2 , , x n + 2 I x_(1),x_(2),dots,x_(n+2)in Ix_{1}, x_{2}, \ldots, x_{n+2} \in Ix1,x2,,xn+2I.
In particular, if the equal sign in (9) never occurs, then the function φ φ varphi\varphiφis called convex, respectively concave n n nnn-th order on I I III.
If n = 0 n = 0 n=0n=0n=0then we have a non-decreasing or non-increasing function, and, in particular, an increasing, respectively, decreasing function. Thus, functions of zero order are monotone functions.
In order for it to be continuous on the interval I I IIIfunction φ φ varphi\varphiφwas non-concave, respectively non-convex n n nnn-th order, it is necessary and sufficient that inequality (9) holds only at equidistant nodes. More precisely, formula
(10)
Where
[ x , x + h , , x + n + 1 - h ; φ ] = 1 ( n + 1 ) ! h n + 1 Δ h n + 1 φ ( x ) , [ x , x + h , , x + n + 1 ¯ h ; φ ] = 1 ( n + 1 ) ! h n + 1 Δ h n + 1 φ ( x ) , [x,x+h,dots,x+ bar(n+1)h;varphi]=(1)/((n+1)!h^(n+1))Delta_(h)^(n+1)varphi(x),[x, x+h, \ldots, x+\overline{n+1} h ; \varphi]=\frac{1}{(n+1)!h^{n+1}} \Delta_{h}^{n+1} \varphi(x),[x,x+h,,x+n+1-h;φ]=1(n+1)!hn+1Δhn+1φ(x),
Δ h n + 1 φ ( x ) = i = 0 n + 1 ( - ) n + 1 - i ( n + 1 i ) φ ( x + i h ) , Δ h n + 1 φ ( x ) = i = 0 n + 1 ( - ) n + 1 - i ( n + 1 i ) φ ( x + i h ) , Delta_(h)^(n+1)varphi(x)=sum_(i=0)^(n+1)(-)^(n+1-i)((n+1)/(i))varphi(x+ih),\Delta_{h}^{n+1} \varphi(x)=\sum_{i=0}^{n+1}(-)^{n+1-i}\binom{n+1}{i} \varphi(x+ih),Δhn+1φ(x)=i=0n+1(-)n+1-i(n+1i)φ(x+ih),
shows that in order for continuous on I I IIIfunction φ φ varphi\varphiφwas convex, non-concave, non-convex, respectively concave n n nnn-th order on I I IIIit is necessary and sufficient to have
Δ h n + 1 φ ( x ) > 0 , 0 , 0 , correspondingly < 0 Δ h n + 1 φ ( x ) > 0 , 0 , 0 ,  correspondingly  < 0 Delta_(h)^(n+1)varphi(x) > 0, >= 0, <= 0, quad" resp. " < 0\Delta_{h}^{n+1} \varphi(x)>0, \geqq 0, \leqq 0, \quad \text { соотв }<0Δhn+1φ(x)>0,0,0, correspondingly <0
under any x , x + n + 1 h I , h > 0 ) x , x + n + 1 ¯ h I , h > 0 {:x,x+ bar(n+1)h in I,h > 0^(**))\left.x, x+\overline{n+1} h \in I, h>0^{*}\right)x,x+n+1-hI,h>0).
*) If odd n n nnncondition h > 0 h > 0 h > 0h>0h>0can be replaced by a conditional h 0 h 0 h!=0h \neq 0h0.
Any given on l l lllorder function n > 0 n > 0 n > 0n>0n>0is continuous on I I I^(**)I^{*}I). Any given I I IIIorder function n > 1 n > 1 n > 1n>1n>1admits a continuous derivative on I I III. If the function φ φ varphi\varphiφconvex, non-concave, non-convex, respectively concave order n 1 n 1 n >= 1n \geqq 1n1, then its derivative φ φ varphi^(')\varphi^{\prime}φprovided that it exists, is convex, non-concave, non-convex, respectively concave of order n 1 n 1 n-1n-1n-1. Inequality p ( n + 1 ) 0 p ( n + 1 ) 0 p^((n+1)) >= 0p^{(n+1)} \geqq 0p(n+1)0resp. 0 0 <= 0\leqq 00for anyone x ϵ I x ϵ I x epsilon Ix \epsilon IxϵInecessary and sufficient for non-concavity, respectively non-convexity of order n n nnnfunction φ φ varphi\varphiφon I I III. Inequality φ ( n + 1 ) > 0 φ ( n + 1 ) > 0 varphi^((n+1)) > 0\varphi^{(n+1)}>0φ(n+1)>0resp. < 0 < 0 < 0<0<0, for anyone x I x I x in Ix \in IxI, it is sufficient for the convexity respectively concavity of the function φ φ varphi\varphiφon I I III.
5. - Let us return to L. Chakalov's property. A generalization of the sequence (2) is the sequence
(11) n ( A n M n ( f ) ) , n = 1 , 2 , (11) n A n M n ( f ) , n = 1 , 2 , {:(11)n(A_(n)-M_(n)(f))","quad n=1","2","dots:}\begin{equation*} n\left(A_{n}-M_{n}(f)\right), \quad n=1,2, \ldots \tag{11} \end{equation*}(11)n(An-Mn(f)),n=1,2,
Then the following THEOREM 2 holds.
- If the function f f fffstrictly monotone, then in order for the sequence (11) to be non-decreasing, respectively, non-increasing for any sequence (1) whose members belong to I, it is necessary and sufficient that the function be non-concave, respectively, non-convex of order 1 F F FFFinverse to the function f f fff.
For brevity, we will denote it through
(12) B n = f ( a 1 ) + f ( a 2 ) + + f ( a n ) n = f ( M n ( f ) ) , n = 1 , 2 , (12) B n = f a 1 + f a 2 + + f a n n = f M n ( f ) , n = 1 , 2 , {:(12)B_(n)=(f(a_(1))+f(a_(2))+dots+f(a_(n)))/(n)=f(M_(n)(f))","quad n=1","2","dots:}\begin{equation*} B_{n}=\frac{f\left(a_{1}\right)+f\left(a_{2}\right)+\ldots+f\left(a_{n}\right)}{n}=f\left(M_{n}(f)\right), \quad n=1,2, \ldots \tag{12} \end{equation*}(12)Bn=f(a1)+f(a2)++f(an)n=f(Mn(f)),n=1,2,
arithmetic mean of the first terms of the sequence
(13) f ( a 1 ) , f ( a 2 ) , (13) f a 1 , f a 2 , {:(13)f(a_(1))","f(a_(2))","dots:}\begin{equation*} f\left(a_{1}\right), f\left(a_{2}\right), \ldots \tag{13} \end{equation*}(13)f(a1),f(a2),
and through D ( a 1 , a 2 , , a n ) = n ( A n M n ( f ) ) ( n 1 ) ( A n 1 M n 1 ( f ) ) D a 1 , a 2 , , a n = n A n M n ( f ) ( n 1 ) A n 1 M n 1 ( f ) D(a_(1),a_(2),dots,a_(n))=n(A_(n)-M_(n)(f))-(n-1)(A_(n-1)-M_(n-1)(f))D\left(a_{1}, a_{2}, \ldots, a_{n}\right)=n\left(A_{n}-M_{n}(f)\right)-(n-1)\left(A_{n-1}-M_{n-1}(f)\right)D(a1,a2,,an)=n(An-Mn(f))-(n-1)(An-1-Mn-1(f))the difference between two consecutive terms of the sequence (11). We have
D ( a 1 , a 2 , , a u ) = a n n F ( B n ) + ( n 1 ) F ( B n 1 ) = = F ( f ( a n ) ) n F ( B n ) + ( n 1 ) F ( B n 1 ) D a 1 , a 2 , , a u = a n n F B n + ( n 1 ) F B n 1 = = F f a n n F B n + ( n 1 ) F B n 1 {:[D(a_(1),a_(2),dots,a_(u))=a_(n)-nF(B_(n))+(n-1)F(B_(n-1))=],[=F(f(a_(n)))-nF(B_(n))+(n-1)F(B_(n-1))]:}\begin{gathered} D\left(a_{1}, a_{2}, \ldots, a_{u}\right)=a_{n}-n F\left(B_{n}\right)+(n-1) F\left(B_{n-1}\right)= \\ =F\left(f\left(a_{n}\right)\right)-n F\left(B_{n}\right)+(n-1) F\left(B_{n-1}\right) \end{gathered}D(a1,a2,,au)=an-nF(Bn)+(n-1)F(Bn-1)==F(f(an))-nF(Bn)+(n-1)F(Bn-1)
From the formula
f ( a n ) B n = n 1 n ( f ( a n ) B n 1 ) f a n B n = n 1 n f a n B n 1 f(a_(n))-B_(n)=(n-1)/(n)(f(a_(n))-B_(n-1))f\left(a_{n}\right)-B_{n}=\frac{n-1}{n}\left(f\left(a_{n}\right)-B_{n-1}\right)f(an)-Bn=n-1n(f(an)-Bn-1)
we deduce that the numbers B n 1 , B n , f ( a n ) B n 1 , B n , f a n B_(n-1),B_(n),f(a_(n))B_{n-1}, B_{n}, f\left(a_{n}\right)Bn-1,Bn,f(an)are different or all equal to each other depending on whether they are equal f ( a n ) = B n 1 f a n = B n 1 f(a_(n))=B_(n-1)f\left(a_{n}\right)=B_{n-1}f(an)=Bn-1or not. Therefore,
D ( a 1 , a 2 , , a n ) = n 1 n ( f ( a n ) B n 1 ) 2 | B n 1 , B n , f ( a n ) ; F | , D a 1 , a 2 , , a n = n 1 n f a n B n 1 2 B n 1 , B n , f a n ; F , D(a_(1),a_(2),dots,a_(n))=(n-1)/(n)(f(a_(n))-B_(n-1))^(2)|B_(n-1),B_(n),f(a_(n));F|,D\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\frac{n-1}{n}\left(f\left(a_{n}\right)-B_{n-1}\right)^{2}\left|B_{n-1}, B_{n}, f\left(a_{n}\right) ; F\right|,D(a1,a2,,an)=n-1n(f(an)-Bn-1)2|Bn-1,Bn,f(an);F|,
where the right side of the equality is replaced by 0 if f ( a n ) = B n 1 f a n = B n 1 f(a_(n))=B_(n-1)f\left(a_{n}\right)=B_{n-1}f(an)=Bn-1, from which the sufficiency of the condition of the theorem follows.
If x , x + 2 h I x , x + 2 h I x,x+2h in Ix, x+2 h \in Ix,x+2hI, and if we take a 1 = F ( x ) , a 2 = F ( x + 2 h ) a 1 = F ( x ) , a 2 = F ( x + 2 h ) a_(1)=F(x),a_(2)=F(x+2h)a_{1}=F(x), a_{2}=F(x+2 h)a1=F(x),a2=F(x+2h)then we have D ( a 1 , a 2 ) = Δ h 2 F ( x ) D a 1 , a 2 = Δ h 2 F ( x ) D(a_(1),a_(2))=Delta_(h)^(2)F(x)D\left(a_{1}, a_{2}\right)=\Delta_{h}^{2} F(x)D(a1,a2)=Δh2F(x)from this it immediately follows that the condition of the theorem is necessary. Theorem 2 is proved.
6. - To generalize L. Chakalov's property, instead of sequence (3), we take the sequence
(14) n 2 n 1 ( A n M n ( f ) ) , n = 2 , 3 , (14) n 2 n 1 A n M n ( f ) , n = 2 , 3 , {:(14)(n^(2))/(n-1)(A_(n)-M_(n)(f))","quad n=2","3","dots:}\begin{equation*} \frac{n^{2}}{n-1}\left(A_{n}-M_{n}(f)\right), \quad n=2,3, \ldots \tag{14} \end{equation*}(14)n2n-1(An-Mn(f)),n=2,3,
The following THEOREM 3 holds
. - The function F F FFFstrictly monotone on I I I^(')I^{\prime}I, then for the sequence (14) to be non-decreasing for any non-decreasing sequence (1) whose terms belong to I, it is sufficient that the inverse function F be:
a) non-concave of order 1 u 1 u 1u1 u1u
b) non-concave, respectively non-convex of order 2 depending on whether f f fffincreasing or decreasing function.
For proof we will use the method given by L. Chakalov for sequence (3).
Let us first assume that F F FFF, therefore and f f fff, has an arbitrary non-vanishing on I I I^(')I^{\prime}I, respectively on I I III.
Let us denote by ( n > 2 n > 2 n > 2n>2n>2)
E ( a 1 , a 2 , , a n ) = n 2 n 1 [ A n M n ( f ) ] ( n 1 ) 2 n 2 [ A n 1 M n 1 ( f ) ] E a 1 , a 2 , , a n = n 2 n 1 A n M n ( f ) ( n 1 ) 2 n 2 A n 1 M n 1 ( f ) E(a_(1),a_(2),dots,a_(n))=(n^(2))/(n-1)[A_(n)-M_(n)(f)]-((n-1)^(2))/(n-2)[A_(n-1)-M_(n-1)(f)]E\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\frac{n^{2}}{n-1}\left[A_{n}-M_{n}(f)\right]-\frac{(n-1)^{2}}{n-2}\left[A_{n-1}-M_{n-1}(f)\right]E(a1,a2,,an)=n2n-1[An-Mn(f)]-(n-1)2n-2[An-1-Mn-1(f)]
the difference between two consecutive terms of the sequence (14).
For everyone k = 0 , 1 , , n 1 k = 0 , 1 , , n 1 k=0,1,dots,n-1k=0,1, \ldots, n-1k=0,1,,n-1function E k = E k ( x ) E k = E k ( x ) E_(k)=E_(k)(x)E_{k}=E_{k}(x)Ek=Ek(x), resulting from E ( a 1 , a 2 , , a n ) E a 1 , a 2 , , a n E(a_(1),a_(2),dots,a_(n))E\left(a_{1}, a_{2}, \ldots, a_{n}\right)E(a1,a2,,an)believing in the latter a k + 1 = a k + 2 = = a n = x a k + 1 = a k + 2 = = a n = x a_(k+1)=a_(k+2)=dots=a_(n)=xa_{k+1}=a_{k+2}=\ldots=a_{n}=xak+1=ak+2==an=xcontinuous and differentiable on I I III.
Below it is enough to assume a 1 a 2 a n a 1 a 2 a n a_(1) <= a_(2) <= dots <= a_(n)a_{1} \leqq a_{2} \leqq \ldots \leqq a_{n}a1a2anLet
's consider the average (12), in which it is assumed a k + 1 = a k + 2 = == a n = x a k + 1 = a k + 2 = == a n = x a_(k+1)=a_(k+2)=dots==a_(n)=xa_{k+1}=a_{k+2}=\ldots= =a_{n}=xak+1=ak+2===an=x. Because f ( x ) F ( f ( x ) ) = 1 f ( x ) F ( f ( x ) ) = 1 f^(')(x)F^(')(f(x))=1f^{\prime}(x) F^{\prime}(f(x))=1f(x)F(f(x))=1a simple calculation gives the derivative of the function E k ( x ) E k ( x ) E_(k)(x)E_{k}(x)Ek(x)in the form
E k = f ( x ) { n ( n k ) n [ F ( f ( x ) ) F ( B n ) ] ( n 1 ) ( n k 1 ) n 2 [ F ( f ( x ) ) F ( B n 1 ) ] } E k = f ( x ) n ( n k ) n F ( f ( x ) ) F B n ( n 1 ) ( n k 1 ) n 2 F ( f ( x ) ) F B n 1 {:[E_(k)^(')=f^(')(x){(n(n-k))/(n)[F^(')(f(x))-F^(')(B_(n))]-:}],[{:-((n-1)(n-k-1))/(n-2)[F^(')(f(x))-F^(')(B_(n-1))]}]:}\begin{aligned} E_{k}^{\prime} & =f^{\prime}(x)\left\{\frac{n(n-k)}{n}\left[F^{\prime}(f(x))-F^{\prime}\left(B_{n}\right)\right]-\right. \\ & \left.-\frac{(n-1)(n-k-1)}{n-2}\left[F^{\prime}(f(x))-F^{\prime}\left(B_{n-1}\right)\right]\right\} \end{aligned}Ek=f(x){n(n-k)n[F(f(x))-F(Bn)]--(n-1)(n-k-1)n-2[F(f(x))-F(Bn-1)]}
Formulas
f ( x ) B n = k n [ f ( x ) B k ] , f ( x ) B n 1 = k n 1 [ f ( x ) B k ] f ( x ) B n = k n f ( x ) B k , f ( x ) B n 1 = k n 1 f ( x ) B k f(x)-B_(n)=(k)/(n)[f(x)-B_(k)],f(x)-B_(n-1)=(k)/(n-1)[f(x)-B_(k)]f(x)-B_{n}=\frac{k}{n}\left[f(x)-B_{k}\right], f(x)-B_{n-1}=\frac{k}{n-1}\left[f(x)-B_{k}\right]f(x)-Bn=kn[f(x)-Bk],f(x)-Bn-1=kn-1[f(x)-Bk]
show that when κ κ kappa\kappaκpoints 1 1 >= 1\geqq 11And x > a k , f ( x ) , B n , B n 1 x > a k , f ( x ) , B n , B n 1 x > a_(k),f(x),B_(n),B_(n-1)x>a_{k}, f(x), B_{n}, B_{n-1}x>ak,f(x),Bn,Bn-1from I I I^(')I^{\prime}Iare different because f ( x ) > B k f ( x ) > B k f(x) > B_(k)f(x)>B_{k}f(x)>Bkresp. f ( x ) < B k f ( x ) < B k f(x) < B_(k)f(x)<B_{k}f(x)<Bkdepending on whether
f f fffincreasing or decreasing. A simple calculation, which we will not reproduce here, gives
E k = k f ( x ) [ f ( x ) B k ] n ( n 1 ) ( n 2 ) { n ( k 1 ) [ f ( x ) , B n ; F ] + (15) + k ( n k 1 ) [ f ( x ) B k ] [ f ( x ) , B n , B n 1 ; F ] } E k = k f ( x ) f ( x ) B k n ( n 1 ) ( n 2 ) n ( k 1 ) f ( x ) , B n ; F + (15) + k ( n k 1 ) f ( x ) B k f ( x ) , B n , B n 1 ; F {:[E_(k)^(')=(kf^(')(x)[f(x)-B_(k)])/(n(n-1)(n-2)){n(k-1)[f(x),B_(n);F^(')]+:}],[(15){:+k(n-k-1)[f(x)-B_(k)][f(x),B_(n),B_(n-1);F^(')]}]:}\begin{align*} & E_{k}^{\prime}=\frac{k f^{\prime}(x)\left[f(x)-B_{k}\right]}{n(n-1)(n-2)}\left\{n(k-1)\left[f(x), B_{n} ; F^{\prime}\right]+\right. \\ & \left.+k(n-k-1)\left[f(x)-B_{k}\right]\left[f(x), B_{n}, B_{n-1} ; F^{\prime}\right]\right\} \tag{15} \end{align*}Ek=kf(x)[f(x)-Bk]n(n-1)(n-2){n(k-1)[f(x),Bn;F]+(15)+k(n-k-1)[f(x)-Bk][f(x),Bn,Bn-1;F]}
But f ( x ) , f ( x ) B k f ( x ) , f ( x ) B k f^(')(x),f(x)-B_(k)f^{\prime}(x), f(x)-B_{k}f(x),f(x)-Bkpositive, respectively negative, depending on whether it is f f fff, hence F F FFF, increasing or decreasing. Formula (15) shows that if F F FFFsatisfies conditions a) and b) of Theorem 3, then we have E k 0 E k 0 E_(k)^(') >= 0E_{k}^{\prime} \geqq 0Ek0For x > a k x > a k x > a_(k)x>a_{k}x>akAnd k = 1 , 2 , , n 1 k = 1 , 2 , , n 1 k=1,2,dots,n-1k=1,2, \ldots, n-1k=1,2,,n-1, It follows that the functions E k , k = 1 , 2 , , n 1 E k , k = 1 , 2 , , n 1 E_(k),k=1,2,dots,n-1E_{k}, k=1,2, \ldots, n-1Ek,k=1,2,,n-1non-decreasing for x a k x a k x >= a_(k)x \geqq a_{k}xakFrom this we conclude
E ( a 1 , a 2 , , a n ) E ( a 1 , a 2 , , a n 2 , a n 1 , a n 1 ) E a 1 , a 2 , , a n E a 1 , a 2 , , a n 2 , a n 1 , a n 1 E(a_(1),a_(2),dots,a_(n)) >= E(a_(1),a_(2),dots,a_(n-2),a_(n-1),a_(n-1)) >=E\left(a_{1}, a_{2}, \ldots, a_{n}\right) \geqq E\left(a_{1}, a_{2}, \ldots, a_{n-2}, a_{n-1}, a_{n-1}\right) \geqqE(a1,a2,,an)E(a1,a2,,an-2,an-1,an-1)
E ( a 1 , a 2 , , a n 3 , a n 2 , a n 2 , a n 2 ) E ( a 1 , a 1 , , a 1 ) = E 0 ( a 1 ) E a 1 , a 2 , , a n 3 , a n 2 , a n 2 , a n 2 E a 1 , a 1 , , a 1 = E 0 a 1 >= E(a_(1),a_(2),dots,a_(n-3),a_(n-2),a_(n-2),a_(n-2)) >= dots >= E(a_(1),a_(1),dots,a_(1))=E_(0)(a_(1))\geqq E\left(a_{1}, a_{2}, \ldots, a_{n-3}, a_{n-2}, a_{n-2}, a_{n-2}\right) \geqq \ldots \geqq E\left(a_{1}, a_{1}, \ldots, a_{1}\right)=E_{0}\left(a_{1}\right)E(a1,a2,,an-3,an-2,an-2,an-2)E(a1,a1,,a1)=E0(a1)
But E 0 = 0 E 0 = 0 E_(0)=0E_{0}=0E0=0, whatever it may be x x xxx, hence, E ( a 1 , a 2 , , a n ) , 0 E a 1 , a 2 , , a n , 0 E(a_(1),a_(2),dots,a_(n)) >= ,0E\left(a_{1}, a_{2}, \ldots, a_{n}\right) \geqq, 0E(a1,a2,,an),0, which is what was required to be proven.
It is easy to see that if F F FFFMoreover, the convex sequence (1) of order 2 and non-decreasing has all terms equal to each other, or if F F FFFconvex of order 1 and non-decreasing sequence (1) has at least three numerically distinct terms, then sequence (14) is increasing, starting from some index n n nnn.
Now we can remove the restriction made at the beginning of the proof. The function F F FFF, being of order 2, is continuous on I I I^(')I^{\prime}IFor the sake of certainty, let us assume that F F FFFincreasing function. Then the function F ε = F + ε x F ε = F + ε x F_(epsi)=F+epsi xF_{\varepsilon}=F+\varepsilon xFε=F+εxincreasing and satisfies conditions a), b) of the Gris theorem in any ε > 0 ε > 0 epsi > 0\varepsilon>0ε>0. In addition, the derivative function F ε F ε F_(epsi)F_{\varepsilon}Fεdoes not vanish on I I I^(')I^{\prime}I. Therefore, we can apply the theorem to the function F ε F ε F_(epsi)F_{\varepsilon}FεBut when ε 0 ε 0 epsi rarr0\varepsilon \rightarrow 0ε0, function F ε F ε F_(epsi)F_{\varepsilon}Fεuniformly tends to F F FFFon any finite and closed interval. If f ε f ε f_(epsi)f_{\varepsilon}fεthere is an inverse function to the function F ε F ε F_(epsi)F_{\varepsilon}Fε, Then f ε f ε f_(epsi)f_{\varepsilon}fεuniformly tends to f f fffon the same interval. From this it follows directly that M n ( f ε ) M n f ε M_(n)(f_(epsi))M_{n}\left(f_{\varepsilon}\right)Mn(fε)strives for M n ( f ) M n ( f ) M_(n)(f)M_{n}(f)Mn(f)at ε 0 ε 0 epsi rarr0\varepsilon \rightarrow 0ε0The reasoning is similar if F F FFFdecreasing function, but under the assumption that ε < 0 ε < 0 epsi < 0\varepsilon<0ε<0. Thus, Theorem 3 can be obtained by passing to the limit from the already proven special case.
7. - From sequences (1) and (14) we can require non-decreasing or non-increasing, therefore, the satisfaction of one of the 4 alternatives which we will denote by m 1 , m 2 , m 3 m 1 , m 2 , m 3 m_(1),m_(2),m_(3)m_{1}, m_{2}, m_{3}m1,m2,m3And m 4 m 4 m_(4)m_{4}m4and which we present in the table.
sequence (1)
non-decreasing non-increasing
non-decreasing m 1 m 1 m_(1)m_{1}m1 m 3 m 3 m_(3)m_{3}m3
sequence (14) non-increasing m 2 m 2 m_(2)m_{2}m2 m 4 m 4 m_(4)m_{4}m4
последовательность (1) неубывающая невозрастиющаа неубывающая m_(1) m_(3) последовательность (14) невозрастающая m_(2) m_(4)| | | последовательность (1) | | | :--- | :--- | :--- | :--- | | | | неубывающая | невозрастиющаа | | | неубывающая | $m_{1}$ | $m_{3}$ | | последовательность (14) | невозрастающая | $m_{2}$ | $m_{4}$ |
Theorem 3 refers to the alternative m 1 m 1 m_(1)m_{1}m1A similar theorem can be proved for each of the other alternatives. In the case of alternative m 2 m 2 m_(2)m_{2}m2conditions a) and b) that the function satisfies F F FFF, are replaced by the following conditions:
a') F F FFFnon-convex of order 1.
b') F F FFFnon-concave, respectively non-convex of order 2, depending on whether it is an increasing or decreasing function.
In alternatives m 3 m 3 m_(3)m_{3}m3And m 4 m 4 m_(4)m_{4}m4the sign of the derivatives (15) is studied x < a k x < a k x < a_(k)x<a_{k}x<ak, where we now assume a 1 a 2 a n a 1 a 2 a n a_(1) >= a_(2) >= dots >= a_(n)a_{1} \geqq a_{2} \geqq \ldots \geqq a_{n}a1a2anIn these cases f ( x ) , f ( x ) B k f ( x ) , f ( x ) B k f^(')(x),f(x)cdotsB_(k)f^{\prime}(x), f(x) \cdots B_{k}f(x),f(x)Bkhave different signs for x < a k x < a k x < a_(k)x<a_{k}x<ak. Therefore, conditions a) and b), which the function satisfies, must be replaced by conditions a) and b') for the alternative m 3 m 3 m_(3)m_{3}m3, and conditions a') and b) of the alternative m 4 m 4 m_(4)m_{4}m4.
8. - The question arises whether conditions a) and b) of Theorem 3 are also necessary for the non-decreasing nature of sequence (14), when sequence (1) is non-decreasing. For sequence (14) to be non-decreasing, it is necessary, in particular, to have
2 E ( a 1 , a 2 , a 3 ) = 3 a 3 a 1 a 2 9 F ( f ( a 1 ) + f ( a 2 ) + f ( a 3 ) 3 ) + 8 F ( f ( a 1 ) + f ( a 2 ) 2 ) 0 2 E a 1 , a 2 , a 3 = 3 a 3 a 1 a 2 9 F f a 1 + f a 2 + f a 3 3 + 8 F f a 1 + f a 2 2 0 2E(a_(1),a_(2),a_(3))=3a_(3)-a_(1)-a_(2)-9F((f(a_(1))+f(a_(2))+f(a_(3)))/(3))+8F((f(a_(1))+f(a_(2)))/(2)) >= 02 E\left(a_{1}, a_{2}, a_{3}\right)=3 a_{3}-a_{1}-a_{2}-9 F\left(\frac{f\left(a_{1}\right)+f\left(a_{2}\right)+f\left(a_{3}\right)}{3}\right)+8 F\left(\frac{f\left(a_{1}\right)+f\left(a_{2}\right)}{2}\right) \geqq 02E(a1,a2,a3)=3a3-a1-a2-9F(f(a1)+f(a2)+f(a3)3)+8F(f(a1)+f(a2)2)0
We deduce from this that under the conditions of Theorem 3 the function F F FFFmust satisfy the inequality
3 F ( x 3 ) F ( x 1 ) F ( x 2 ) 9 F ( x 1 + x 2 + x 3 3 ) + 8 F ( x 1 + x 2 2 ) 0 3 F x 3 F x 1 F x 2 9 F x 1 + x 2 + x 3 3 + 8 F x 1 + x 2 2 0 3F(x_(3))-F(x_(1))-F(x_(2))-9F((x_(1)+x_(2)+x_(3))/(3))+8F((x_(1)+x_(2))/(2)) >= 03 F\left(x_{3}\right)-F\left(x_{1}\right)-F\left(x_{2}\right)-9 F\left(\frac{x_{1}+x_{2}+x_{3}}{3}\right)+8 F\left(\frac{x_{1}+x_{2}}{2}\right) \geqq 03F(x3)-F(x1)-F(x2)-9F(x1+x2+x33)+8F(x1+x22)0
for any x 1 x 2 x 3 x 1 x 2 x 3 x_(1) <= x_(2) <= x_(3)x_{1} \leqq x_{2} \leqq x_{3}x1x2x3, If f f fffincreasing, and for any x 1 x 2 x 3 x 1 x 2 x 3 x_(1) >= x_(2) >= x_(3)x_{1} \geqq x_{2} \geqq x_{3}x1x2x3, есіи { { {\{{decreasing.
If f f fffincreasing, putting first x 1 = x 2 = x , x 3 = x + 3 h x 1 = x 2 = x , x 3 = x + 3 h x_(1)=x_(2)=x,x_(3)=x+3hx_{1}=x_{2}=x, x_{3}=x+3 hx1=x2=x,x3=x+3hand then x 1 = x , x 2 = x 3 = x + 6 h x 1 = x , x 2 = x 3 = x + 6 h x_(1)=x,x_(2)=x_(3)=x+6hx_{1}=x, x_{2}=x_{3}=x+6 hx1=x,x2=x3=x+6hwe deduce that the function F F FFFmust satisfy the inequalities.
(16) [ x , x + h , x + 3 h ; F ] 0 (17) [ x , x + 3 h , x + 4 h , x + 6 h ; F ] 0 (16) [ x , x + h , x + 3 h ; F ] 0 (17) [ x , x + 3 h , x + 4 h , x + 6 h ; F ] 0 {:[(16)[x","x+h","x+3h;F] >= 0],[(17)[x","x+3h","x+4h","x+6h;F] >= 0]:}\begin{gather*} {[x, x+h, x+3 h ; F] \geqq 0} \tag{16}\\ {[x, x+3 h, x+4 h, x+6 h ; F] \geqq 0} \tag{17} \end{gather*}(16)[x,x+h,x+3h;F]0(17)[x,x+3h,x+4h,x+6h;F]0
for any x , h x , h x,hx, hx,hsuch that h > 0 h > 0 h > 0h>0h>0And x , x + 3 h I x , x + 3 h I x,x+3h inI^(')x, x+3 h \in I^{\prime}x,x+3hI, respectively. x , x + 6 h I x , x + 6 h I x,x+6h inI^(')x, x+6 h \in I^{\prime}x,x+6hIThis result is obtained from the fact that, based on formula (10), the left-hand sides of inequalities (16), (17) can be replaced by
F ( x + 3 h ) 3 F ( x + h ) + 2 F ( x ) 2 F ( x + 6 h ) 9 F ( x + 4 h ) + 8 F ( x + 3 h ) F ( x ) F ( x + 3 h ) 3 F ( x + h ) + 2 F ( x ) 2 F ( x + 6 h ) 9 F ( x + 4 h ) + 8 F ( x + 3 h ) F ( x ) {:[F(x+3h)-3F(x+h)+2F(x)],[2F(x+6h)-9F(x+4h)+8F(x+3h)-F(x)]:}\begin{gathered} F(x+3 h)-3 F(x+h)+2 F(x) \\ 2 F(x+6 h)-9 F(x+4 h)+8 F(x+3 h)-F(x) \end{gathered}F(x+3h)-3F(x+h)+2F(x)2F(x+6h)-9F(x+4h)+8F(x+3h)-F(x)
In the same way, if f f fffdecreasing, assuming first x 1 = x 2 x 1 = x 2 x_(1)=x_(2)x_{1}=x_{2}x1=x2and then x 2 = x 3 x 2 = x 3 x_(2)=x_(3)x_{2}=x_{3}x2=x3, we deduce that the function F F FFFmust satisfy the inequalities
(18) [ x , x + 2 h x + 3 h ; F ] 0 (19) [ x , x + 2 h , x + 3 h , x + 6 h ; F ] 0 (18) [ x , x + 2 h x + 3 h ; F ] 0 (19) [ x , x + 2 h , x + 3 h , x + 6 h ; F ] 0 {:[(18)[x","x+2hx+3h;F] >= 0],[(19)[x","x+2h","x+3h","x+6h;F] <= 0]:}\begin{gather*} {[x, x+2 h x+3 h ; F] \geqq 0} \tag{18}\\ {[x, x+2 h, x+3 h, x+6 h ; F] \leqq 0} \tag{19} \end{gather*}(18)[x,x+2hx+3h;F]0(19)[x,x+2h,x+3h,x+6h;F]0
under the same conditions relative to x x xxxAnd h h hhh.
9. - It takes place
LEMMA 1. - If c is continuous on f f fff, then a necessary and sufficient condition for convexity, non-concavity, non-convexity, respectively concavity of order 1 of a function o on I consists in the fulfillment of the inequalities
[ x , x + h , x + 3 h ; φ ] > 0 , 0 , 0 , соотв < 0 [ x , x + h , x + 3 h ; φ ] > 0 , 0 , 0 ,  соотв  < 0 [x,x+h,x+3h;varphi] > 0, >= 0, <= 0," соотв " < 0[x, x+h, x+3 h ; \varphi]>0, \geqq 0, \leqq 0, \text { соотв }<0[x,x+h,x+3h;φ]>0,0,0, correspondingly <0
under any x , x + 3 h I , h > 0 x , x + 3 h I , h > 0 x,x+3h in I,h > 0x, x+3 h \in I, h>0x,x+3hI,h>0.
Obviously, the condition is necessary. Let us prove its sufficiency. Note that convexity, respectively, concavity, are special cases of non-concavity, respectively, non-convexity (of the same meaning, that by changing the sign of the function φ φ varphi\varphiφ(taking the function - φ φ varphi\varphiφinstead of a function φ φ varphi\varphiφ) the meaning of its convexity is replaced: convexity by concavity and, in general, non-concave by non-convexity. Further, if the function φ φ varphi\varphiφhas order 1, and [ x 1 , x 2 , x 3 ; φ ] = 0 x 1 , x 2 , x 3 ; φ = 0 [x_(1),x_(2),x_(3);varphi]=0\left[x_{1}, x_{2}, x_{3} ; \varphi\right]=0[x1,x2,x3;φ]=0for these points x 1 < x 2 < x 3 x 1 < x 2 < x 3 x_(1) < x_(2) < x_(3)x_{1}<x_{2}<x_{3}x1<x2<x3then we have [ x 1 , x 2 , x 3 ; φ ] = 0 x 1 , x 2 , x 3 ; φ = 0 [x_(1)^('),x_(2)^('),x_(3)^(');varphi]=0\left[x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime} ; \varphi\right]=0[x1,x2,x3;φ]=0at any different points x 1 , x 2 , x 3 [ x 1 , x 3 ] x 1 , x 2 , x 3 x 1 , x 3 x_(1)^('),x_(2)^('),x_(3)^(')in[x_(1),x_(3)]x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime} \in\left[x_{1}, x_{3}\right]x1,x2,x3[x1,x3]. Therefore, it is enough to prove that if
(20) [ x , x + h , x + 3 h ; φ ] 0 , x , x + 3 h I , h > 0 (20) [ x , x + h , x + 3 h ; φ ] 0 , x , x + 3 h I , h > 0 {:(20)[x","x+h","x+3h;varphi] >= 0","quad x","x+3h in I","h > 0:}\begin{equation*} [x, x+h, x+3 h ; \varphi] \geqq 0, \quad x, x+3 h \in I, h>0 \tag{20} \end{equation*}(20)[x,x+h,x+3h;φ]0,x,x+3hI,h>0
then the function φ φ varphi\varphiφnon-concave of order 1.
If x 1 < x 2 < < x m + 2 , ( m 1 ) x 1 < x 2 < < x m + 2 , ( m 1 ) x_(1) < x_(2) < dots < x_(m+2),(m >= 1)x_{1}<x_{2}<\ldots<x_{m+2},(m \geqq 1)x1<x2<<xm+2,(m1), we have the following formula for the average
(21) x 1 , x m + 1 , x m + 2 ; φ = i = 1 m Υ i [ x i , x i + 1 , x i + 2 ; φ ] (21) x 1 , x m + 1 , x m + 2 ; φ = i = 1 m Υ i x i , x i + 1 , x i + 2 ; φ {:(21)|__x_(1),x_(m+1),x_(m+2);varphi __|=sum_(i=1)^(m)Υ_(i)[x_(i),x_(i+1),x_(i+2);varphi]:}\begin{equation*} \left\lfloor x_{1}, x_{m+1}, x_{m+2} ; \varphi\right\rfloor=\sum_{i=1}^{m} \Upsilon_{i}\left[x_{i}, x_{i+1}, x_{i+2} ; \varphi\right] \tag{21} \end{equation*}(21)x1,xm+1,xm+2;φ=i=1mYi[xi,xi+1,xi+2;φ]
where are the coefficients γ i , i = 1 , 2 , , m γ i , i = 1 , 2 , , m gamma_(i),i=1,2,dots,m\gamma_{i}, i=1,2, \ldots, mγi,i=1,2,,mdo not depend on the function φ φ varphi\varphiφAnd*).
(22) i = 1 m r i , = 1 , r i > 0 , i = 1 , 2 , m (22) i = 1 m r i , = 1 , r i > 0 , i = 1 , 2 , m {:(22)sum_(i=1)^(m)r_(i)","=1","r_(i) > 0","quad i=1","2dots","m:}\begin{equation*} \sum_{i=1}^{m} r_{i},=1, r_{i}>0, \quad i=1,2 \ldots, m \tag{22} \end{equation*}(22)i=1mri,=1,ri>0,i=1,2,m
If, in particular, we take x , x + 2 h I , h > 0 x , x + 2 h I , h > 0 x,x+2h in I,h > 0x, x+2 h \in I, h>0x,x+2hI,h>0And
x i = x + 2 ( 2 i 1 1 ) h 2 m + 1 1 , i = 1 , 2 , , m + 2 x i = x + 2 2 i 1 1 h 2 m + 1 1 , i = 1 , 2 , , m + 2 x_(i)=x+(2(2^(i-1)-1)h)/(2^(m+1)-1),i=1,2,dots,m+2x_{i}=x+\frac{2\left(2^{i-1}-1\right) h}{2^{m+1}-1}, i=1,2, \ldots, m+2xi=x+2(2i-1-1)h2m+1-1,i=1,2,,m+2
then we have
x i + 1 = x i + 2 i h 2 m + 1 1 , x i + 2 = x i + 3 2 i h 2 m + 1 1 , i = 1 , 2 , , m x i + 1 = x i + 2 i h 2 m + 1 1 , x i + 2 = x i + 3 2 i h 2 m + 1 1 , i = 1 , 2 , , m x_(i+1)=x_(i)+(2^(i)h)/(2^(m+1)-1),x_(i+2)=x_(i)+(3*2^(i)h)/(2^(m+1)-1),quad i=1,2,dots,mx_{i+1}=x_{i}+\frac{2^{i} h}{2^{m+1}-1}, x_{i+2}=x_{i}+\frac{3 \cdot 2^{i} h}{2^{m+1}-1}, \quad i=1,2, \ldots, mxi+1=xi+2ih2m+1-1,xi+2=xi+32ih2m+1-1,i=1,2,,m
and, taking into account (20), (21), (22) we deduce
[ x , x + 2 ( 2 m 1 ) h 2 m + 1 1 , x + 2 h ; φ ] 0 x , x + 2 2 m 1 h 2 m + 1 1 , x + 2 h ; φ 0 [x,x+(2(2^(m)-1)h)/(2^(m+1)-1),x+2h;varphi] >= 0\left[x, x+\frac{2\left(2^{m}-1\right) h}{2^{m+1}-1}, x+2 h ; \varphi\right] \geqq 0[x,x+2(2m-1)h2m+1-1,x+2h;φ]0
*) However
γ i = ( x i + 1 x 1 ) ( x i + 2 r i ) ( x m + 1 x 1 ) ( x m + 2 x 1 ) , i = 1 , 2 , , m γ i = x i + 1 x 1 x i + 2 r i x m + 1 x 1 x m + 2 x 1 , i = 1 , 2 , , m gamma_(i)=((x_(i+1)-x_(1))(x_(i+2)-r_(i)))/((x_(m+1)-x_(1))(x_(m+2)-x_(1))),i=1,2,dots,m\gamma_{i}=\frac{\left(x_{i+1}-x_{1}\right)\left(x_{i+2}-r_{i}\right)}{\left(x_{m+1}-x_{1}\right)\left(x_{m+2}-x_{1}\right)}, i=1,2, \ldots, mγi=(xi+1-x1)(xi+2-ri)(xm+1-x1)(xm+2-x1),i=1,2,,m
Taking into account the continuity of the function φ φ varphi\varphiφ, we can go to the limit at m m m rarr oom \rightarrow \inftym, and get [ x , x + h , x + 2 h ; φ ] 0 [ x , x + h , x + 2 h ; φ ] 0 [x,x+h,x+2h;varphi] >= 0[x, x+h, x+2 h ; \varphi] \geqq 0[x,x+h,x+2h;φ]0. Hence, Δ h 2 φ ( x ) 0 Δ h 2 φ ( x ) 0 Delta_(h)^(2)varphi(x) >= 0\Delta_{h}^{2} \varphi(x) \geqq 0Δh2φ(x)0For x , x + 2 h ϵ I x , x + 2 h ϵ I x,x+2h epsilon Ix, x+2 h \epsilon Ix,x+2hϵI, from which, based on what was said in No. 4, follows the non-concavity of order 1 of the function φ φ varphi\varphiφThus, Lemma 1 is proved.
Now we can deduce
Corollary 1. - Condition a) imposed on the function F F FFFfrom Theorem 3, it is necessary for the sequence (1.4) to be non-decreasing for any non-decreasing sequence (1).
If f f fffincreasing function, then the required property follows from inequality (16) and Lemma I applied to the function F F FFF. If f f fffnon-increasing, then the function F ( x ) , F ( x ) F ( x ) , F ( x ) F(x),F(-x)F(x), F(-x)F(x),F(-x)are simultaneously non-concave or non-convex of order 1, in addition, if the function F ( x ) F ( x ) F(x)F(x)F(x)satisfies inequality (18), ts function F ( x ) F ( x ) F(-x)F(-x)F(-x)satisfies inequality (16). Corollary 1 is also obtained in this case from Lemma 1. One can proceed either by repeating the entire argument for h < 0 h < 0 h < 0h<0h<0instead of h > 0 h > 0 h > 0h>0h>0by preno nor o, tivo directly establishing a similar lemma for divided differences of the form
[ x , x + 2 h , x + 3 h ; φ ] с h > 0 . [ x , x + 2 h , x + 3 h ; φ ]  с  h > 0 . [x,x+2h,x+3h;varphi]" с "h > 0.[x, x+2 h, x+3 h ; \varphi] \text { с } h>0 .[x,x+2h,x+3h;φ] With h>0.
It is similarly proved that conditions a), a') in the corresponding theorems relating to alternatives m 2 , m 3 m 2 , m 3 m_(2),m_(3)m_{2}, m_{3}m2,m3And m 4 m 4 m_(4)m_{4}m4, such are necessary.
11. - We will prove only for one special case that condition b) from Theorem 3 is also necessary. Im
Corollary 2. - Condition b), prescribed for the function F F FFFin Theorem 3, where F F FFFhas a continuous third-order derivative on I I I^(')I^{\prime}I, is necessary for the non-decreasing sequence (14) for any non-decreasing sequence (1).
Suppose f is an increasing function. We will show that the derivative F F F^(''')F^{\prime \prime \prime}F, assuming that it exists and is continuous on I I I^(')I^{\prime}I, is non-negative on I I I^(')I^{\prime}ILet's assume the opposite. Then there is a subinterval [ α , β ] [ α , β ] [alpha,beta][\alpha, \beta][α,β]interval I I I^(')I^{\prime}I, With α < β α < β alpha < beta\alpha<\betaα<βsuch that we have on it F < 0 F < 0 F^(''') < 0F^{\prime \prime \prime}<0F<0. But then the function F F FFFconcave of order 2 on [ α , β ] [ α , β ] [alpha,beta][\alpha, \beta][α,β], therefore if x x xxx, x + 6 h [ α , β ] , h > 0 x + 6 h [ α , β ] , h > 0 x+6h in[alpha,beta],h > 0x+6 h \in[\alpha, \beta], h>0x+6h[α,β],h>0, we have [ x , x + 3 h , x + 4 h , x + 6 h ; F ] < 0 [ x , x + 3 h , x + 4 h , x + 6 h ; F ] < 0 [x,x+3h,x+4h,x+6h;F] < 0[x, x+3 h, x+4 h, x+6 h ; F]<0[x,x+3h,x+4h,x+6h;F]<0which contradicts inequality (17). So, F 0 F 0 F^(''') >= 0F^{\prime \prime \prime} \geq 0F0For x I x I x inI^(')x \in I^{\prime}xIIt is concluded that F F FFFnon-concave of order 2 on I I I^(')I^{\prime}I, thus Corollary 2 is proven.
In the same way, relying on inequality (19), one can prove Corollary 2, when f f fffdecreasing function.
It is similarly proved that conditions b), b') of the theorems corresponding to the alternatives m 2 , m 3 m 2 , m 3 m_(2),m_(3)m_{2}, m_{3}m2,m3And m 4 m 4 m_(4)m_{4}m4are also necessary under the assumption that F F FFFhas a continuous third order.
12. - Using the introduced notations, let us consider, instead of the sequence (11), the succession
(23) n [ f ( a 1 ) + f ( a 2 ) + + f ( a n ) n f ( A n ) ] , n = 1 , 2 , (23) n f a 1 + f a 2 + + f a n n f A n , n = 1 , 2 , {:(23)n[(f(a_(1))+f(a_(2))+dots+f(a_(n)))/(n)-f(A_(n))]","quad n=1","2","dots:}\begin{equation*} n\left[\frac{f\left(a_{1}\right)+f\left(a_{2}\right)+\ldots+f\left(a_{n}\right)}{n}-f\left(A_{n}\right)\right], \quad n=1,2, \ldots \tag{23} \end{equation*}(23)n[f(a1)+f(a2)++f(an)n-f(An)],n=1,2,
This sequence is reduced to (11) if sequence (1) is replaced by sequence (13) and if the functions are interchanged f f fffAnd F F FFF. From Theorem 2, therefore, follows a similar property relating to sequence (23). However, a somewhat more general property holds, since sequence (23) is simpler in some sense than sequence (11), which does not contain the inverse function to f f fff. It can be foreseen that no character of monotonicity of the function f f fffhas no obligatory influence.
The following THEOREM 4 holds
. - In order for sequence (23) to be non-decreasing, respectively, non-increasing for any sequence (1) whose terms belong to the interval 1, it is necessary and sufficient that the functions f be non-concave, respectively, non-convex of order 1.
As in the case of Theorem 2, the proof will be immediate if we note that the difference between two consecutive terms (between n n nnn-ym and ( n 1 n 1 n-1n-1n-1)-th) of sequence (23) is equal to
f ( a n ) n f ( A n ) + ( n 1 ) f ( A n 1 ) = n 1 n ( a n A n 1 ) 2 [ A n 1 , A n , a n ; f ] f a n n f A n + ( n 1 ) f A n 1 = n 1 n a n A n 1 2 A n 1 , A n , a n ; f f(a_(n))-nf(A_(n))+(n-1)f(A_(n-1))=(n-1)/(n)(a_(n)-A_(n-1))^(2)[A_(n-1),A_(n),a_(n);f]f\left(a_{n}\right)-n f\left(A_{n}\right)+(n-1) f\left(A_{n-1}\right)=\frac{n-1}{n}\left(a_{n}-A_{n-1}\right)^{2}\left[A_{n-1}, A_{n}, a_{n} ; f\right]f(an)-nf(An)+(n-1)f(An-1)=n-1n(an-An-1)2[An-1,An,an;f]
If a n A n 1 a n A n 1 a_(n)!=A_(n-1)a_{n} \neq A_{n-1}anAn-1and is equal to 0 if a n = A n 1 a n = A n 1 a_(n)=A_(n-1)a_{n}=A_{n-1}an=An-1.
13. - Instead of sequence (14), we now consider the sequence
(24) n 2 n 1 [ j ( a 1 ) + f ( a 2 ) + + f ( a n ) n f ( A n ) ] , n = 2 , 3 , (24) n 2 n 1 j a 1 + f a 2 + + f a n n f A n , n = 2 , 3 , {:(24)(n^(2))/(n-1)[(j(a_(1))+f(a_(2))+dots+f(a_(n)))/(n)-f(A_(n))]","n=2","3","dots:}\begin{equation*} \frac{n^{2}}{n-1}\left[\frac{j\left(a_{1}\right)+f\left(a_{2}\right)+\ldots+f\left(a_{n}\right)}{n}-f\left(A_{n}\right)\right], n=2,3, \ldots \tag{24} \end{equation*}(24)n2n-1[j(a1)+f(a2)++f(an)n-f(An)],n=2,3,
which is reduced to (14) using the same transformations that reduced sequence (23) to (11).
There is a property similar to that contained in Theorem 3. Namely,
THEOREM 5 - In order for sequence (24) to be non-decreasing for any non-decreasing sequence (1) whose terms belong to the interval I, it is sufficient that the function f be
a) non-concave of order 1 and
c) non-concave of order 2.
The proof is the same as in Theorem 3. Therefore, it is sufficient to indicate only its idea.
Let us denote by Φ ( a 1 , a 2 , , a n ) Φ a 1 , a 2 , , a n Phi(a_(1),a_(2),dots,a_(n))\Phi\left(a_{1}, a_{2}, \ldots, a_{n}\right)Φ(a1,a2,,an)the difference between two consecutive terms (between ( n 1 n 1 n-1n-1n-1)-th and ( n 2 n 2 n-2n-2n-2)-th, n > 2 n > 2 n > 2n>2n>2) sequence (24). Let Φ k = Φ k ( x ) Φ k = Φ k ( x ) Phi_(k)=Phi_(k)(x)\Phi_{k}=\Phi_{k}(x)Φk=Φk(x)function of x x xxx, which is plouchasya kz Φ ( a 1 , a 2 , , a n ) Φ a 1 , a 2 , , a n Phi(a_(1),a_(2),dots,a_(n))\Phi\left(a_{1}, a_{2}, \ldots, a_{n}\right)Φ(a1,a2,,an)substitution a k + 1 = a k + 2 = = a n = x a k + 1 = a k + 2 = = a n = x a_(k+1)=a_(k+2)=dots=a_(n)=xa_{k+1}=a_{k+2}=\ldots=a_{n}=xak+1=ak+2==an=xFinally, to prove it, let us assume that a 1 a 2 a n a 1 a 2 a n a_(1) <= a_(2) <= dots <= a_(n)a_{1} \leqq a_{2} \leqq \ldots \leqq a_{n}a1a2an.
Function f f fff, which has order 2, has a continuous derivative on I I III. It follows that the functions Φ k Φ k Phi_(k)\Phi_{k}Φkare continuous and have a continuous derivative on I I III.
If k 1 , a k < x I k 1 , a k < x I k >= 1,a_(k) < x in Ik \geqq 1, a_{k}<x \in Ik1,ak<xI, then the points x , A n , A n 1 x , A n , A n 1 x,A_(n),A_(n-1)x, A_{n}, A_{n-1}x,An,An-1from I I IIIthe derivatives of the function are different in the case ϕ k ϕ k phi_(k)\phi_{k}ϕkin the form
ϕ k = k ( x A k ) n ( n 1 ) ( n 2 ) { n ( k 1 ) [ x , A n ; f ] + k ( n k 1 ) ( x A k ) [ x , A n , A n 1 ; f ] } ; ϕ k = k x A k n ( n 1 ) ( n 2 ) n ( k 1 ) x , A n ; f + k ( n k 1 ) x A k x , A n , A n 1 ; f ; phi_(k)^(')=(k(x-A_(k)))/(n(n-1)(n-2)){n(k-1)[x,A_(n);f^(')]+k(n-k-1)(x-A_(k))[x,A_(n),A_(n-1);f^(')]};\phi_{k}^{\prime}=\frac{k\left(x-A_{k}\right)}{n(n-1)(n-2)}\left\{n(k-1)\left[x, A_{n} ; f^{\prime}\right]+k(n-k-1)\left(x-A_{k}\right)\left[x, A_{n}, A_{n-1} ; f^{\prime}\right]\right\} ;ϕk=k(x-Ak)n(n-1)(n-2){n(k-1)[x,An;f]+k(n-k-1)(x-Ak)[x,An,An-1;f]};
it follows that these derivatives are non-negative when x > a k x > a k x > a_(k)x>a_{k}x>ak. Like Theorem 3, No. 6, Theorem 5 is obtained from the corresponding formulas.
It is easy to notice here that if the function f f fffin addition, it is also convex of order 2 and the non-decreasing sequence (1) does not have all terms equal to each other, or if the function int\intis convex of order 1 and the non-decreasing sequence (1) has at least three numerically distinct terms, then the sequence (24) will be increasing, starting from some index n n nnn.
14. - Here, as in No. 7, there are four alternatives. m 1 , m 2 m 1 , m 2 m_(1),m_(2)m_{1}, m_{2}m1,m2, m 3 m 4 m 3 m 4 m_(3)m_(4)m_{3} m_{4}m3m4we only need to replace sequence (14) with sequence (24). Theorem 5 corresponds to the alternative m 1 m 1 m_(1)m_{1}m1In a similar theorem, corresponding to the alternative m 2 m 2 m_(2)m_{2}m2, conditions a), c), which the function satisfies f f fffin Theorem 5, are replaced by the following conditions:
a ) a {:a^('))\left.\mathrm{a}^{\prime}\right)a)f is non-convex of order 1,
c') f f fffis non-convex of order 2.
In similar theorems corresponding to alternatives m 3 m 3 m_(3)m_{3}m3And m 4 m 4 m_(4)m_{4}m4, conditions a), c) of Theorem 5 are replaced by a), b, ') and a'), c) respectively.
Finally, as in No. 10, it is proved that condition a) of Theorem 5 is necessary for the non-decreasing nature of sequence (24) for any non-decreasing sequence (1). As in No. 11, it is proved that for the same result, condition c) is necessary if f f fffthree times continuously differentiable function on I I III.
Similar properties are preserved in the case of alternatives m 2 , m 3 , m 4 m 2 , m 3 , m 4 m_(2),m_(3),m_(4)m_{2}, m_{3}, m_{4}m2,m3,m4.
15. - Properties I and II of L. Chakalov are derived from Theorems 2 and 3 at f = ln x f = ln x f=ln xf=\ln xf=lnx. In this case, the function f f fffis at x > 0 x > 0 x > 0x>0x>0increasing, concave of order 1 and convex of order 2. The inverse function F = e x F = e x F=e^(x)F=e^{x}F=exincreasing, convex of order 1 and convex of order c. We can now apply Theorems 4 and 5, noting that for the latter we are in the alternative m 4 m 4 m_(4)m_{4}m4. Preliminarily moving from logarithms to numbers, we thus obtain the following two properties:
III. - Sequence ( A n G n ) n , n = 1 , 2 , A n G n n , n = 1 , 2 , ((A_(n))/(G_(n)))^(n),n=1,2,dots\left(\frac{A_{n}}{G_{n}}\right)^{n}, n=1,2, \ldots(AnGn)n,n=1,2,- non-decreasing.
IV. - Sequence ( A n G n ) n a n 1 , n = 2 , 3 , A n G n n a n 1 , n = 2 , 3 , ((A_(n))/(G_(n)))^((n^(a))/(n-1)),n=2,3,dots\left(\frac{A_{n}}{G_{n}}\right)^{\frac{n^{a}}{n-1}}, n=2,3, \ldots(AnGn)nan-1,n=2,3,- non-decreasing for any non-decreasing sequence (1).
Here we have used the notation kz № 1 for the arithmetic mean and geometric mean, assuming that all members of the sequence (1) are positive.
Let's take another case, namely f = 1 x f = 1 x f=(1)/(x)f=\frac{1}{x}f=1xat x > 0 x > 0 x > 0x>0x>0We have then F = 1 x F = 1 x F=(1)/(x)F=\frac{1}{x}F=1xQuasi-arithmetic mean M n ( f ) M n ( f ) M_(n)(f)M_{n}(f)Mn(f)then reduces to the harmonic mean H n = n 1 a 1 + 1 a 2 + + 1 a n H n = n 1 a 1 + 1 a 2 + + 1 a n H_(n)=(n)/((1)/(a_(1))+(1)/(a_(2))+dots+(1)/(a_(n)))H_{n}=\frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}}Hn=n1a1+1a2++1anfirst n n nnnmembers of the sequence (1), assumed to be positive.
Both functions f , F f , F f,Ff, Ff,Fare decreasing, convex of order 1 and concave of order 2. Now we can apply the theorems 2 , 3 , 4 2 , 3 , 4 2,3,42,3,42,3,4and 5, noting that for Theorem 3 we are in the alternative m 1 m 1 m_(1)m_{1}m1, and for Theorem 5 - in the alternative m 3 m 3 m_(3)m_{3}m3. We thus derive the properties:
V. - Sequences
n ( A n H n ) , n = 1 , 2 , ; n ( 1 H n 1 A n ) , n = 1 , 2 , n A n H n , n = 1 , 2 , ; n 1 H n 1 A n , n = 1 , 2 , n(A_(n)-H_(n)),n=1,2,dots;n((1)/(H_(n))-(1)/(A_(n))),n=1,2,dotsn\left(A_{n}-H_{n}\right), n=1,2, \ldots ; n\left(\frac{1}{H_{n}}-\frac{1}{A_{n}}\right), n=1,2, \ldotsn(An-Hn),n=1,2,;n(1Hn-1An),n=1,2,
are non-decreasing.
VI. - Sequences
n 2 n 1 ( A n H n ) , n = 2 , 3 , ; n 2 n 1 ( 1 H n 1 A n ) , n = 2 , 3 , n 2 n 1 A n H n , n = 2 , 3 , ; n 2 n 1 1 H n 1 A n , n = 2 , 3 , (n^(2))/(n-1)(A_(n)-H_(n)),n=2,3,dots;(n^(2))/(n-1)((1)/(H_(n))-(1)/(A_(n))),n=2,3,dots\frac{n^{2}}{n-1}\left(A_{n}-H_{n}\right), n=2,3, \ldots ; \frac{n^{2}}{n-1}\left(\frac{1}{H_{n}}-\frac{1}{A_{n}}\right), n=2,3, \ldotsn2n-1(An-Hn),n=2,3,;n2n-1(1Hn-1An),n=2,3,
are non-decreasing, the first for any non-decreasing sequence (1).
Finally, let's consider one more special case: f = x 2 f = x 2 f=x^(2)f=x^{2}f=x2, at x > 0 x > 0 x > 0x>0x>0We have then F = x F = x F=sqrtxF=\sqrt{x}F=xand average M n ( f ) M n ( f ) M_(n)(f)M_{n}(f)Mn(f)is reduced to a quadratic mean P n = a 1 2 + a 2 2 + + a n 2 n P n = a 1 2 + a 2 2 + + a n 2 n P_(n)=sqrt((a_(1)^(2)+a_(2)^(2)+dots+a_(n)^(2))/(n))P_{n}=\sqrt{\frac{a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}}{n}}Pn=a12+a22++an2nfirst n n nnnnumbers of the sequence (1).
Here is the function f f fffincreasing, convex of order 1 and at the same time non-concave and non-convex row 2, and the function F F FFF- increasing, concave of order 1 and convex of order 2.
We can apply Theorems 2 and 3; in the latter case we are in the alternative m 4 m 4 m_(4)m_{4}m4. We thus obtain the properties:
VII. - Sequence n ( A n P n ) , n = 1 , 2 , n A n P n , n = 1 , 2 , n(A_(n)-P_(n)),n=1,2,dotsn\left(A_{n}-P_{n}\right), n=1,2, \ldotsn(An-Pn),n=1,2,is non-increasing.
VIII. - Sequence n 2 n 1 ( A n P n ) , n = 1 , 2 , n 2 n 1 A n P n , n = 1 , 2 , (n^(2))/(n-1)(A_(n)-P_(n)),n=1,2,dots\frac{n^{2}}{n-1}\left(A_{n}-P_{n}\right), n=1,2, \ldotsn2n-1(An-Pn),n=1,2,is non-increasing for any non-increasing sequence (1).
We can also apply Theorems 4 and 5, noting that in the latter case we are in the alternatives m 1 m 1 m_(1)m_{1}m1And m 3 m 3 m_(3)m_{3}m3. We then obtain the properties:
IX. - Sequence n ( P n 2 A n 2 ) , n = 1 , 2 , n P n 2 A n 2 , n = 1 , 2 , n(P_(n)^(2)-A_(n)^(2)),n=1,2,dotsn\left(P_{n}^{2}-A_{n}^{2}\right), n=1,2, \ldotsn(Pn2-An2),n=1,2,is non-decreasing.
X. - Sequence n 2 n 1 ( P n 2 A n 2 ) , n = 2 , 3 , n 2 n 1 P n 2 A n 2 , n = 2 , 3 , (n^(2))/(n-1)(P_(n)^(2)-A_(n)^(2)),n=2,3,dots\frac{n^{2}}{n-1}\left(P_{n}^{2}-A_{n}^{2}\right), n=2,3, \ldotsn2n-1(Pn2-An2),n=2,3,is non-decreasing for any monotone sequence (1).
In properties VII-X, we can assume that the terms of sequence (1) are non-negative.
Properties IX and X can be obtained directly and very simply if we note that
n ( P n 2 A n 2 ) ( n 1 ) ( P n 1 2 A n 1 2 ) = n 1 n ( a n A n 1 ) 2 n 2 n 1 ( P n 2 A n 2 ) ( n 1 ) 2 n 2 ( P n 1 2 A n 1 2 ) = = 2 ( n 1 ) ( n 2 ) i j 1 , 2 , , n 1 ( a i a n ) ( a j a n ) ( n > 2 ) n P n 2 A n 2 ( n 1 ) P n 1 2 A n 1 2 = n 1 n a n A n 1 2 n 2 n 1 P n 2 A n 2 ( n 1 ) 2 n 2 P n 1 2 A n 1 2 = = 2 ( n 1 ) ( n 2 ) i j 1 , 2 , , n 1 a i a n a j a n ( n > 2 ) {:[n(P_(n)^(2)-A_(n)^(2))-(n-1)(P_(n-1)^(2)-A_(n-1)^(2))=(n-1)/(n)(a_(n)-A_(n-1))^(2)],[quad(n^(2))/(n-1)(P_(n)^(2)-A_(n)^(2))-((n-1)^(2))/(n-2)(P_(n-1)^(2)-A_(n-1)^(2))=],[=(2)/((n-1)(n-2))sum_(i!=j)^(1,2,dots,n-1)(a_(i)-a_(n))(a_(j)-a_(n))quad(n > 2)]:}\begin{gathered} n\left(P_{n}^{2}-A_{n}^{2}\right)-(n-1)\left(P_{n-1}^{2}-A_{n-1}^{2}\right)=\frac{n-1}{n}\left(a_{n}-A_{n-1}\right)^{2} \\ \quad \frac{n^{2}}{n-1}\left(P_{n}^{2}-A_{n}^{2}\right)-\frac{(n-1)^{2}}{n-2}\left(P_{n-1}^{2}-A_{n-1}^{2}\right)= \\ =\frac{2}{(n-1)(n-2)} \sum_{i \neq j}^{1,2, \ldots, n-1}\left(a_{i}-a_{n}\right)\left(a_{j}-a_{n}\right) \quad(n>2) \end{gathered}n(Pn2-An2)-(n-1)(Pn-12-An-12)=n-1n(an-An-1)2n2n-1(Pn2-An2)-(n-1)2n-2(Pn-12-An-12)==2(n-1)(n-2)ij1,2,,n-1(ai-an)(aj-an)(n>2)

LITERATURE

    • L. Tchakaloff ,,Sur quelques inegalités entre la moyenne arithmétique et 1a moyenne géométrique" Annuaire de 1'Univ, de Sofia, XLII, 39-42 (1946).
Received by the editors on December 5, 1958.

  1. *) We will compress that I I III- open interval.
1959

Related Posts