Abstract

Authors

T. Popoviciu
Institutul de Calcul

Keywords

?

Paper coordinates

T. Popoviciu, Asupra restului în unele formule de derivare numerică. Studii și cercetări matematice, tom. III, nr.1-2, pag. 53-122 (1952).

PDF

About this paper

Journal

Studii si Cercetari Matematice

Publisher Name

Academy of the Republic of S.R.

Print ISSN

1220-269X

Online ISSN

google scholar link

??

Paper (preprint) in HTML form

Original text
Rate this translation
Your feedback will be used to help improve Google Translate

ON THE REMAINDER IN SOME NUMERICAL DERIVATION FORMULAS

by TIBERIU POPOVICIU

§ 1. Formulas of maximum accuracy

  1. 1.

    A numerical derivative formula is a formula that allows the approximate evaluation of the value of the derivative of a given order of a function, at a given point, by a given linear combination of the values ​​of the function and a finite number of its successive derivatives, taken at a finite number of given points.

A numerical derivation formula is therefore a formula of the form

f(m+R)(x0)=j=0R1Ajf(j)(x0)+and=1Sj=0Rand1Aand,jf(and)(xand)+Rf^{(m+r)}\left(x_{0}\right)=\sum_{j=0}^{r-1}a_{j}f^{(j)}\left(x_{0}\right)+\sum_{i=1}^{s}\sum_{j=0}^{r_{i}-1}a_{i,j}f^{(i)}\left(x_{i}\right)+R (1)

which allows us to attribute tof(m+R)(x0)f^{(m+r)}\left(x_{0}\right), as an approximate value, sum of the second term (withoutRR). In this formula the coefficientsAj,j=0.1,a_{j},j=0,1,\ldots,R1,Aand,j,j=0.1,,Rand1,and=1.2,,Sr-1,a_{i,j},j=0,1,\ldots,r_{i}-1,i=1,2,\ldots,sare some real constants given,andf(and)(x0),j=0.1,,R1,f(and)(xand),j=0.1,,Rand1,and=1.2,,S\operatorname{iar}f^{(i)}\left(x_{0}\right),j=0,1,\ldots,r-1,f^{(i)}\left(x_{i}\right),j=0,1,\ldots,r_{i}-1,i=1,2,\ldots,sare the values ​​of the functionf(x)f(x)and its successive derivativesf(x),f"(x),f^{\prime}(x),f^{\prime\prime}(x),\ldotsat the given pointsx0,x1,x2,,xSx_{0},x_{1},x_{2},\ldots,x_{s}.

numberRRfrom the second member of formula (1), is the remainder of this formula. An expression of the remainder, resulting from the nature of the functionf(x)f(x), allows an evaluation of the error that is committed by the indicated approximation of the first member.
2. We must specify from the beginning the hypotheses that will be maintained throughout the work and which are related to the data of formula (1). At the same time, we will also fix some names in connection with these data.
11^{\circ}. The points

x1,x2,,xSx_{1},x_{2},\ldots,x_{s} (2)

on the real axis, assumed distinct and in number ofS1s\geqq 1, we will call them the nodes of the numerical derivation formula.
22^{\circ}. Each nodexandx_{i}an order of multiplicity is attached to itRandr_{i}. The numbersR1,R2,,RSr_{1},r_{2},\ldots,r_{s}are positive integers.
33^{\circ}The pointx0x_{0}is different from the nodes (2) and we will call it the drift point of formula (1).
𝟒\mathbf{4}^{\circ}. The point of derivationx0x_{0}an order of multiplicity is attached to itRR, assumed to be a positive integer or zero.
55^{\circ}Numbermm, integer position or zero, we will call it the derivative index of formula (1).

Finally, relative to the functionf(x)f(x)we will make the following hypothesis, noting with[A,b][a,b]the smallest closed interval containing the nodes and the derivation point.
66^{\circ}. The real functionf(x)f(x), of the real variablexx, is defined and continuous in the interval[A,b][a,b]. Besides this, it is assumed that it admits the derivatives that actually occur in formula (1) and at least at the points where the values ​​of these derivatives actually appear in formula (1) 1 ).

The continuity assumption is made for the purpose of studying the rest of formula (1).
Any other assumption made on the problem data will be expressly stated.

There is an infinite multitude𝔗\mathfrak{T}\mathfrak{C}of numerical derivation formulas (1), which are obtained by giving the coefficientsAand,Aand,ja_{i},a_{i,j}all possible real values ​​and having all of the following common characteristics:
11^{\circ}. The nodes,22^{\circ}The respective multiplicity orders of the nodes,33^{\circ}. The derivation point,44^{\circ}. The multiplicity order of the derivative point,55^{\circ}. Derivation index.

It is useful to note withp+1p+1the sum of the multiplicity orders of the nodes, soR1+R2++RS=p+1r_{1}+r_{2}+\ldots+r_{s}=p+1. Thenp0p\geqq 0andp+1p+1represents the total number of nodes, each counted with its order of multiplicity. For all formulas in𝔑\mathfrak{N}, the numbersp,R,mp,r,mare the same.
Each formula (1) in𝔑\mathfrak{N}We will attach two important characteristic numbers: the order of the formula and the degree of accuracy of the formula.
(3) The order of formula (1) serves to specify the sum of the orders of derivation, which effectively intervene in the second member. For this, we will define the numbers as followsR1,R2,,RS,Rr_{1}^{\prime},r_{2}^{\prime},\ldots,r_{s}^{\prime},r^{\prime}attached to the nodes and the derivation point:
4.Rand1r_{i}^{\prime}-1is the highest order of derivation that actually occurs in the nodexandx_{i}, therefore,
Rand=0r_{i}^{\prime}=0, if all the coefficientsAand,j,j=0.1,,Rand1a_{i,j},j=0,1,\ldots,r_{i}-1are null;
Aand,R:10,Aand,j=0,j=Rand,Rand+1,,Rand1a_{i,r:-1}\neq 0,a_{i,j}=0,j=r_{i}^{\prime},r_{i}^{\prime}+1,\ldots,r_{i}-1, if the coefficientsAand,ja_{i,j}they are not all null,and=1.2,,Si=1,2,\ldots,s.
R1r^{\prime}-1is the highest order of derivation that actually occurs at the pointx0x_{0}in the second member, therefore,
R=0r^{\prime}=0, ifR=0r=0or if all the coefficientsAj,j=0.1,,R1a_{j},j=0,1,\ldots,r-1are null,
AR10,Aj=0,j=R,R+1,,R1a_{r^{\prime}-1}\neq 0,a_{j}=0,j=r^{\prime},r^{\prime}+1,\ldots,r-1if the coefficientsAja_{j}they are not all null.

0 0 footnotetext: 1) This means that the coefficientAja_{j}orAand,ja_{i,j}correspondingly is different from zero.

We then have:

0RR,0RandRand;and=1.2,,S0\leqq r^{\prime}\leqq r,0\leqq r_{i}^{\prime}\leqq r_{i};i=1,2,\ldots,s

equalR=0r^{\prime}=0, respectivelyRand=0r_{i}^{\prime}=0, means that the derivation point, respectively the nodexandx_{i}, does not actually appear in the second member of formula (1). The equalityR=R(>0)r^{\prime}=r(>0), respectivelyRand=Randr_{i}^{\prime}=r_{i}, means that the coefficientAR1a_{r-1}, respectivelyARand1a_{r_{i}-1}, is different from zero.

By definition, the sumR1+R2++RS+Rr_{1}^{\prime}+r_{2}^{\prime}+\ldots+r_{s}^{\prime}+r^{\prime}will be called the order of the numerical derivation formula (1).

The order of formula (1) is at most equal top+R+1p+r+1
In the crowd 𝔑\mathfrak{N}there is a formula that has order equal to 0. This is the trivial formula in𝒪\mathscr{O}which has all the coefficientsAj¯,Aand,j\overline{a_{j}},a_{i,j}null. Any other formula in𝔎\mathfrak{K}has positive order.

The trivial formula is of no interest for the problem of numerical derivation.
4. The degree of accuracy of formula (1) shows us how good the approximation studied is in the particular case, when the functionf(x)f(x)reduces to a polynomial of sufficiently small degree.

RESTRRof formula (1) is the value, given by this formula, of an additive and homogeneous functional. To highlight the functionf(x)f(x), we will denote this functional byR[f]R[f].

functionR[f]R[f]is defined in the field of functionsf(x)f(x), which verifies the above hypotheses. This field is a vector field, which contains all functions differentiable a sufficient number of times in the interval[A,b][a,b]and therefore, in particular, all polynomials.

By definition, the degree of accuracy of the functionR[f]R[f], or of formula (1), is an integern1n\geq-1, so that:
1.R[P]=01^{\circ}.R[P]=0, for any polynomial𝑷(x)\boldsymbol{P}(x)of the degreen1n^{1}).
2.R[P]02^{\circ}.R[P]\neq 0, for at least one polynomialP(x)P(x)of the degreen+1n+1The
definition obviously applies to any functional that is defined for all polynomials.

Due to the additivity and homogeneity of the functional, the degree of accuracynncan also be defined by the following properties:
11^{\circ}IfR[1]0R[1]\neq 0, we haven=1n=-1.
22^{\circ}IfR[1]=0,nR[1]=0,nis the smallest integer, such that

R[xand]=0,and=0.1,.n,R[xn+1]0.R\left[x^{i}\right]=0,i=0,1,\ldots.n,R\left[x^{n+1}\right]\neq 0.

The following observation is useful: because the degree of accuracy of the functionalR[f]R[f]to be>n>n, it is necessary and sufficient for us to haveR[P]=0R[P]=0for any polynomialP(x)P(x)of the degreennandR(P1)=0R\left(P_{1}\right)=0for at least one polynomaP1(x)P_{1}(x)of effective degreen+1n+1Indeed, any polynomialQ(x)Q(x)of the degreen+1n+1is of the formQ(x)=CP1(x)+P(x)Q(x)=CP_{1}(x)+P(x), whereCCis a constant andP(x)P(x)a polynomial of degreennWe then haveR[Q]=CR[P1]+R[P]=0R[Q]=CR\left[P_{1}\right]+R[P]=0.

Let's introduce the polynomial

it(x)=(xx1)γ1(xx2)γ2(xxS)γSl(x)=\left(x-x_{1}\right)^{\gamma_{1}}\left(x-x_{2}\right)^{\gamma_{2}}\ldots\left(x-x_{s}\right)^{\gamma_{s}} (3)
0 0 footnotetext: 1) A polynomial of degree -1 coincides with the identical zero polynomial.

An immediate calculation then gives us (enf. (1)).

R[(xx0)m+Rit(x)]=[(xx0)m+Rit(x)]x=x0(m+R)=(m+R)!(mm)!it(mm)(x0)R\left[\left(x-x_{0}\right)^{m^{\prime}+r}l(x)\right]=\left[\left(x-x_{0}\right)^{m^{\prime}+r}l(x)\right]_{x=x_{0}}^{(m+r)}=\frac{(m+r)!}{\left(m-m^{\prime}\right)!}l^{\left(m-m^{\prime}\right)}\left(x_{0}\right) (4)

ifmm^{\prime}is an integer0\geq 0Form>mm^{\prime}>mthis expression is equal to 0 .

Form=mm^{\prime}=m, the number (4) is different from 0 based on the assumptions made. It follows from this that the degree of accuracy of the functionalR[f]R[f]It also follows that this degree of accuracy isp+R+m\leqq p+r+m.

It is clear that the degree of accuracy is uniquely determined.
The degree of accuracy of the trivial formula in𝔑\mathfrak{N}it's the same asm+R1m+r-1, which can be easily verified.
5. Let us consider the interpolation polynomial of degreep+Rp+r

IT(x0,x0,,x0R,x1,x2,,xp+1;fx)L(\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x) (5)

relative to the functionf(x)f(x)and to the systemp+R+1p+r+1nodes, formed from the pointx0x_{0}repeated byRrtimes and from the points

x1,x2,,xp+1\quad x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime} (6)

which represent the nodes (2), each repeated as many times as its multiplicity order indicates. System (6) therefore represents a renumbering of the nodes (2), taking into account their multiplicities. To fix the notations it can be assumed that:

xR1+R2++Rand1+j=xand,j=1.2,,Rand,and=1.2,,S.x_{r_{1}+r_{2}+\ldots+r_{i-1}+j}^{\prime}=x_{i},j=1,2,\ldots,r_{i},i=1,2,\ldots,s. (7)

IfR=0r=0, the point𝔵0\mathfrak{x}_{0}is not a node of the polynomial and does not appear in the notation (5).

The polynomial (5) is the lowest degree polynomial that coincides with the functionf(x)f(x)in the pastp+R+1p+r+1given nodes. This means that if a node is repeated bykktimes, polyne mul (5), together with its firstk1k-1derivatives, coincides with the functionf(x)f(x)and with his firstk1k-1respective derivatives in this node. The polynomial (5) is therefore in general the Lagrange-Hermite polynomial [2], [3], which corresponds to the function and the nodes highlighted by the notation (5), that is, the (unique) polynomial of the lowest degree that verifies the conditions:

IT(and)(x0,x0,,x0R,x1,x2,,xp+1;fxand)=f(and)(xV)and=0.1,,Rand1,and=0.1,,S(R0=R)\begin{gathered}L^{(i)}(\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r},x_{1},x_{2},\ldots,x_{p+1};f\mid x_{i})=f^{(i)}\left(x_{v}\right)\\ i=0,1,\ldots,r_{i}-1,i=0,1,\ldots,s\quad\left(r_{0}=r\right)\end{gathered}

The explicit form of the pclinc m (5)\inis well known [3], [11]. We will recall some of these results in the form used here.

IT(df0,x0,,x0,x1,x2,,xp+1;fx)=and=0R1Cand(x)f(j)(x0)++and=1Sand=0Rand1Cand,j(x)f(j)(xand)\displaystyle\qquad\begin{aligned} L\left(\frac{d}{f_{0}},x_{0},\ldots,x_{0}\right.&\left.,x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x\right)=\sum_{i=0}^{r-1}C_{i}(x)f^{(j)}\left(x_{0}\right)+\\ &+\sum_{i=1}^{s}\sum_{i=0}^{r_{i}-1}C_{i,j}(x)f^{(j)}\left(x_{i}\right)\end{aligned}

where the first sum in the second term vanishes ifR=0r=0. HereCj(x)=C0,j(x)C_{j}(x)=C_{0,j}(x),Cand,and(x)C_{i,i}(x)are polynomials of degreep+Rp+r, completely determined by the conditions
1.Cand,j(j)(xand)j=11^{\circ}.C_{i,j}^{(j)}{}_{j}\left(x_{i}\right)=1,
2.Cand,j(you)(xV)=02^{\circ}.C_{i,j}^{(u)}\left(x_{v}\right)=0, for|youj|+|Vand|0|u-j|+|v-i|\neq 0.

j=0.1,,Rand1,and=0.1,,S(R0=R).j=0,1,\ldots,r_{i}-1,\quad i=0,1,\ldots,s\quad\left(r_{0}=r\right).

If we put

cand=Cj(m+R)(x0),j=0.1,,R1,cand,j=Cand,j(m+R)(x0),j=0.1,,Rand1,and=1.2,,S}\left.\begin{array}[]{rl}c_{i}&=C_{j}^{(m+r)}\left(x_{0}\right),j=0,1,\ldots,r-1,\\ c_{i,j}&=C_{i,j}^{(m+r)}\left(x_{0}\right),j=0,1,\ldots,r_{i}-1,i=1,2,\ldots,s\end{array}\right\}

HAVE

IT(m+R)(x0,x0,,x0R,x1,x2,,xp+1;fx0)=j=0R1cjf(j)(x0)+L^{(m+r)}\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x_{0})=\sum_{j=0}^{r-1}c_{j}f^{(j)}\left(x_{0}\right)+ (10)
+and=1Sand=0Rand1cand,andf(and)(xand)+\sum_{i=1}^{s}\sum_{i=0}^{r_{i}-1}c_{i,i}f^{(i)}\left(x_{i}\right)

and it turns out that

f(m+R)(x0)=IT(m+R)(x0,x0,,x0Rx1,x2,,xp+1;fx0)+Rf^{(m+r)}\left(x_{0}\right)=L^{(m+r)}\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r}x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x_{0})+R (E)

is a numerical derivation formula belonging to the set𝔑\mathfrak{N}
Based on formulas (9) it is clear that for m>pm>p, formula (E) reduces to the trivial formula. =
6. We propose to determine the degree of accuracy of formula (E). For this we will need the following lemma:

Let me 1. If two derivatives of consecutive ordersand,and+1\mathrm{i},\mathrm{i}+1of a polynomial with all real roots have a common root, this root is a root of the polynomial of order multiplicity at least equal to1+21+2.

Indeed, if the common root of the derivatives isAa, the polynomial can be written in the form
α0+α1(xA)+α2(xA)2++αand1(xA)and1+αand+2(xA)and+2+\alpha_{0}+\alpha_{1}(x-a)+\alpha_{2}(x-a)^{2}+\ldots+\alpha_{i-1}(x-a)^{i-1}+\alpha_{i+2}(x-a)^{i+2}+\ldots
and if the coefficientsα0,α1,,αand1\alpha_{0},\alpha_{1},\ldots,\alpha_{i-1}were not all zero, the polynomial would presentaogap of at least 2 terms, which is in contradiction with the reality of all roots. We assume, of course, that the effective order of the polynomial is at leastandi.

We now observe that, iff(x)f(x)is a polynomial of degreep+Rp+r, we have

IT(x0,x0,,x0R,x1,x2,,xp+1;fx)=f(x)L\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x)=f(x) (11)

and for formula (E) we then haveR[f]=0R[f]=0This shows us that the degree of accuracy of formula (E) isp+R\geq p+rIt is immediately seen that the conclusion holds even if (E) is reduced to the trivial formula.

Ifmpm\leq p, formula (4) gives us, in particular,

R[(xx0)Rit(x)]\displaystyle R\left[\left(x-x_{0}\right)^{r}l(x)\right] =(m+R)!m!it(m)(x0),R[(xx0)R+1it(x)]=\displaystyle=\frac{(m+r)!}{m!}l^{(m)}\left(x_{0}\right),R\left[\left(x-x_{0}\right)^{r+1}l(x)\right]=
=(m+R!)(m1)!it(m1)(x0)\displaystyle=\frac{(m+r!)}{(m-1)!}l^{(m-1)}\left(x_{0}\right) (12)

and polynomials(xx0)Rit(x),(xx0)R+1it(x)\left(x-x_{0}\right)^{r}l(x),\left(x-x_{0}\right)^{r+1}l(x)are respectively of the effective degreesp+R+1,p+R+2p+r+1,p+r+2.

Ifm=0m=0, we haveit(x0)0l\left(x_{0}\right)\neq 0, based on the assumptions made, and ifm>0m>0, taking into account lemma 1, it is seen that we cannot have at the same time

it(m)(x0)=0,it(m1)(x0)=0.l^{(m)}\left(x_{0}\right)=0,\quad l^{(m-1)}\left(x_{0}\right)=0.

We therefore deduce the following theorem:
Theorem 1. The degree of accuracy of the formula(It is)(E)it is alwaysp+R\geq\mathrm{p}+\mathrm{r}.

Ifm>p\mathrm{m}>\mathrm{p}this degree of accuracy is equal tom+R1\mathrm{m}+\mathrm{r}-1If
mp\mathrm{m}\leqq\mathrm{p}, the degree of accuracy is equal top+R\mathrm{p}+\mathrm{r}if1(m)(x0)01^{(\mathrm{m})}\left(\mathrm{x}_{0}\right)\neq 0and is equal to p + r + 1 if1(m)(x0)=01^{(\mathrm{m})}\left(\mathrm{x}_{0}\right)=0.

It also follows from this that (E) reduces to the trivial formula if and only ifm>pm>p.
7. Let (1) be a formula from𝔐\mathfrak{M}, with the degree of accuracyp+R\geqq p+r. We will show that this formula reduces to formula (E). For this, let us assume the opposite. Then, at least one of the coefficientsAj=A0,and,Aand,ja_{j}=a_{0,i},a_{i,j}is different from the coefficientcj=c0,j,cand,jc_{j}=c_{0,j},c_{i,j}respectively. For the moment, let us note withR[f]R[f]the rest of the formula (1) and eggR1[f]R_{1}[f]the rest of the formula (E).

To establish the ideas, let's assume that

Aβ,jcβ,and{0,j=α=0,j=α+1,α+2,,Rand1.(R0=R)a_{\beta,j}-c_{\beta,i}\left\{\begin{array}[]{l}\neq 0,j=\alpha\\ =0,j=\alpha+1,\alpha+2,\ldots,r_{i}-1.\quad\left(r_{0}=r\right)\end{array}\right.

Subtracting formula (E) from formula (1) member by member and solving with respect tof(α1)(xβ)f^{\left(\alpha_{1}\right)}\left(x_{\beta}\right), we find a formula of the form

f(α)(xβ)=j=0α1Ajf(j)(xβ)+and=1Sand=0Rand1Aandand,jf(j)(xand)+R2[f]f^{(\alpha)}\left(x_{\beta}\right)=\sum_{j=0}^{\alpha-1}a_{j}^{\prime}f^{(j)}\left(x_{\beta}\right)+\sum_{i=1}^{s}\sum_{i=0}^{r_{i}-1}a_{i_{i},j}^{\prime}f^{(j)}\left(x_{i}\right)+R_{2}[f] (14)

where, ifβ0\beta\neq 0in the second sum from the second member instead ofxβ,Rβx_{\beta},r_{\beta}get alongx0,Rx_{0},rrespectively. The restR2[f]R_{2}[f]of formula (14) is

R2[f]=R1[f]R[f]Aβ,αcβ,αR_{2}[f]=\frac{R_{1}[f]-R[f]}{a_{\beta,\alpha}-c_{\beta,\alpha}} (15)

We have, of course,αRβ1(R0=R)\alpha\leqq r_{\beta}-1\left(r_{0}=r\right)For formula
(14), the numbersp,R,mp,r,marep+RRβ,MAX{α1.0},0p+r-r_{\beta},\max\{\alpha-1,0\},0respectively, so, based on an observation from point 4, the degree of accuracy
of this formula isp+RRβ+MAX{α1.0}p+RRβ+α<p+R1\leq p+r-r_{\beta}+\max\{\alpha-1,0\}\leq p+r-r_{\beta}+\alpha\leq<p+r-1. But from (15) it is seen that the degree of accuracy isp+R\geq p+rThis contradiction shows us that hypothesis (13) is inadmissible.

We can therefore state the following theorem:
Theorem 2. In the set\mathfrak{I}\mathfrak{C}of the numerical derivation formulas (1) there is one formula, and only one, of maximum accuracy, and this formula is the formula(It is)(E).

For this reason, formula (E) will be called a maximum accuracy numerical derivation formula.
8. We can now specify the order of the formula (𝔼\mathbb{E}). This order isp+R+1\leq p+r+1The order of the formula can also be lower thanp+R+1p+r+1, because certain coefficientscj,cand,jc_{j},c_{i,j}can be null.

Ifm>pm>p, the order is 0.
Ifmpm\leq p, the order is a positive number. Suppose this order werep+R+1αp+r+1-\alpha, whereα0\alpha\geq 0In this case, formula (E) is at the same time a formula for numerical derivation from a set𝔑1\mathfrak{N}_{1}, which is deduced from𝒩\mathscr{N}, modifying the characteristics by reducing a numberα\alphaof nodes (6) or and the pointx0x_{0}a certain number of times, but maintaining the amountm+Rm+rNumberp+Rp+r, by passing into𝔑1\mathfrak{N}_{1}BECOMESp+Rαp+r-\alphaBut the formula having the degree of accuracyp+Rp+Rα\geq p+r\geq p+r-\alphais a formula of maximum accuracy in𝔑1\mathfrak{N}_{1}Consequently, or the formula reduces to the trivial formula in𝒩1\mathscr{N}_{1}, or has an accuracy level at most equal top+R+1αp+r+1-\alphaThe first hypothesis is inadmissible because it would result in the formula being reduced to the trivial formula in\mathfrak{I}\mathfrak{C}, which is a saying with the hypothesismpm\leq pFrom the second hypothesis it follows thatα1\alpha\leq 1. sallα=1\alpha=1.

caseα=1\alpha=1occurs if one of the coefficients cR1,cand,Rand1,and=1.2,,Sc_{r-1},\,c_{i,r_{i}-1},\,i=1,2,\ldots,sis zero. Moreover, if one of these coefficients is zero, the others are necessarily different from zero.

In this case, the formula passes from the set𝔒\mathfrak{O}in the crowd𝔒1\mathfrak{O}_{1}, by suppressing once the derivation point or once a nodexandx_{i}Through this passage, the numbersm,Rm,rarem+1,R1m+1,r-1respectively, or remain unchanged.

The first case can only occur ifm<pm<p, because otherwise we would end up contradicting the fact that the formula in𝔒t\mathfrak{O}_{t}it does not reduce to the trivial formula.

Also, by moving into𝒩1\mathscr{N}_{1}, the polynomialit(x)l(x)remains unchanged or becomesit(x)xxand\frac{l(x)}{x-x_{i}}.

The formula considered has𝒩1\mathscr{N}_{1}degree of accuracyp+R\leq p+rand it turns out that this degree of accuracy is evenp+Rp+r, that is, in𝔎1\mathfrak{K}_{1}the formula is found when its degree of accuracy increases by one unit.

From the foregoing it follows that we will havecR1=0c_{r-1}=0, if and only ifit(m+1)(x0)=0l^{(m+1)}\left(x_{0}\right)=0This case is only possible ifR>0r>0and then all the coefficientscand,Rand1,and=1.2,,Sc_{i,r_{i}-1},i=1,2,\ldots,sare different from zero, and ifR>1r>1we also havecR20c_{r-2}\neq 0We also havecand,Rand1=0c_{i,r_{i}-1}=0, if and only if[it(x)xxand]x=x0(m)=0\left[\frac{l(x)}{x-x_{i}}\right]_{x=x_{0}}^{(m)}=0and then all the coefficientscα,Rα10,α=1.2,,and1,and+1,,Sc_{\alpha,r_{\alpha}-1}\neq 0,\alpha=1,2,\ldots,i\leftarrow 1,i+1,\ldots,sWe also havecR10c_{r-1}\neq 0ifR>0r>0andcand,Rand20c_{i,r_{i}-2}\neq 0ifRand>1r_{i}>1.

From the above discussion the following theorem results:

Theorem-3. Ifmp\mathrm{m}\leq\mathrm{p}, the degree of accuracy of the formula (It isE) is at most equal to its order. The degree of accuracy and the order are equal if and only ifx0\mathrm{x}_{0}is a root, different from the nodes, of one of the polynomials

it(m)(x),it(m+1)(x),it(x)xxand](m),and=1.2,,Sl^{(m)}(x),l^{(m+1)}(x),\left\lfloor\frac{l(x)}{x-x_{i}}\right]^{(m)},\quad i=1,2,\ldots,s (16)

In general, the degree of accuracy isp+Rp+rand the order isp+R+1p+r+1. The degree of accuracy and the order are both equal top+R+1p+r+1, ifx0x_{0}is a root of the first polynomial (16). The degree of accuracy and the order are both equal top+Rp+r, ifx0x_{0}is a root of one of the lastS+1s+1polynomials (16).
9. From the previous analysis it follows that any two of the polynomials (16) cannot have a common root other than a node. This can also be proven directly. Ifm=0m=0, the polynomials, except possibly the second one, do not have roots different from the nodes. Also, the property is immediate ifm=pm=p, because then

it(p+1)(x0)=(p+1)!0,[it(x)xxand](p)=p!0,and=1.2,,Sl^{(p+1)}\left(x_{0}\right)=(p+1)!\neq 0,\left[\frac{l(x)}{x-x_{i}}\right]^{(p)}=p!\neq 0,i=1,2,\ldots,s

Let us examine the general case.
From Lemma 1 it follows that any common root of the first two polynomials (16) is a knot of order multiplicity at least equal tom+2m+2.

Highlighting one of the latestSspolynomials (16), we can write

it(m)(x)=[it(x)xxand](m)(xxand)+m[it(x)xxand](m1)l^{(m)}(x)=\left[\frac{l(x)}{x-x_{i}}\right]^{(m)}\left(x-x_{i}\right)+m\left[\frac{l(x)}{x-x_{i}}\right]^{(m-1)}

It can be seen from this that any common root of the polynomialsit(m)(x),[it(x)xxand](m)l^{(m)}(x),\left[\frac{l(x)}{x-x_{i}}\right]^{(m)}is a common root of the polynomials[it(x)xxand](m),[it(x)xxand](m1)\left[\frac{l(x)}{x-x_{i}}\right]^{(m)},\left[\frac{l(x)}{x-x_{i}}\right]^{(m-1)}and, based on Lemma 1 ; this can only be a node of order multiplicity at least equal tom+1m+1.

We also have

[it(x)xxα](m)=[it(x)(xxα)(xxβ)](m)(xxβ)+m[it(x)(xxα)(xxβ)](m1)\displaystyle{\left[\frac{l(x)}{x-x_{\alpha}}\right]^{(m)}=\left[\frac{l(x)}{\left(x-x_{\alpha}\right)\left(x-x_{\beta}\right)}\right]^{(m)}\left(x-x_{\beta}\right)+m\left[\frac{l(x)}{\left(x-x_{\alpha}\right)\left(x-x_{\beta}\right)}\right]^{(m-1)}}
[it(x)xxβ](m)=[it(x)(xxα)(xxβ)](m)(xxα)+m[it(x)(xxα)(xxβ)](m1)\displaystyle{\left[\frac{l(x)}{x-x_{\beta}}\right]^{(m)}=\left[\frac{l(x)}{\left(x-x_{\alpha}\right)\left(x-x_{\beta}\right)}\right]^{(m)}\left(x-x_{\alpha}\right)+m\left[\frac{l(x)}{\left(x-x_{\alpha}\right)\left(x-x_{\beta}\right)}\right]^{(m-1)}}

from which it is seen that, ifαβ\alpha\neq\beta, any common root of these polynomials is a common root of the polynomials

[it(x)(xxα)(xxβ)](m),[it(x)(xxα)(xxβ)](m1)\left[\frac{l(x)}{\left(x-x_{\alpha}\right)\left(x-x_{\beta}\right)}\right]^{(m)},\left[\frac{l(x)}{\left(x-x_{\alpha}\right)\left(x-x_{\beta}\right)}\right]^{(m-1)}

and so, based on Lemma 1, it is a node of order multiplicity at least equal tom+1m+1.

Finally we have

it(m+1)(x)=[it(x)xxand](m+1)(xxand)+(m+1)[it(x)xxand](m)l^{(m+1)}(x)=\left[\frac{l(x)}{x-x_{i}}\right]^{(m+1)}\left(x-x_{i}\right)+(m+1)\left[\frac{l(x)}{x-x_{i}}\right]^{(m)} (17)

which shows us that any common root of polynomials

it(m+1)(x),[it(x)xxand](m)l^{(m+1)}(x),\left[\frac{l(x)}{x-x_{i}}\right]^{(m)} (18)

is a common root of the polynomials

[it(x)xxand](m+1)(xxand),[it(x)xxand](n)\left[\frac{l(x)}{x-x_{i}}\right]^{(m+1)}\left(x-x_{i}\right),\quad\left[\frac{l(x)}{x-x_{i}}\right]^{(n)}

It follows that any root of the polynomials (18) is either the nodexandx_{i}, or, based on Lemma 1, a node of multiplicity order at least equal tom+2m+2.

From the previous analysis it also follows that the property of the coefficientscR1c_{r-1},cR2c_{r-2}(ifR>1r>1) of not being both zero is a consequence of the fact that the polynomialsit(m+1)(x),it(m+2)(x)l^{(m+1)}(x),l^{(m+2)}(x)cannot have a common root other than a knot. This latter fact follows from Lemma 1, which states that any common root of these polynomials is a knot of order multiplicity at least c gal withm+3m+3.

Also, the fact thatcand,Rand1,cand,Rand2c_{i,r_{i}-1},c_{i,r_{i}-2}(ifRand>1r_{i}>1) cannot both be zero results from the fact that the polynomials

[it(x)xxand](m),[it(x)(xxand)2](m)\left[\frac{l(x)}{x-x_{i}}\right]^{(m)},\left[\frac{l(x)}{\left(x-x_{i}\right)^{2}}\right]^{(m)} (19)

cannot have a common root other than a node. However, we have

[it(x)xxand](m)=[it(x)(xxand)2](m)(xxand)+m[it(x)(xxand)2](m1)\left[\frac{l(x)}{x-x_{i}}\right]^{(m)}=\left[\frac{l(x)}{\left(x-x_{i}\right)^{2}}\right]^{(m)}\left(x-x_{i}\right)+m\left[\frac{l(x)}{\left(x-x_{i}\right)^{2}}\right]^{(m-1)}

from which it is seen that any common root of the polynomials (19) is a common root of the polynomials

[it(x)(xxand)2](m),[it(x)(xxand)2](m1)\left[\frac{l(x)}{\left(x-x_{i}\right)^{2}}\right]^{(m)},\left[\frac{l(x)}{\left(x-x_{i}\right)^{2}}\right]^{(m-1)}

so, based on Lemma 1, a node of multiplicity order equal to at leastm+1m+1.

Theorem 3 and the previous results can also be established directly, by calculating the coefficientscR1,cR2,cand,Rand1,cand,Rand2and=1.2,,Sc_{r-1},c_{r-2},c_{i,r_{i}-1},c_{i,r_{i}-2}i=1,2,\ldots,sof the polynomial (10).
10. Let us return to formula (E). We will say that this formula is exceptional if its order is equal to its degree of accuracy.

Formula (E) becomes exceptional in three different aspects:11^{\circ}The degree of accuracy increases by one unit,22^{\circ}NumberRr^{\prime}, attached to the derivation point, decreases by one unit fromR(R=R1),3r\left(r^{\prime}=r-1\right),3^{\circ}NumberRandr_{i}^{\prime}, attached to a nodexandx_{i}, decreases by one unit fromRand(Rand=Rand1)r_{i}^{\prime}\left(r_{i}^{\prime}=r_{i}-1\right).

However, from the results of point 8 it follows that the three aspects return to each other by passing the formula from the set𝔑\mathfrak{N}\mathfrak{C}in an analogous crowd𝔑𝟏\mathfrak{N}_{\mathbf{1}}, through the following changes in its characteristics𝔑\mathfrak{N}.

If formula (E) looks like11^{\circ}in𝔐\mathfrak{M}, then it presents:
The aspect22^{\circ}in the crowd𝔑1\mathfrak{N}_{1}, obtained by increasing the multiplicity order of the derivative point by one unit and decreasing the derivative index by one unit.

Appearance33^{\circ}in the crowd𝒩𝔠1\mathscr{N}\mathfrak{c}_{1}, obtained by increasing the multiplicity order of the respective node by one unit.

If the formula looks like22^{\circ}in𝒦\mathscr{IK}, it presents:
The appearance11^{\circ}in the crowd𝔑1\mathfrak{N}_{1}, obtained by decreasing the multiplicity order of the derivative point by one unit and increasing the derivative index by one unit.

Appearance33^{\circ}in the crowd𝔑1\mathfrak{N}_{1}, obtained by decreasing the multiplicity order of the derivation point by one unit, increasing the derivation index by one unit, and increasing the multiplicity order of the respective node by one unit.

If the formula looks like33^{\circ}in😎\mathfrak{Ir}, it presents:
The appearance11^{\circ}in the crowd𝔑1\mathfrak{N}\mathfrak{C}_{1}, obtained by decreasing the multiplicity order of the respective node by one unit.

Appearance22^{\circ}in the crowd𝔑1\mathfrak{N}_{1}, obtained by increasing the multiplicity order of the derivation point by one unit, decreasing the derivation index by one unit, and decreasing the multiplicity order of the respective node by one unit.
11. The equivalence of the three aspects of exceptionality can be expressed by formulas. To establish these formulas, let us consider the general formulas:

IT(α1,α2,,αk+1;fx)=IT(α1,α2,,αk;fx)+\displaystyle L\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1};f\mid x\right)=L\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k};f\mid x\right)+ (20)
+and=1k(xxand)[α1,α2,,αk+1;f]\displaystyle+\prod_{i=1}^{k}\left(x-x_{i}\right)\cdot\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1};f\right]
IT(α1,α2,,αk+1;fx)=IT(α1,α2,,αk,β;fx)+\displaystyle L\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1};f\mid x\right)=L\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k},\beta;f\mid x\right)+
+(αk+1β)and=1k(xαand)[α1,α2,,αk+1,β;f]\displaystyle+\left(\alpha_{k+1}-\beta\right)\prod_{i=1}^{k}\left(x-\alpha_{i}\right)\cdot\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1},\beta;f\right] (21)

In these formulas,[α1,α2,,αk+1;f]\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1};f\right]is the difference divided by the orderkkof the functionf(x)f(x)on thosek+1k+1knotsα1,α2,,αk+1\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1}, distinct or not. We assume that the definition and main properties of divided differences are known, as well as of interpolation polynomials on distinct or not nodes [6].

Formula (20) gives us, in particular

IT(x0,x0,,x0R,x1,x2,,xp+1;fx)=\displaystyle L(\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x)=
=IT((x0,x0,,x0R+1,x1,x2,,xp+1;fx)\displaystyle=L(\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r+1},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x)-
(xx0)Rit(x)[x0,x0,,x0R+1,x1,x2,,xp+1;f]=\displaystyle\quad-\left(x-x_{0}\right)^{r}l(x)[\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r+1},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f]=
=IT(x0,x0,,x0R,x1,x2,,xp+1,xand;fx)\displaystyle=L(\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime},x_{i};f\mid x)-
(xx0)Rit(x)[x0,x0,,x0R,x1,x2,,xp+1,xand;f].\displaystyle\quad-\left(x-x_{0}\right)^{r}l(x)[\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime},x_{i};f].

Deriving fromm+Rm+rtimes and taking into accountit(m)(x0)=0l^{(m)}\left(x_{0}\right)=0, we deduce

IT(m+R)\displaystyle L^{(m+r)} (x0,x0,,x0R,x1,x2,,xp+1;fx0)=\displaystyle\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x_{0})=
=IT(m+R)(x0,x0,,x0R+1,x1,x2,,xp+1;fx0)=\displaystyle=L^{(m+r)}\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r+1},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x_{0})=
=IT(m+R)(x0,x0,,x0R,x1,x2,,xp+1,xand;fx0),[it(m)(x0)=0]\displaystyle=L^{(m+r)}\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime},x_{i};f\mid x_{0}),\left[l^{(m)}\left(x_{0}\right)=0\right]

which indicates the transition of the formula from the aspect11^{\circ}to the aspects22^{\circ}and33^{\circ}respectively. Also, formulas (20), (21) give us

IT(x0,x0,,x0R,x1,x2,,xp+1;fx)=\displaystyle L\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x)=
=IT(x0,x0,,x0R1,x1,x2,,xp+1;fx)+\displaystyle\quad=L\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r-1},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x)+
+(xx0)R1it(x)[x0,x0,,x0R,x1,x2,,xp+1;f]=\displaystyle\quad+\left(x-x_{0}\right)^{r-1}l(x)[\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f]=
=IT(x0,x0,,x0,x1,x2,,xp+1,xand;fx)+\displaystyle\quad=L\left(x_{0},x_{0},\ldots,x_{0},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime},x_{i};f\mid x\right)+
+(x0xand)(xx0)R1it(x)x0,x0,,x0R,x1,x2,,xp+1,xand;f]\displaystyle+\left(x_{0}-x_{i}\right)\left(x-x_{0}\right)^{r-1}l(x)\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime},x_{i};f]

Deriving fromm+Rm+rtimes and taking into accountit(m+1)(x0)=0l^{(m+1)}\left(x_{0}\right)=0, we deduce

IT(m+R)(x0,x0,,x0R,x1,x2,,xp+1;fx0)=\displaystyle L^{(m+r)}\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x_{0})=
=IT(m+R)(x0,x0,,x0R1,x1,x2,,xp+1;fx0)=\displaystyle\quad=L^{(m+r)}\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r-1},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x_{0})=
=IT(m+R)(x0,x0,,x0R1,x1,x2,,xp+1,xand;fx0),[it(m+1)(x0)=0]\displaystyle\quad=L^{(m+r)}\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r-1},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime},x_{i};f\mid x_{0}),\quad\left[l^{(m+1)}\left(x_{0}\right)=0\right]

which indicates the transition of the formula from the aspect22^{\circ}to the aspects11^{\circ}and33^{\circ}respectively.
Formulas (20), (21) also give us

IT(0,x0,,x0,x1,x2,,xp+1;fx)=\displaystyle L(\underbrace{}_{0},x_{0},\ldots,x_{0},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x)=
=IT(x0,x0,,x0R,x1",x2",,xp";fx)+\displaystyle\quad=L\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r},x_{1}^{\prime\prime},x_{2}^{\prime\prime},\ldots,x_{p}^{\prime\prime};f\mid x)+
+(xx0)Rit(x)xxand[x0,x0,,x0R,x1,x2,,xp+1;fx)=\displaystyle\quad+\left(x-x_{0}\right)^{r}\frac{l(x)}{x-x_{i}}[\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x)=-
=IT(x0,x0,x0R,x1",x2",,xp";fx)+\displaystyle\quad=L(\underbrace{x_{0},x_{0},\ldots x_{0}}_{r},x_{1}^{\prime\prime},x_{2}^{\prime\prime},\ldots,x_{p}^{\prime\prime};f\mid x)+
+(xandx0)(xx0)Rit(x)xxand[x0,x0,,x0R+1,x1,x2,,xp+1;f]\displaystyle\quad+\left(x_{i}-x_{0}\right)\left(x-x_{0}\right)^{r}\frac{l(x)}{x-x_{i}}[\underbrace{}_{\frac{x_{0},x_{0},\ldots,x_{0}}{r+1}},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f]

wherex1",x2",,xp"x_{1}^{\prime\prime},x_{2}^{\prime\prime},\ldots,x_{p}^{\prime\prime}are the nodes (6), of which the node was once deletedxandx_{i}. Deriving fromm+Rm+rtimes and taking into account[it(x)xxand]x=x0(m)=0\left[\frac{l(x)}{x-x_{i}}\right]_{x=x_{0}}^{(m)}=0, it is deduced

IT(m+R)\displaystyle L^{(m+r)} (x0,x0,,x0R,x1,x2,,xp+1;fx0)=\displaystyle\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x_{0})=
=IT(m+R)(x0,x0,,x0R,x1",x2",,xp";fx0)=\displaystyle=L^{(m+r)}\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r},x_{1}^{\prime\prime},x_{2}^{\prime\prime},\ldots,x_{p}^{\prime\prime};f\mid x_{0})=
=IT(m+R)(x0,x0,,x0R0,x1",x2",,xp";fx0),[(it(x)xxand)x=x0(m)=0]\displaystyle=L^{(m+r)}(\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r0},x_{1}^{\prime\prime},x_{2}^{\prime\prime},\ldots,x_{p}^{\prime\prime};f\mid x_{0}),\left[\left(\frac{l(x)}{x-x_{i}}\right)_{x=x_{0}}^{(m)}=0\right]

which indicates the transition from the aspect33^{\circ}to the aspects11^{\circ}and22^{\circ}respectively.
The notion of a formula of exceptional maximum accuracy is thus completely clarified.
12. Let𝔗0\mathfrak{T}^{0}gathering of crowds𝔑\mathfrak{N}, obtained by varying the derivation pointx0x_{0}and leaving his other characteristics unchanged𝔑\mathfrak{N}There are then a finite number of exceptional formulas in𝔎0\mathfrak{K}^{0}This number is equal to the total number of distinct node roots of the polynomials (16) ifR>0r>0and is equal to the total number of distinct roots of nodes of the first and lastSspolynomials (16) ifR=0r=0.

Roots of the polynomialit(m)(x)l^{(m)}(x)are of two kinds. Some, let us call them improper, come from the multiplicity of knots. These are all knots, ifm=0m=0, and are those nodes which are also roots of the polynomialit(m1)(x)l^{(m-1)}(x), ifm>0m>0. Any improper root is counted with its multiplicity order and coincides, based on Lemma 1, with a node of multiplicity order equal tom+1m+1, at least. More precisely, the number of improper roots that coincide with the nodexandx_{i}is equal toMAX{0,Randm}\max\left\{0,r_{i}-m\right\}Thus, the total number of improper roots of the polynomialit(m)(x)l^{(m)}(x)is equal to

and=1SMAX{0,Randm}.\sum_{i=1}^{s}\max\left\{0,r_{i}-m\right\}. (22)

His other rootsit(m)(x)l^{(m)}(x), let's call them proper, are simple roots. Such roots can only exist ifm>0m>0. A proper root may coincide with a node, but in any case not with the smallest or largest of these nodes. This latter property results from the fact that the roots of the derivative of a polynomial with all real roots always belong to the smallest closed interval containing all the roots of the polynomial. Based on this property, ifit(m)(x)l^{(m)}(x)it cancels out in an extreme node,it(n1)(x)l^{(n-1)}(x)also cancels out at this node. This node therefore has a multiplicity order at least equal tom+1m+1and so it is an improper root. Ifxandx_{i}is its own root, we must haveRandm1r_{i}\leqq m-1ForRand=mr_{i}=mHAVEit(m)(xand)0l^{(m)}\left(x_{i}\right)\neq 0.

The number of its own rootsit(m)(x)l^{(m)}(x)is equal to

Nm=p+1mand=1SMAX{0,Randm}N_{m}=p+1-m-\sum_{i=1}^{s}\max\left\{0,r_{i}-m\right\}

Ifm=0m=0, we haveNm=0N_{m}=0Ifm=1m=1, we haveNm=S1N_{m}=s-1and all proper roots are distinct from nodes. Ifm>1m>1, at most max{0,S2}\{0,s-2\}and of course at mostp+1mp+1-m, eigenroots coincide with a node.

The number of improper roots of the polynomial[it(x)xxand](m)\left[\frac{l(x)}{x-x_{i}}\right]^{(m)}will be equal to

and=1SMAX{0,Randm}MAX{0,Randm}+MAX{0,Randm1}.\sum_{i=1}^{s}\max\left\{0,r_{i}-m\right\}-\max\left\{0,r_{i}-m\right\}+\max\left\{0,r_{i}-m-1\right\}.

The eigenroots of this polynomial are simple and, for the same reason as above, different from the smallest and largest nodes. It follows that the total number of eigenroots of the lastSspolynomials (16) is equal to(S1)(Nm1)+Nm+1(s-1)\left(N_{m}-1\right)+N_{m+1}. The results from point 9 show us that any two of the polynomials (16) cannot have a common root other than a node. Also, formula (17) shows us that, ifxandx_{i}is a proper root of one of the polynomials (18), then it is a proper root of both polynomials (18), but it is not a proper root of any other polynomial (16). If
a node is a proper root of the polynomialit(m)(x)l^{(m)}(x), then this node is not a root of any other polynomial (16). Finally, we observe that the maximum - max{0,S2}\{0,s-2\}nodes can be eigenroots of polynomials (16).

From the foregoing it follows that we can state the following theorem:
Theorem 4. The number N of formulas (E) in𝔑0\mathfrak{N}^{0}, whose degree of accuracy is equal top+R+1\mathrm{p}+\mathrm{r}+1, is equal to 0 form=0\mathrm{m}=0, equal to s -1 form=1\mathrm{m}=1and check the inequalities

NmMAX{0,S2}NNmN_{m}-\max\{0,s-2\}\leq N^{\prime}\leqq N_{m}

form>1\mathrm{m}>1Number
N"\mathrm{N}^{\prime\prime}of formulas(It is)(E)FROM𝔑0\mathfrak{N}^{0}, whose order is equal top+\mathrm{p}+\cdotsis equal to 0 ifm=0,R=0\mathrm{m}=0,\mathrm{r}=0, equal toS1\mathrm{s}-1ifm=0,R>0\mathrm{m}=0,\mathrm{r}>0and check the inequalities.

(S1)(Nm1)+Nm+1MAX{0,S2}N"{(S1)(Nm1)+Nm+1, if R=0(S1)(Nm1)+2Nm+1, if R>0\begin{gathered}\quad(s-1)\left(N_{m}-1\right)+N_{m+1}-\max\{0,s-2\}\leq\\ \leq N^{\prime\prime}\leq\left\{\begin{array}[]{l}(s-1)\left(N_{m}-1\right)+N_{m+1},\text{ dacă }r=0\\ (s-1)\left(N_{m}-1\right)+2N_{m+1},\text{ dacă }r>0\end{array}\right.\end{gathered}

form>0\mathrm{m}>0.
Number N of exceptional (E) formulas in𝔑0\mathfrak{N}^{0}is equal to 0 ifm=R=0\mathrm{m}=\mathrm{r}=0, equal to s -1 ifm=0,R>0\mathrm{m}=0,\mathrm{r}>0and check the inequalities

(S1)(Nm1)+Nm+Nm+1MAX{0,S2}N{(S1)(Nm1)+Nm+Nm+1, if R=0(S1)(Nm1)+Nm+2Nm+1, if R>0\begin{gathered}(s-1)\left(N_{m}-1\right)+N_{m}+N_{m+1}-\max\{0,s-2\}\leq\\ \leq N\leq\left\{\begin{array}[]{l}(s-1)\left(N_{m}-1\right)+N_{m}+N_{m+1},\text{ dacă }r=0\\ (s-1)\left(N_{m}-1\right)+N_{m}+2N_{m+1},\text{ dacă }r>0\end{array}\right.\end{gathered}

form>0\mathrm{m}>0.
Max number{0,S2}\{0,s-2\}from the infcric delimitations can be changed depending onp,m,Sp,m,s, but we do not deal with this issue.
13. We can delimit the number (22) quite conveniently in terms of onlyp,m,Sp,m,sFor this we will use the following lemma:

Lemma 2. If the numbersα1,α2,,αk,β\alpha_{1},\alpha_{2},\ldots,\alpha_{k},\betaare nonnegative, then the inequality holds...

MAX{0,and=1kαandkβ}and=1kMAX{0,αandβ}MAX{0,and=1kαandβ}\max\left\{0,\sum_{i=1}^{k}\alpha_{i}-k\beta\right\}\leq\sum_{i=1}^{k}\max\left\{0,\alpha_{i}-\beta\right\}\leq\max\left\{0,\sum_{i=1}^{k}\alpha_{i}-\beta\right\} (25)

It is enough to prove the property fork=2k=2, because forkksome will result by complete induction.

Fork=2k=2, the inequalities return to 1 )

|α1+α22β||α1β|+|α2β||α1+α2β|+β\left|\alpha_{1}+\alpha_{2}-2\beta\right|\leq\left|\alpha_{1}-\beta\right|+\left|\alpha_{2}-\beta\right|\leq\left|\alpha_{1}+\alpha_{2}-\beta\right|+\beta

which is immediately verified 2 ).

0 0 footnotetext: 1. We have MAX{0,α}=12(α+|α|)\max\{0,\alpha\}=\tfrac{1}{2}(\alpha+|\alpha|).
2. Each member is linear in β\beta, in the intervals determined by the points 0,α1,α2,α1+α22,α1+α2,+0,\alpha_{1},\alpha_{2},\tfrac{\alpha_{1}+\alpha_{2}}{2},\alpha_{1}+\alpha_{2},+\inftyIt is therefore sufficient to verify the inequalities for the finite extrema of these intervals and forβ>α1+α2\beta>\alpha_{1}+\alpha_{2}.

The first inequality (23) goes back to a classical inequality and is true whatever the numbers are.α1,α2,,αk,β\alpha_{1},\alpha_{2},\ldots,\alpha_{k},\beta.

Returning to the delimitation of the sum (22), which form=0m=0is equal top+1p+1, we have, based on Lemma 2 ,
MAX{0,p+1Sm}and=1SMAX{0,Randm}MAX{0,p+2Sm}(m>0)\max\{0,p+1-sm\}\leq\sum_{i=1}^{s}\max\left\{0,r_{i}-m\right\}\leq\max\{0,p+2-s-m\}(m>0), becauseRand10,m10r_{i}-1\geqq 0,m-1\geqq 0.

We now observe that)1αMAX{β,γ}=min{αβ,αγ}\left.{}^{1}\right)\alpha-\max\{\beta,\gamma\}=\min\{\alpha-\beta,\alpha-\gamma\}and we deduce

min{p+1m,S1}\displaystyle\min\{p+1-m,s-1\} Nmmin{p+1m,(S1)m},\displaystyle\leqq N_{m}\leqq\min\{p+1-m,(s-1)m\}, (24)
m\displaystyle m >0(N0=0).\displaystyle>0\quad\left(N_{0}=0\right).

The numbers(S1)(Nm1),Nm,Nm+1(s-1)\left(N_{m}-1\right),N_{m},N_{m+1}are null forS=1s=1If
m=pm=p, the only pointx0x_{0}for which the formula may be exceptional is

1p+1and=1SRandxand\frac{1}{p+1}\sum_{i=1}^{s}r_{i}x_{i} (25)

because this is the root ofand(p)(x)i^{(p)}(x)If
S>1,0<m<ps>1,\quad 0<m<p, we have
(S1)[min{p+1m,S1}1]MAX{0,S2}0,min{pmS1}1(s-1)[\min\{p+1-m,s-1\}-1]-\max\{0,s-2\}\geq 0,\min\{p-ms-1\}\geq 1which shows us, taking into account (24), that we have

(S1)(Nm1)+Nm+1MAX{0,S2}1.(s-1)\left(N_{m}-1\right)+N_{m+1}-\max\{0,s-2\}\geq 1.

Therefore, taking into account theorem 4, we deduce the following theorem:
Theorem 5. In the respective set there are not always formulas(It is)(E)exceptional, except for the following three cases:

1S=1.2m=p1^{\circ}s=1.2^{\circ}m=pand point (25) coincides with a node.3m=03^{\circ}m=0andR=0r=0.
14. If in formula (1) we havem+R>0m+r>0and if the coefficientsA0a_{0}(ifR>0)Aand,0,and=1.2,Sr>0)a_{i,0},i=1,2\ldots,sare all zeros, the formula is at the same time a numerical derivation formula for the derivativef(x)f^{\prime}(x)of the functionf(x)f(x). In this case, we will say that formula (1) is reducible. Otherwise, we will say that the formula is irreducible. Formula (1) is therefore reducible, respectively irreducible, as in this formula none of the values ​​of the function at the nodes and at the point of derivation appear, respectively at least one actually appears.

It is interesting to examine which maximum accuracy formulas are reducible. To do this, let us examine the reducibility of formula (E). Let us assume that formula (E) is non-trivial and is reducible. We must then haveR=0r=0, orR>1r>1andm+R>0m+r>0. Let's net with (It is\mathrm{E}^{*}) this form-
1 ) We have

MAX{α,β}=α+β+|αβ|2,min{α,β}=α+β|αβ|2.\max\{\alpha,\beta\}=\frac{\alpha+\beta+|\alpha-\beta|}{2},\min\{\alpha,\beta\}=\frac{\alpha+\beta-|\alpha-\beta|}{2}.

mulă, viewed as a numerical derivation formula for the functionand(x)=g(x)I^{\prime}(x)=g(x). So using the notations (10), we have

g(m+R1)(x0)=j=1R1cjg(j1)(x0)+and=1Sj=1Rand1cand,jg(j1)(x0)+Rg^{(m+r-1)}\left(x_{0}\right)=\sum_{j=1}^{r-1}c_{j}g^{(j-1)}\left(x_{0}\right)+\sum_{i=1}^{s}\sum_{j=1}^{r_{i}-1}c_{i,j}g^{(j-1)}\left(x_{0}\right)+R (*)

Based on what has been established above, we can assume that the order of formula (E) isp+R+1p+r+1Let us denote byp,R,Sp^{*},r^{*},s^{*}the numbersp,R,Sp,r,s, corresponding to the formula (E*). All these facts implyRand>1,and=1.2,,Sr_{i}>1,i=1,2,\ldots,sand then we havep=pS,S=S,R=0p^{*}=p-s,s^{*}=s,r^{*}=0orR=R1r^{*}=r-1asR=0r^{\prime}=0orR>1r>1.

The degree of accuracy of the formula (It is\mathrm{E}^{*}) isp+R1p+r-1orp+Rp+r, as formula (E) is not or is exceptional, because puttingg(x)=fR(x)g(x)=f^{r}(x)in(It is)\left(\mathrm{E}^{*}\right)we find the formula(It is)(\mathrm{E}), and(xand)=andxand1\left(x^{i}\right)^{\prime}=ix^{i-1}.

It is now immediately verified thatp+R1p+Rp+r-1\geqq p^{*}+r^{*}, which shows us that (E*) is a formula of maximum accuracy. Since this formula does not reduce to the trivial formula, its degree of accuracy isp+Rp^{*}+r^{*}orp+R+1p^{*}+r^{*}+1, as it is not or is exceptional. We have evaluated the degree of accuracy in two different ways and the results obtained must coincide. IfS=1s=1, the formulas (E), (E*) cannot be exceptional and then we must havep+R1=p+Rp+r-1=p^{*}+r^{*}and it is immediately verified that this equality holds if and only ifR=0r=0IfS>1s>1, we havep+R1>p+Rp+r-1>p^{*}+r^{*}and equality between degrees of accuracy can only occur ifp+R1=p+R+1p+r-1=p^{*}+r^{*}+1This equality only holds ifR=0r=0andS=2s=2.

In short, formula (E) cannot be reduced except in the following
two cases: in this case, none of the formulas (E), (E*) is exceptional. Note that an exceptional formula (E) is all In the case



22^{\circ}, the exceptional conditions are written.

it(m)(x0)0,[it(x)(xx1)(xx2)]x=x2(m2)=0l^{(m)}\left(x_{0}\right)\neq 0,\quad\left[\frac{l(x)}{\left(x-x_{1}\right)\left(x-x_{2}\right)}\right]_{x=x_{2}}^{(m-2)}=0 (26)
  1. 15.

    It remains to prove that in the two cases above formula (E) is effectively reducible.

In case11^{\circ}HAVE

IT(x1,x1,,x1R1;fx)=j=0R11(xx1)jj!f(j)(x1)L(\underbrace{x_{1},x_{1},\ldots,x_{1}}_{r_{1}};f\mid x)=\sum_{j=0}^{r_{1}-1}\frac{\left(x-x_{1}\right)^{j}}{j!}f^{(j)}\left(x_{1}\right)

soC1.0(x)=1\mathrm{C}_{1,0}(x)=1, from whereG1.0(m)(x0)=c1.0=0(m>0)G_{1,0}^{(m)}\left(x_{0}\right)=c_{1,0}=0(m>0)
In the case of 22^{\circ}, polynomialsC1.0(x),C2.0(x)C_{1,0}^{\prime}(x),C_{2,0}^{\prime}(x), of the degreep1p-1, 9 based on formulas (8) are divided by the polynomial

it(x)(xx1)(xx2)\frac{l(x)}{\left(x-x_{1}\right)\left(x-x_{2}\right)} (27)

so they differ only by some constant factors from the polynomial (27). These constant factors are also different from zero, also based on formulas (8) 1 ). The conditionsc1.0=c2.0=0c_{1,0}=c_{2,0}=0are therefore equivalent to the second relation (26). The first relation (26) is a consequence of the previous analysis.

The simultaneity of conditions (26) can also be demonstrated directly. We have

it(x)=[R1(xx2)+R2(xx1)]it(x)(xx1)(xx2)l^{\prime}(x)=\left[r_{1}\left(x-x_{2}\right)+r_{2}\left(x-x_{1}\right)\right]\frac{l(x)}{\left(x-x_{1}\right)\left(x-x_{2}\right)}

from where do we deduce

it(m)(x)=\displaystyle l^{(m)}(x)= [R1(xx2)+R2(xx1)][it(x)(xx1)(xx2)](m1)+\displaystyle{\left[r_{1}\left(x-x_{2}\right)+r_{2}\left(x-x_{1}\right)\right]\left[\frac{l(x)}{\left(x-x_{1}\right)\left(x-x_{2}\right)}\right]^{(m-1)}+}
+(p+1)(m1)[it(x)(xx1)(xx2)](m2)\displaystyle+(p+1)(m-1)\left[\frac{l(x)}{\left(x-x_{1}\right)\left(x-x_{2}\right)}\right]^{(m-2)}

From this it is seen that any common root of the polynomialsit(m)(x)l^{(m)}(x),

[it(x)(xx1)(xx2)](m2) is a common root of the polynomials\displaystyle{\left[\frac{l(x)}{\left(x-x_{1}\right)\left(x-x_{2}\right)}\right]^{(m-2)}\text{ este o rădăcină comună a polinoamelor }}
[it(x)(xx1)(xx2)](m1),[it(x)(xx1)(xx2)](m2)\displaystyle{\left[\frac{l(x)}{\left(x-x_{1}\right)\left(x-x_{2}\right)}\right]^{(m-1)},\left[\frac{l(x)}{\left(x-x_{1}\right)\left(x-x_{2}\right)}\right]^{(m-2)}}

and such a root, by Lemma 1, necessarily coincides with one of the nodesx1,x2x_{1},x_{2}.

Finally, we can state the following theorem:
Theorem 6. Ifmp\mathrm{m}\leq\mathrm{p}, formula (E) is reducible if and only if:
1R=0,S=1,SAyou1^{\circ}\cdot\mathrm{r}=0,\mathrm{\penalty 10000\ s}=1,\mathrm{\penalty 10000\ s}au
2.R=0,S=22^{\circ}.\mathrm{r}=0,\mathrm{\penalty 10000\ s}=2andx0\mathrm{x}_{0}is a root, different from the nodesx1,x2\mathrm{x}_{1},\mathrm{x}_{2}of the polynomial

[it(x)(xx1)(xx2)](m1)\left[\frac{l(x)}{\left(x-x_{1}\right)\left(x-x_{2}\right)}\right]^{(m-1)}

The properties are expressed by the formulas

IT(m)(x1,x1,,x1R1;fx)=IT(m1)(x1;x1,,x1R11;fx)IT(m)(x1,x1,,x1R1,x2,x2,,x2R2;fx0)==IT(m1))x1,x1,,x1R11,x2,x2,,x2R21;fx0)\begin{gathered}L^{(m)}(\underbrace{x_{1},x_{1},\ldots,x_{1}}_{r_{1}};f\mid x)=L^{(m-1)}(\underbrace{x_{1};x_{1},\ldots,x_{1}}_{r_{1}-1};f^{\prime}\mid x)\\ \begin{array}[]{c}L^{(m)}(\underbrace{x_{1},x_{1},\ldots,x_{1}}_{r_{1}},\underbrace{x_{2},x_{2},\ldots,x_{2}}_{r_{2}};f\mid x_{0})=\\ \left.=L^{(m-1)}\right)\end{array}\\ \underbrace{x_{1},x_{1},\ldots,x_{1}}_{r_{1}-1},\underbrace{x_{2},x_{2},\ldots,x_{2}}_{r_{2}-1};f^{\prime}\mid x_{0})\end{gathered}

wherex0x_{0}-check the second condition (26).

0 0 footnotetext: 1. From C1.0(x)+C2.0(x)=1C_{1,0}(x)+C_{2,0}(x)=1it follows that these factors are of opposite signs and equal in absolute value.

§ 2. Some considerations on the rest

  1. 16.

    In certain important particular cases, the restRRof formula (1) is put in a simple and convenient form. In the case of the Lagrange-Hermite interpolation formula

f(x0)=IT(x1,x2,,xp+1;fx0)+Rf\left(x_{0}\right)=L\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};fx_{0}\right)+R (28)

HAVE

R=R[f]=it(x0)[x0,x1,x2,,xp+1;f]R=R[f]=l\left(x_{0}\right)\left[x_{0},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\right] (29)

whereit(x)l(x)is the polynomial (3) already defined and which in the notation (7) can also be written

it(x)=(xx1)(xx2)(xxp+1).l(x)=\left(x-x_{1}^{\prime}\right)\left(x-x_{2}^{\prime}\right)\ldots\left(x-x_{p+1}^{\prime}\right).

The rest of formula (28), in the form (29), is expressed as a product of a non-zero number and independent of the functionf(x)f(x)and a difference divided by the orderp+1p+1of the functionf(x)f(x).

Based on formulas

[α1,α2,,αk+1;xand]={0, for and=0.1,,k11, for and=k\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1};x^{i}\right]=\left\{\begin{array}[]{l}0,\text{ pentru }i=0,1,\ldots,k-1\\ 1,\text{ pentru }i=k\end{array}\right.

it is visible that formula (28) has the degree of accuracyppPuttingf(x)=it(x)=xn+1+f(x)=l(x)=x^{n+1}+\ldotsin (28) and taking into account formula (11), we see that the factor of the divided difference in (29) is equal to

R[it]=R[xp+1]=it(x0)R[l]=R\left[x^{p+1}\right]=l\left(x_{0}\right)
  1. 17.

    We will say that the rest of formula (1) or that the functionalR[f]R[f]is of simple form if we have

R[f]=M[ξ1,ξ2,,ξn+2;f]R[f]=M\cdot\left[\xi_{1},\xi_{2},\ldots,\xi_{n+2};f\right] (31)

whatever the functionf(x)f(x), wherennis the degree of accuracy of the formula,MMa non-zero constant independent of the functionf(x)f(x), andξ1,ξ2,,ξn1,n+2\xi_{1},\xi_{2},\ldots,\xi_{n-1},n+2distinct points in the open interval(A,b)(a,b).

In this case, based on formulas (30), the coefficientMMis given by the equalityM=R[xn+1]=R[P]M=R\left[x^{n+1}\right]=R[P], whereP(x)P(x)is any polynomial of degreen+1n+1, with the first coefficient 1 .

pointsξand\xi_{i}generally depend on the functionf(x)f(x), and the interval[A,b][a,b]This is the one specified in § 1.

For example, as we will see below, the rest of formula (28) is of simple form.

To simplify the notations, we will denote byDk[f]0D_{k}[f]0difference divided by the orderkkof the functionf(x)f(x)onk+1k+1arbitrary distinct nodes in the interval (A,ba,b). So if formula (1) has the degree of accuracynnand if restyl is of simple form, we haveR[f]=R[xn+1]Dn+1[f].8R[f]=R\left[x^{n+1}\right]\cdot D_{n+1}[f].8

The previous definition remains forn0n\geq 0. We will also maintain 0 for
the extremes of the interval[A,b][a,b]. This convention simplifies the exposition. Moreover, in the almost trivial case whenn=1n=-1, it is generally easy to recognize whether the point can be chosen or notξ1\xi_{1}, within the interval

In the case when the remainder is of simple form, formula (31) gives us sufficient indications on the structure of this remainder, based on the properties of divided differences, properties that we expose elsewhere. These properties allow us to express the remainder in an analogous way, with the divided differences of the derivative of a given order of the functionf(x)f(x), when this derivative exists in the interval (A,ba,b).
18. Based on a previous result [9], for recognizing the simple form of the remainder we can apply the following criterion:
C. For the additive and homogeneous functional R [f], with the degree of accuracy n, to be of simple form it is necessary and sufficient that R [f] is non-zero for any functionf(x)\mathrm{f}(\mathrm{x})convex of order n in[A,b]1[\mathrm{a},\mathrm{b}]^{1}).

The definition of the simple form and the C criterion apply not only to the rest of formula (1) but also to an additive and homogeneous functionalR[f]R[f], defined in a vector fieldFFof continuous functions in the interval[A,b][a,b]and containing all polynomials.

A functionf(x)f(x)it is said to be unconquered by the ordernnin the interval[A,b][a,b], if all its differences divided byn+2n+2distinct points in[A,b][a,b]are nonnegative. The function is said, in particular, to be convex of ordernnin this interval, if all these divided differences are positive. We will point out in their place the properties used here of non-concave and convex functions.

A non-concave function of ordern1n\geq 1, so in particular a convex function of ordern1n\geqslant 1, is continuous in the open interval (A,ba,b). Ifn>1n>1, it admits continuous derivatives of the orders1.2,,n11,2,\ldots,n-1in the interval (A,ba,b) In general, such a function does not have a derivative of the ordernnat all points of the interval (A,ba,b).

In general, the fieldFFof the functionalR[f]R[f]does not contain all convex functions of ordernnin (A,ba,b) because, on the one hand, by hypothesis the fieldFFis made up of continuous functions in[A,b][a,b], on the other hand the functional may depend on values ​​of the derivatives of order>n1>n-1of the functionf(x)f(x)Criterion C is, however, always applicable because from the demonstration of this criterion [7], it follows that it is sufficient to consider only functions of ordernnwhich belong toFF.
19. In the statement of the criterionCCconditionR[f]0R[f]\neq 0can be replaced with the conditionR[f1]R[f2]>0R\left[f_{1}\right]R\left[f_{2}\right]>0for any two functionsf1(x)f_{1}(x)andf2(x)Ff_{2}(x)\in F, convex of the ordernnThis property results from the following lemma, very useful in applying the C criterion.

Lemma 3. If n is the degree of accuracy of the additive and homogeneous functional R[f] and if we can find two functionsf1(x),f2(x)\mathrm{f}_{1}(\mathrm{x}),\mathrm{f}_{2}(\mathrm{x})unconquered by ordernn\mathrm{n}^{\prime}\leqq\mathrm{n}in the interval[A,b][\mathrm{a},\mathrm{b}]so that

R[f1]R[f2]<0R\left[f_{1}\right]R\left[f_{2}\right]<0 (32)

then there is a functionf(x)\mathrm{f}(\mathrm{x}), convex of ordern\mathrm{n}^{\prime}in[A,b][\mathrm{a},\mathrm{b}], so that

R[f]=0R[f]=0 (33)
0 0 footnotetext: 1) The criterion in this form is sufficient here. In general, from the fact thatR[f]0R[f]\neq 0, for any convex function of ordernn, it follows that the degree of accuracy isnn.

It is known that a linear combination, with positive coefficients, of several (a finite number) non-concave functions of ordernn^{\prime}, of which at least one is convex of ordernn^{\prime}, is a convex function of ordernn^{\prime}.

Let us now observe that the function(xA)n+1(x-a)^{n+1}is convex of ordernn^{\prime} in the interval[A,b][a,b].

On the other hand,R[(xA)n+1]0R\!\left[(x-a)^{n+1}\right]\neq 0, because of the definition of the degree of accuracy.

It follows that the functions …

f1(x)=f1(x)+12|R[f1]R[(xA)n+1]|(xA)n+1\displaystyle f_{1}^{*}(x)=f_{1}(x)+\frac{1}{2}\left|\frac{R\left[f_{1}\right]}{R\left[(x-a)^{n+1}\right]}\right|(x-a)^{n+1}
f2(x)=f2(x)+12|R[f2]R[(xA)n+1]|(xA)n+1\displaystyle f_{2}^{*}(x)=f_{2}(x)+\frac{1}{2}\left|\frac{R\left[f_{2}\right]}{R\left[(x-a)^{n+1}\right]}\right|(x-a)^{n+1}

are convex of the ordernn^{\prime}
Taking into account (32), a simple calculation shows us that

R[f1]R[f2]=34R[f1]R[f2]<0.R\left[f_{1}^{*}\right]R\left[f_{2}^{*}\right]=\frac{3}{4}R\left[f_{1}\right]R\left[f_{2}\right]<0.

It follows that the function

f(x)=f1(x)R[f1]R[f2]f2(x)f(x)=f_{1}^{*}(x)-\frac{R\left[f_{1}^{*}\right]}{R\left[f_{2}^{*}\right]}f_{2}^{*}(x)

is convex of ordernn^{\prime}and, it is immediately verified, satisfies equality (33).
Lemma 3 is therefore proven.
Forn=nn^{\prime}=n, applying the criterion C , the following theorem is deduced:
Theorem 7. If n is the degree of accuracy of the functional R[f], adjectival : and homogeneous and if we can find two functionsf1(x),f2(x)F\mathrm{f}_{1}(\mathrm{x}),\mathrm{f}_{2}(\mathrm{x})\in\mathrm{F}, non-concave of order n in[A,b][\mathrm{a},\mathrm{b}], so that we have (32), then the functional is not of simple form.
20. The remainderRRof formula (1) can be studied in a more symmetrical form

R[f]=and=0Sj=0Tmband,jf(j)(xand)R[f]=\sum_{i=0}^{s}\sum_{j=0}^{T_{m}}b_{i,j}f^{(j)}\left(x_{i}\right) (34)

where for the moment we can assume

A=x0x1<<xSba=x_{0}\leqslant x_{1}<\ldots<x_{s}\leqslant b

Of course, the fieldFFof the functional (34) consists of the functionsf(x)f(x)continue in[A,b][a,b]and admitting the derivatives at the points where they actually intervene in the expression ofR[f]R[f].

We will seek to establish some properties regarding the simple form of the functional (34).

Let's assume that the degree of accuracy isnnWe will show that the functional cannot effectively depend on the derivatives of order>n+1>n+1in case its form is simple. For this it will be enough, based on Theorem 7, to construct two functions in the opposite casef1(x),f2(x)Ff_{1}(x),f_{2}(x)\in Fnon-concave of the ordernn, so that we have inequality (32).

0 0 footnotetext: 1 ) It can be shown, for example, that the derivative of the ordern+1n^{\prime}+1of the function is positive in the interval[A,b][a,b].

Let us therefore suppose thatband,k0,band,j=0,j=k+1,k+2,b_{i,k}\neq 0,b_{i,j}=0,j=k+1,k+2,\ldots, wherekn+2k\geq n+2.

Whetherε\varepsilona fairly small positive number and which will be further specified in the course of the demonstration.

Let's define the continuous functionφε(x)\varphi_{\varepsilon}(x)in the following way:
1.φε(xand)=11^{\circ}.\varphi_{\varepsilon}\left(x_{i}\right)=1.
2.φε(x)=02^{\circ}.\varphi_{\varepsilon}(x)=0forx[A,xandε][xand+ε,b],x[A+2ε,b]x\in\left[a,x_{i}-\varepsilon\right]\cup\left[x_{i}+\varepsilon,b\right],x\in[a+2\varepsilon,b], respectivelyx[A,b2ε]x\in[a,b-2\varepsilon], as0<and<S,and=00<i<s,i=0, respectivelyand=Si=s.
3φε(x)3^{\circ}\varphi_{\varepsilon}(x)is linear in each of the remaining intervals of[A,b][a,b]so in[xandε,xand]\left[x_{i}-\varepsilon,x_{i}\right]and[xand,xand+ε],[A,A+2ε]\left[x_{i},x_{i}+\varepsilon\right],[a,a+2\varepsilon], respectively[b2ε,b][b-2\varepsilon,b], as0<and<S,and=00<i<s,i=0, respectivelyand=Si=s.

We then haveφε(x)0\varphi_{\varepsilon}(x)\geqq 0forx[A,b]x\in[a,b]Let us
now consider the function

fε(x)=Ax(xt)k1(k1)!φε(t)𝑑tf_{\varepsilon}(x)=\int_{a}^{x}\frac{(x-t)^{k-1}}{(k-1)!}\varphi_{\varepsilon}(t)dt

Then, ifε<MAX{x1x0,xSxS1,xSx02}\varepsilon<\max\left\{x_{1}-x_{0},x_{s}-x_{s-1},\frac{x_{s}-x_{0}}{2}\right\}HAVE

fε(itand)(x)=φε(x), for x[A,b]f_{\varepsilon}^{(li)}(x)=\varphi_{\varepsilon}(x),\text{ pentru }x\in[a,b]

0=fε(it1)(A)fε(it1)(x)fε(it1)(b)=Abφε(t)𝑑t=ε,0=f_{\varepsilon}^{(l-1)}(a)\leqq f_{\varepsilon}^{(l-1)}(x)\leqq f_{\varepsilon}^{(l-1)}(b)=\int_{a}^{b}\varphi_{\varepsilon}(t)dt=\varepsilon,\quadforx[A,b]\quad x\in[a,b]

fε(j)(x)=Ax(xt)k2j(k2j)!fε(k1)(t)𝑑t, for j=0.1,,k2f_{\varepsilon}^{(j)}(x)=\int_{a}^{x}\frac{(x-t)^{k-2-j}}{(k-2-j)!}f_{\varepsilon}^{(k-1)}(t)dt,\quad\text{ pentru }\quad j=0,1,\ldots,k-2

It then immediately follows that
0fε(and)(x)ε(bA)k1j(k1j)!0\leqq f_{\varepsilon}^{(i)}(x)\leqq\varepsilon\frac{(b-a)^{k-1-j}}{(k-1-j)!}, forx[A,b]x\in[a,b]andj=0.1,,k1j=0,1,\ldots,k-1.

Be it nowAAsome non-zero constant and consider the function

f(x)=Afε(x)+|A|ε(bA)kn2(n+1)!(kn2)!(xA)n+1f(x)=Af_{\varepsilon}(x)+|A|\frac{\varepsilon(b-a)^{k-n-2}}{(n+1)!(k-n-2)!}(x-a)^{n+1} (36)

We then have

f(n+1)(x)=Afε(n+1)(x)+|A|ε(bA)kn2(kn2)!f^{(n+1)}(x)=Af_{\varepsilon}^{(n+1)}(x)+|A|\frac{\varepsilon(b-a)^{k-n-2}}{(k-n-2)!}

and therefore, based on (35),

f(n+1)(x)0,x[A,b].f^{(n+1)}(x)\geq 0,\quad x\in[a,b].

This inequality shows us that the functionf(x)f(x)is non-concave of the ordernnin[A,b][a,b].

Taking into account (36), we deduce
f(j)(x)={Afε(j)(x)+|A|ε(bA)kn2(n+1j)!(kn2)!(xA)n+1j,j=0.1,,n+1Afε(j)(x),j=n+2,n+3,,k1f^{(j)}(x)=\left\{\begin{array}[]{c}Af_{\varepsilon}^{(j)}(x)+|A|\frac{\varepsilon(b-a)^{k-n-2}}{(n+1-j)!(k-n-2)!}(x-a)^{n+1-j},\\ \quad j=0,1,\ldots,n+1\\ Af_{\varepsilon}^{(j)}(x),j=n+2,n+3,\ldots,k-1\end{array}\right.
forx[A,b]x\in[a,b]
Taking into account (35), we have

|f(j)(x)|2|A|(bA)k1andζ,j=0.1,,k1,x[A,b].\left|f^{(j)}(x)\right|\leq 2|A|(b-a)^{k-1-i}\zeta,\quad j=0,1,\ldots,k-1,x\in[a,b]. (37)

If we now assume that

12minand=0.1,,S{xand+1xand}.\frac{1}{2}\min_{i=0,1,\ldots,s}\left\{x_{i+1}-x_{i}\right\}. (38)

we also have

f(j)(xα)=0, for jk,α=0.1,,and1,and+1,,S.f^{(j)}\left(x_{\alpha}\right)=0,\text{ pentru }j\geq k,\alpha=0,1,\ldots,i-1,i+1,\ldots,s. (39)

Taking into accountf(k)(xand)=Af^{(k)}\left(x_{i}\right)=Aand from (34), (37), (39), we deduce

|R[t]band,kA|<(and=0Sj=1k1|band,j|)2|A|MAX{1,(bA)k1}ε\left|R[t]-b_{i,k}A\right|<\left(\sum_{i=0}^{s}\sum_{j=1}^{k-1}\left|b_{i,j}\right|\right)2|A|\cdot\max\left\{1,(b-a)^{k-1}\right\}\cdot\varepsilon

Choosingε\varepsilonsmall enough and in any case such that inequality (38) is verified, we deduce

|R[t]band,kA|<|band,kA|2\left|R[t]-b_{i,k}A\right|<\frac{\left|b_{i,k}A\right|}{2}

which shows us that thenR[f]R[f]has his signband,kAb_{i,k}AButAAwas chosen randomly. TakingA=1A=1and noting withf1(x)f_{1}(x)function (36) thus obtained, and taking the aroiA=1A=-1and noting with/2(x)/_{2}(x)function (36) thus obtained, inequality (32) is verified.

We can, however, state the following theorem:
Theorem 8. If the degree of accuracy of the functional (34) is n, this junctional cannot be of simple form unless it contains derivative effects of order>n+1>\mathrm{n}+1.

In other words, the functional cannot be of simple form unlessband,j=0b_{i,j}=0forj>n+1,and=0.1,,Sj>n+1,i=0,1,\ldots,s.

We will examine in particular the functional (32) with the degree of accuracy1.0-1,0or 1.
21. Suppose that the degree of accuracy is -1. Theorem 8, which also applies here, shows us that the functional (32) is necessarily of the form

R[f]=and=0Sbandf(xand)R[f]=\sum_{i=0}^{s}b_{i}f\left(x_{i}\right) (40)

if it is of simple form.

For the functional (40) to be of simple form, it is necessary that the coefficientsb0,b1,,bSb_{0},b_{1},\ldots,b_{s}be of the same sign 1 ). Indeed, let us assume the opposite, and letbαbβ<0b_{\alpha}b_{\beta}<0Then, inequality (32) is verified only forj1(x)j_{1}(x)we take a continuous non-negative function, such thatj1(xα)=1,j1(xand)=0j_{1}\left(x_{\alpha}\right)=1,j_{1}\left(x_{i}\right)=0,j=0.1,,α1,α+1,,Sj=0,1,\ldots,\alpha-1,\alpha+1,\ldots,sand fort2(x)t_{2}(x)we take a continuous non-negative function, so itf2(xβ)=1,f2(xj)=0,j=0.1,,β1,β+1,,Sf_{2}\left(x_{\beta}\right)=1,f_{2}\left(x_{j}\right)=0,j=0,1,\ldots,\beta-1,\beta+1,\ldots,s.

The condition is also sufficient, because if it is fulfilled, then

R[1]=and=0Sband0R[1]=\sum_{i=0}^{s}b_{i}\neq 0

it results thatR[y]0R[y]\neq 0for any positive functionf(x)f(x).
We therefore deduce the following theorem:
Theorem 9. The necessary and sufficient condition for the functional (40) to be of degree of accuracy -1 and to be of simple form is that all the coefficientsband,and=0.1,,S\mathrm{b}_{i},\mathrm{i}=0,1,\ldots,\mathrm{\penalty 10000\ s}be of the same sign, without all being zero.

If the condition is met, then we have

and=0Sbandf(xand)=(and=0Sband)D0[f]\sum_{i=0}^{s}b_{i}f\left(x_{i}\right)=\left(\sum_{i=0}^{s}b_{i}\right)D_{0}[f]

which also expresses a well-known property of continuous functions. HereD0[f]=f(ξ)D_{0}[f]=f(\xi)The pointξ\xigenerally belongs to the closed interval[A,b][a,b]If, for example,S>1s>1and at least one of the coefficientsb2,b3,,bS1b_{2},b_{3},\ldots,b_{s-1}is different from zero, the pointξ\xican be chosen in the range(A,b)(a,b).

As an application, note that the necessary and sufficient condition for formula (1) to be of degree of accuracy -1 and with the remainder in simple form is thatm=R=0m=r=0and thatAand,00,Aand,j=0a_{i,0}\leqq 0,a_{i,j}=0, forj=1.2,,Rand1,and=1.2,,Sj=1,2,\ldots,r_{i}-1,i=1,2,\ldots,s.
22. If the functional (34) is of degree of accuracy 0 and of simple form, then, according to Theorem 8, it is necessarily of the form

R[f]=and=0S[bandf(x0)+bandf(xand)].R[f]=\sum_{i=0}^{s}\left[b_{i}f\left(x_{0}\right)+b_{i}^{\prime}f^{\prime}\left(x_{i}\right)\right]. (41)

The conditions for the degree of accuracy to be 0 are

and=0Sband=0,and=0S(bandx0+band)0.\sum_{i=0}^{s}b_{i}=0,\quad\sum_{i=0}^{s}\left(b_{i}x_{0}+b_{i}^{\prime}\right)\neq 0. (42)

Let's now look for necessary conditions for the functional to also be of simple form.

The first relation (42) is necessary because 1 and -1 are both non-decreasing functions and we have

R[1]R[1]=(and=0Sband)2R[1]\cdot R[-1]=-\left(\sum_{i=0}^{s}b_{i}\right)^{2}

and if the condition were not fulfilled, we would satisfy inequality (32).
Also, the second condition (42) is necessary, because otherwise we would haveR[x]=0R[x]=0, andxxis an increasing function.

0 0 footnotetext: 1) This means that the numbers are all non-negative or all non-positive. A single number is considered to always have the same sign.

Be it nowf(x)f(x)a continuous, non-decreasing function equal to 0 forx[A,xand1+ε]x\in\left[a,x_{i-1}+\varepsilon\right]and equal to 1 forx[xandε,b],x\in\left[x_{i}-\varepsilon,b\right],\inbeing a positive number, often small[ε<12(xandxand1)]\left[\varepsilon<\frac{1}{2}\left(x_{i}-x_{i-1}\right)\right]We then have

R[f]=band+band+1++bSR[f]=b_{i}+b_{i+1}+\ldots+b_{s}

Based on Theorem 7, it follows that the numbers

band+band+1++bS,and=1.2,,Sb_{i}+b_{i+1}+\ldots+b_{s},\quad i=1,2,,\ldots s (43)

be of the same sign.
Then let the functionf(x)f(x)equal to 0 forxxandεx\leq x_{i}-\varepsilon, equal to2ε2\varepsilonforxxand+εx\geqq x_{i}+\varepsilonand linear in the interval[xandε,xand+ε]\left[x_{i}-\varepsilon,x_{i}+\varepsilon\right], whereε\varepsilonis a fairly small positive number,ε<minand=1,2,3{xandxand1}\varepsilon<\min_{i=1,2,3}\left\{x_{i}-x_{i-1}\right\}This function is non-decreasing and we have

R[f]=ε[(band+band+1++bS)+band+1+band+2++bS]+bandR[f]=\varepsilon\left[\left(b_{i}+b_{i+1}+\ldots+b_{s}\right)+b_{i+1}+b_{i+2}+\ldots+b_{s}\right]+b_{i}^{\prime}

Since e can be taken as small as desired, it is seen, also based on Theorem 7, that the numbers

b0,b1,,bSb_{0}^{\prime},b_{1}^{\prime},\ldots,b_{s}^{\prime} (44)

together with the numbers (43) must be of the same sign.
Finally, we will highlight another necessary condition. Letf(x)f(x)function defined as follows:

f(x)=x(xxand1)(xxand)(2xxand1xand)(xandxand1)2, for x[xand1,xand]and=1.2,,S.\begin{gathered}f(x)=x-\frac{\left(x-x_{i-1}\right)\left(x-x_{i}\right)\left(2x-x_{i-1}-x_{i}\right)}{\left(x_{i}-x_{i-1}\right)^{2}},\text{ pentru }x\in\left[x_{i-1},x_{i}\right]\\ i=1,2,\ldots,s.\end{gathered}

We then have
f(x)=6(xandxand1)2(xxand1)(xxand)f^{\prime}(x)=-\frac{6}{\left(x_{i}-x_{i-1}\right)^{2}}\left(x-x_{i-1}\right)\left(x-x_{i}\right), forx[xand1,xand],and=1.2,,Sx\in\left[x_{i-1},x_{i}\right],i=1,2,\ldots,sand it is seen that the function is continuous and differentiable in the interval[A,b][a,b]Butf(xand)=xand,f(xand)=0,and=0.1,,Sf\left(x_{i}\right)=x_{i},f^{\prime}\left(x_{i}\right)=0,i=0,1,\ldots,sandf(x)>0f^{\prime}(x)>0, forx(xand1,xand)and=1.2,,Sx\in\left(x_{i-1},x_{i}\right)i=1,2,\ldots,sso the functionf(x)f(x)is increasing and we have

R[f]=and=0SbandxandR[f]=\sum_{i=0}^{s}b_{i}x_{i}

We therefore deduce the necessary condition

bandxand0b_{i}x_{i}\neq 0 (45)

Let us now show that the established conditions are also sufficient.
Based on the first relation (42) we can write

R[f]=and=1S(xandxand1)(band+band+1++bS)[xand1,xand;f]+and=0Sbandf(xand)R[f]=\sum_{i=1}^{s}\left(x_{i}-x_{i-1}\right)\left(b_{i}+b_{i+1}+\ldots+b_{s}\right)\left[x_{i-1},x_{i};f\right]+\sum_{i=0}^{s}b_{i}^{\prime}f^{\prime}\left(x_{i}\right) (46)

which is obtained by applying Abel's transformation formula.

We now observe that

and=1S(xandxand1)(band+band+1++bS)=and=0Sbandxand\sum_{i=1}^{s}\left(x_{i}-x_{i-1}\right)\left(b_{i}+b_{i+1}+\ldots+b_{s}\right)=\sum_{i=0}^{s}b_{i}x_{i}

what is achieved by doingf(x)=xf(x)=xin (41) and (46). Condition (15) therefore implies that the numbers (43) are not all zero.

If nowf(x)f(x)is an increasing function, we have

[xand1,x˙and;f]>0,and=1.2,,S,f(xand)0,and=0.1,.S\left[x_{i-1},\dot{x}_{i};f\right]>0,i=1,2,\ldots,s,f^{\prime}\left(x_{i}\right)\geqq 0,i=0,1,\ldots.s

so the first relation (42), the condition (45) and the fact that the numbers (43), (44) are of the same sign, imply, based on formula (46), thatR[f]0R[f]\neq 0.

Note that the first relation (42) and condition (45) entail the second condition (42), if the numbers (43), (44) are of the same sign.

We therefore have the following theorem:
Theorem 10. The necessary and sufficient conditions for the functional (41) to be of degree of accuracy 0 and of simple form are that we have

and=0Sband=0,and=0Sbandxand0\sum_{i=0}^{s}b_{i}=0,\quad\sum_{i=0}^{s}b_{i}x_{i}\neq 0

and like the numbers

bS,bS+bS1,,b1+b2++bS,b0,b1,,bSb_{s},b_{s}+b_{s-1},\ldots,b_{1}+b_{2}+\ldots+b_{s},b_{0}^{\prime},b_{1}^{\prime},\ldots,b_{s}^{\prime}

have the same sign.
23. In order for formula (1) to have the degree of accuracy 0 and to be of simple form, it is necessary to havem+R1m+r\leq 1andAand,j=0,j=2.3,,Rand1a_{i,j}=0,j=2,3,\ldots,r_{i}-1,and=1.2,,Si=1,2,\ldots,sTo write the other conditions, the mutual position of the nodes and the point of derivation must be taken into account.

To fix the ideas, we can assume that the nodes are in ascending order, so

x1<x2<<xSx_{1}<x_{2}<\ldots<x_{s} (47)

We must distinguish three cases here:
1.m=R=01^{\circ}.m=r=0Assumingxand1<x0<xandx_{i-1}<x_{0}<x_{i}, the necessary and sufficient conditions are then

and=1SAand,0=1,and=1SAand,0xandx0\sum_{i=1}^{s}a_{i,0}=1,\quad\sum_{i=1}^{s}a_{i,0}x_{i}\neq x_{0}

and like the numbers

(A1.0+A2.0++Aj,0),j=1.2,,and1Aj,0+Aand+1.0++AS,0,j=and,and+1,,SAand,1,j=1.2,,S}\left.\begin{array}[]{c}-\left(a_{1,0}+a_{2,0}+\ldots+a_{j,0}\right),j=1,2,\ldots,i-1\\ a_{j,0}+a_{i+1,0}+\ldots+a_{s,0},j=i,i+1,\ldots,s\\ a_{i,1},j=1,2,\ldots,s\end{array}\right\}

be of the same sign.
Ifand=1i=1orand=S+1i=s+1the first and second series of numbers (48) disappear. In these cases we havex0<x1x_{0}<x_{1}, respectivelyx0>xSx_{0}>x_{s}.
2.m=0,R=12^{\circ}.m=0,r=1Assuming againxand1<x0<xandx_{i-1}<x_{0}<x_{i}the necessary and sufficient conditions are

A0+and=0SAand,0=0,A0x0+and=1SAand,0xand0a_{0}+\sum_{i=0}^{s}a_{i,0}=0,\quad a_{0}x_{0}+\sum_{i=1}^{s}a_{i,0}x_{i}\neq 0

and that all numbers (48) are non-positive, with the above restriction, ifand=1i=1orand=S+1i=s+1.
3.m=1,R=0m=1,r=0The necessary and sufficient conditions are

and=1SAand,0=0,and=1SAand,0xand0\sum_{i=1}^{s}a_{i,0}=0,\quad\sum_{i=1}^{s}a_{i,0}x_{i}\neq 0

and like the numbers

Aand,0+Aand+1.0++AS,0,and=2.3,,S;Aand,1,and=1.2,,Sa_{i,0}+a_{i+1,0}+\ldots+a_{s,0},\quad i=2,3,\ldots,s;\quad a_{i,1},\quad i=1,2,\ldots,s

be all non-positive.
There is only one formula (E) of degree of accuracy 0, which is of simple form and which we will indicate in § 5.
24. If the functional (34) is of degree of accuracy 1 and of simple form, then, according to Theorem 8, it is necessarily of the form

R[f]=and=0S[bandf(xand)+bandf(xand)+band"f"(xand)]R[f]=\sum_{i=0}^{s}\left[b_{i}f\left(x_{i}\right)+b_{i}^{\prime}f^{\prime}\left(x_{i}\right)+b_{i}^{\prime\prime}f^{\prime\prime}\left(x_{i}\right)\right] (49)

The conditions for the degree of accuracy to be 1 are

and=0Sband=0,and=0S(bandxand+band)=0,and=0S(bandxand2+2bandxand+2band")0\sum_{i=0}^{s}b_{i}=0,\quad\sum_{i=0}^{s}\left(b_{i}x_{i}+b_{i}^{\prime}\right)=0,\quad\sum_{i=0}^{s}\left(b_{i}x_{i}^{2}+2b_{i}^{\prime}x_{i}+2b_{i}^{\prime\prime}\right)\neq 0 (50)

Let us again look for the necessary conditions for functional (49) to be of simple form.

The first two conditions (50) are necessary because the functions1,1,x,x1,-1,x,-xare non-concave of order 1 and

R[1]R[1]=(and=0Sband)2,R[x]R[x]=[and=0S(bandxand+band)]2R[1]R[-1]=-\left(\sum_{i=0}^{s}b_{i}\right)^{2},\quad R[x]R[-x]=-\left[\sum_{i=0}^{s}\left(b_{i}x_{i}+b_{i}^{\prime}\right)\right]^{2}

Let's consider the function

f(x)=xxand+ε+|xxand+ε|2f(x)=\frac{x-x_{i}+\varepsilon+\left|x-x_{i}+\varepsilon\right|}{2}

whereε\varepsilonis a positive number<xandxand1<x_{i}-x_{i-1}This function is non-concave of order 1 in[A,b][a,b]and we have

R[f]=λand+1+λand+2++λS+band+band+1++bS++ε(band+band+1++bS)\begin{array}[]{r}R[f]=\lambda_{i+1}+\lambda_{i+2}+\ldots+\lambda_{s}+b_{i}^{\prime}+b_{i+1}^{\prime}+\ldots+b_{s}^{\prime}+\\ +\varepsilon\left(b_{i}+b_{i+1}+\ldots+b_{s}\right)\end{array}

where did I put

λand=(xandxand1)(band+band+1++bS),and=1.2,,S\lambda_{i}=\left(x_{i}-x_{i-1}\right)\left(b_{i}+b_{i+1}+\ldots+b_{s}\right),\quad i=1,2,\ldots,s

Also, the function

f(x)=x+xand1+ε+|xxand1ε|2f(x)=\frac{-x+x_{i-1}+\varepsilon+\left|x-x_{i-1}-\varepsilon\right|}{2}

is non-concave of order 1 in[A,b][a,b]and we have (ε<xandxand1\varepsilon<x_{i}-x_{i-1})

R[f]=λand+λand+1++λS+band+band+1++bS++ε(band+band+1++bS)\begin{array}[]{r}R[f]=\lambda_{i}+\lambda_{i+1}+\ldots+\lambda_{s}+b_{i}^{\prime}+b_{i+1}^{\prime}+\ldots+b_{s}^{\prime}+\\ +\varepsilon\left(b_{i}+b_{i+1}+\ldots+b_{s}\right)\end{array}

Formulas (51) ; (52) hold no matter how smallε\varepsilonpositive. It follows immediately, based on Theorem 8, that the numbers 1 )

{λand+λand+1++λS+band+band+1++bSλand+1+λand+2++λS+band+band+1++bSand=1.2,,S\left\{\begin{array}[]{l}\lambda_{i}+\lambda_{i+1}+\ldots+\lambda_{s}+b_{i}^{\prime}+b_{i+1}^{\prime}+\ldots+b_{s}^{\prime}\\ \lambda_{i+1}+\lambda_{i+2}+\ldots+\lambda_{s}+b_{i}^{\prime}+b_{i+1}^{\prime}+\ldots+b_{s}^{\prime}\end{array}\quad i=1,2,\ldots,s\right.

must be of the same sign.
Be it nowf(x)f(x)null function forxxandεx\leqq x_{i}-\varepsilon, equal to(xxand+ε)2\left(x-x_{i}+\varepsilon\right)^{2}in the interval[xandε,xand+ε]\left[x_{i}-\varepsilon,x_{i}+\varepsilon\right]and equal to4ε(xxand)4\varepsilon\left(x-x_{i}\right)forxxand+εx\geq x_{i}+\varepsilonThis is a continuous non-concave function of order 1 in[A,b]2)\left.[a,b]^{2}\right)and forε\varepsilonquite small(ε<xandxand1,xand+1xand)\left(\varepsilon<x_{i}-x_{i-1},x_{i+1}-x_{i}\right)HAVE

R[f]=ε2band+2εband+4ε(λand+1+λand+2\displaystyle R[f]=\varepsilon^{2}b_{i}+2\varepsilon b_{i}^{\prime}+4\varepsilon\left(\lambda_{i+1}+\lambda_{i+2}\right. ++λS+band+1+\displaystyle+\ldots+\lambda_{s}+b_{i+1}^{\prime}+
+band+2++bS)+2band"\displaystyle\left.+b_{i+2}^{\prime}+\ldots+b_{s}^{\prime}\right)+2b_{i}^{\prime\prime}

numberε\varepsiloncan be however small positive, also based on theorem 8, we see that the numbers

b0",b1",,bS"b_{0}^{\prime\prime},b_{1}^{\prime\prime},\ldots,b_{s}^{\prime\prime} (54)

are of the same sign as the numbers (53).
Finally, as in the case ofn=0n=0, we will highlight another necessary condition. Letf(x)f(x)function defined as follows:

f(x)=x2(xxand1)2(xxand)2(xandxand1)2, for x[xand1,xand],and=1.2,,Sf(x)=x^{2}-\frac{\left(x-x_{i-1}\right)^{2}\left(x-x_{i}\right)^{2}}{\left(x_{i}-x_{i-1}\right)^{2}},\text{ pentru }x\in\left[x_{i-1},x_{i}\right],\quad i=1,2,\ldots,s

We then have
f"(x)=12(xandxand1)2(xxand1)(xxand)f^{\prime\prime}(x)=-\frac{12}{\left(x_{i}-x_{i-1}\right)^{2}}\left(x-x_{i-1}\right)\left(x-x_{i}\right), forx[xand1,xand],and=1.2,,Sx\in\left[x_{i-1},x_{i}\right],i=1,2,\ldots,sIt is seen
that the function is continuous and has a second derivative, continuous in the interval[A,b][a,b]Butf(xand)=xand2,f(xand)=2xand,f"(xand)=0,and=0.1,,Sf\left(x_{i}\right)=x_{i}^{2},f^{\prime}\left(x_{i}\right)=2x_{i},f^{\prime\prime}\left(x_{i}\right)=0,i=0,1,\ldots,sandf"(x)>0f^{\prime\prime}(x)>0forx(xand1,xand),and=1.2,,Sx\in\left(x_{i-1},x_{i}\right),i=1,2,\ldots,s, so the functionf(x)f(x)is convex of order 1 and we have

R[f]=and=0S(bandxand2+2bandxand)R[f]=\sum_{i=0}^{s}\left(b_{i}x_{i}^{2}+2b_{i}^{\prime}x_{i}\right)

1 ) Forand=Si=s, the second number reduces tobSb_{s}^{\prime}.
2 ) It is useful to make a graphical representation of this function, as well as of the other auxiliary functions used here.

We also have the necessary condition

and=0S(bandxand2+2bandxand)0\sum_{i=0}^{s}\left(b_{i}x_{i}^{2}+2b_{i}^{\prime}x_{i}\right)\neq 0 (55)

Let us now show that the conditions found are also sufficient. This follows from the formula

R[f]=and=1S(xand\displaystyle R[f]=\sum_{i=1}^{s}\left(x_{i}\right. xand1)(λand+λand+1++λS+band+band+1+\displaystyle\left.-x_{i-1}\right)\left(\lambda_{i}+\lambda_{i+1}+\ldots+\lambda_{s}+b_{i}^{\prime}+b_{i+1}^{\prime}+\right.
++bS)[xand1,xand1,xand;f]+and=1S(xandxand1)(λand+1+λand+2+\displaystyle\left.+\ldots+b_{s}^{\prime}\right)\cdot\left[x_{i-1},x_{i-1},x_{i};f\right]+\sum_{i=1}^{s}\left(x_{i}-x_{i-1}\right)\left(\lambda_{i+1}+\lambda_{i+2}+\right.
++λS+band+band+1++bS)[xand1,xand,xand;f]+and=0Sb"f"(xand)\displaystyle\left.+\ldots+\lambda_{s}+b_{i}^{\prime}+b_{i+1}^{\prime}+\ldots+b_{s}^{\prime}\right)\cdot\left[x_{i-1},x_{i},x_{i};f\right]+\sum_{i=0}^{s}b^{\prime\prime}f^{\prime\prime}\left(x_{i}\right)

which is valid when the first two conditions (50) are satisfied. This formula is a particular case of the general formula for the transformation of divided differences and is obtained by applying Abel's transformation formula twice [6]. If we putf(x)=x2f(x)=x^{2}, we deduce

and=1S(xandxand1)(λand+λand+1++λS+band+band+1++bS)++and=1S(xandxand1)(λand+1+λand+2++λS+band+band+1++bS)==and=0S(bandxand2+2bandxand)\begin{gathered}\sum_{i=1}^{s}\left(x_{i}-x_{i-1}\right)\left(\lambda_{i}+\lambda_{i+1}+\ldots+\lambda_{s}+b_{i}^{\prime}+b_{i+1}^{\prime}+\ldots+b_{s}^{\prime}\right)+\\ +\sum_{i=1}^{s}\left(x_{i}-x_{i-1}\right)\left(\lambda_{i+1}+\lambda_{i+2}+\ldots+\lambda_{s}+b_{i}^{\prime}+b_{i+1}^{\prime}+\ldots+b_{s}^{\prime}\right)=\\ =\sum_{i=0}^{s}\left(b_{i}x_{i}^{2}+2b_{i}^{\prime}x_{i}\right)\end{gathered}

and then, based on hypothesis (55), at least one of the numbers (53) is different from zero.

Iff(x)f(x)is a convex function of order 1, we have

[xand1,xand1,xand;f]>0,[xand1,xand,xand;f]>0,and=1.2,Sf"(xand)0,and=0.1,S\begin{gathered}{\left[x_{i-1},x_{i-1},x_{i};f\right]>0,\quad\left[x_{i-1},x_{i},x_{i};f\right]>0,\quad i=1,2\ldots,s}\\ f^{\prime\prime}\left(x_{i}\right)\geq 0,i=0,1\ldots,s\end{gathered}

so the first two equalities (50), condition (55) and the fact that the numbers (53), (54) are of the same sign implyR[f]0R[f]\neq 0.

Note that under the same conditions the third relation (50) results.
Theorem 11. The necessary and sufficient conditions for the functional (49) to be of degree of accuracy 1 and of simple form are that the first two relations (50) are verified, that the inequality (55) is verified and that the numbers (53), (54) have the same sign.
25. For the formula (1) to be of degree of accuracy 1 and of simple form, it is necessary thatm+R2m+r\leq 2and asAand,j=0,j=3.4,Rand1,and=1.2Sa_{i,j}=0,j=3,4\ldots,r_{i}-1,i=1,2\ldots sThe expression of the other conditions depends on the mutual positions of the nodes and the derivation point.

Let us assume that the nodes are in increasing order, so that we have (47): We will then be able to express the necessary and sufficient conditions in terms of the values ​​of
m,Rm,rand the position of the pointx0x_{0}with respect to the nodes. These conditions are quite complicated. It will therefore suffice to show in each case how we bring the remainder to the form (49), studied above, and for which the pointsx0,x1xSx_{0},x_{1}\ldots x_{s}are in ascending order. The conditions will then be expressed using the coefficientsband,band,band"b_{i},b_{i}^{\prime},b_{i}^{\prime\prime}.

We must distinguish 6 cases. We will generally assume thatxand1<x0<x1.m=R=0x_{i-1}<x_{0}<x1^{\circ}.m=r=0A series of necessary and sufficient conditions become

and=1SAand,0=1,and=1S(Aand,0xand+Aand,1)=x0,and=2S(Aand,0xand2+2Aand,1xand)x02\sum_{i=1}^{s}a_{i,0}=1,\sum_{i=1}^{s}\left(a_{i,0}x_{i}+a_{i,1}\right)=x_{0},\sum_{i=2}^{s}\left(a_{i,0}x_{i}^{2}+2a_{i,1}x_{i}\right)\neq x_{0}^{2}

and the other conditions are deduced by reducing the remainder to the form (49) 1 ) which comes down to replacing in (49) the sequence of pointsx0,x1,,xSx_{0},x_{1},\ldots,x_{s}eggx1,x2,,xand1x_{1},x_{2},\ldots,x_{i-1},x0,xand,xSx_{0},x_{i},\ldots x_{s}and then putting

band=Aand+1.0,bj=Aj+1.1,bj"=Aj+1.2,j=0.1,and2band1=1,band1=band1"=0bj=Aj,0,band=Aj,1,bj"=Aj,2,j=and,and+1,,S}\left.\begin{array}[]{ll}b_{i}=a_{i+1,0},&b_{j}^{\prime}=a_{j+1,1},\quad b_{j}^{\prime\prime}=a_{j+1,2},\quad j=0,1,\ldots i-2\\ b_{i-1}=-1,&b_{i-1}^{\prime}=b_{i-1}^{\prime\prime}=0\\ b_{j}=a_{j,0},&b_{i}^{\prime}=a_{j,1},\quad b_{j}^{\prime\prime}=a_{j,2},\quad j=i,i+1,\ldots,s\end{array}\right\}

2.m=0,R=12^{\circ}.m=0,r=1. Analogous reduction, except that the second series of formulas (56) becomes

band1=A0,band1=1,band1"=0b_{i-1}=a_{0},\quad b_{i-1}^{\prime}=-1,\quad b_{i-1}^{\prime\prime}=0
  1. 3.

    m=1,R=0m=1,r=0. Analogous reduction, the second series of formulas (56) becomes

band1=0,band1=1,band1"=0b_{i-1}=0,\quad b_{i-1}^{\prime}=-1,\quad b_{i-1}^{\prime\prime}=0
  1. 4.

    m=0,R=2m=0,r=2Analogous reduction with

band1=A0,band1=A1,band1"=1b_{i-1}=a_{0},\quad b_{i-1}^{\prime}=a_{1},\quad b_{i-1}^{\prime\prime}=-1
  1. 5.

    m=R=1m=r=1Analogous reduction with

band1=A0,band1=0,band1"=1b_{i-1}=a_{0},\quad b_{i-1}^{\prime}=0,\quad b_{i-1}^{\prime\prime}=-1
  1. 6.

    m=2,R=0m=2,r=0Analogous reduction with

band1=band1=0,band1"=1b_{i-1}=b_{i-1}^{\prime}=0,\quad b_{i-1}^{\prime\prime}=-1

In cases4,5,64^{\circ},5^{\circ},6^{\circ}the sign of all the corresponding numbers (53), (54) is non-positive.

Ifand=1i=1sox0<x1x_{0}<x_{1}, the first series of formulas (56) is suppressed, and ifand=S+1i=s+1soxS<x0x_{s}<x_{0}, the third series of formulas (56) is deleted.

There are 5 formulas (E) of accuracy level 1 that we will report in § 5.

0 0 footnotetext: 1 ) More precisely (for the sake of simplicity of exposition) the remainder changed by sign is brought to this form, a fact which does not restrict the generality of the problem.

§ 3. A criterion for recognizing the simple form of the remainder of a formula of maximum accuracy

  1. 26.

    Let us resume the numerical derivation formula (E). We will first assumeR=0r=0, so we will consider the formula

f(m)(x0)=IT(m)(x1,x2,,xp+1;fx0)+Rf^{(m)}\left(x_{0}\right)=L^{(m)}\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x_{0}\right)+R (57)

To study the rest of this formula, we can start from the casem=0m=0, first considering formula (28).

Because at some point it will be convenient to consider the pointx0x_{0}as a variable, we will then, for greater clarity, denote it byxxFormula (29) shows us that if we put

R(x)=it(x)[x,x1,x2,,xp+1;f]R(x)=l(x)\left[x,x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\right] (58)

the rest of formula (28) isR=R(x0)R=R\left(x_{0}\right), and the rest of formula (57) will be given by the equality

R=R[f]=R(m)(x0)R=R[f]=R^{(m)}\left(x_{0}\right) (59)

Derivative of the orderm,R(m)(x)m,R^{(m)}(x)can be calculated from formula (58). We have

R(m)(x)=and=0m(mand)it(mand)(x)[x,x1,x2,,xp+1;f](and)R^{(m)}(x)=\sum_{i=0}^{m}\binom{m}{i}l^{(m-i)}(x)\left[x,x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\right]^{(i)} (\prime)

But [5]

[x,α1,α2,,αitand;j](and)=and![x,x,,xand+1,α1,α2,,αk;f]\left[x,\alpha_{1},\alpha_{2},\ldots,\alpha_{li};j\right]^{(i)}=i!\underbrace{[x,x,\ldots,x}_{i+1},\alpha_{1},\alpha_{2},\ldots,\alpha_{k};f] (60)

from which the more general formula is deduced

[x,x,,xj,α1,α2,,αk;f](and)=\displaystyle{[\underbrace{x,x,\ldots,x}_{j},\alpha_{1},\alpha_{2},\ldots,\alpha_{k};f]^{(i)}=} (61)
=(and+j1)!(j1)![x,x,,xand+j,α1,α2,,α1;ρ]\displaystyle\qquad=\frac{(i+j-1)!}{(j-1)!}[\underbrace{x,x,\ldots,x}_{i+j},\alpha_{1},\alpha_{2},\ldots,\alpha_{1};\rho]

whereα1,α2,,αk\alpha_{1},\alpha_{2},\ldots,\alpha_{k}are fixed nodes andxxis 0 variable.
Taking into account (60), formula (59') becomes

R(m)(x)=m!and=0mit(mand)(x)(mand)![x,x,,xand+1,x1,x2,,xp+1;f]R^{(m)}(x)=m!\sum_{i=0}^{m}\frac{l^{(m-i)}(x)}{(m-i)!}\underbrace{[x,x,\ldots,x}_{i+1},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f] (62)
  1. 27.

    We will now transform formula (62) into another formula that will prove useful.

We can write

R(m)(x)=and=0mAm,and(x)[x,x,,xand+1,x1,x2,,xp+1and;n]R^{(m)}(x)=\sum_{i=0}^{m}A_{m,i}(x)[\underbrace{x,x,\ldots,x}_{i+1},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1-i}^{\prime};n] (63)

where the coefficientsAm,and(x),and=0.1,,mA_{m,i}(x),i=0,1,\ldots,mare polynomials inxx, completely determined and independent of the functionf(x)f(x).

This formula results from a general transformation formula [6] applied to the additive and homogeneous functional (62), defined for the functionsf(x)f(x)data on points

x,x,,xm+1,x1,x2,,xp+1\underbrace{x,x,\ldots,x}_{m+1},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime} (64)

taken in this order.
Formula (63) is deduced from formula (62), conveniently applying to the divided differences in the second member the recurrence formula of divided differences until all these divided differences are expressed linearly and homogeneously in terms of divided differences of the orderp+1p+1taken as many asp+2p+2consecutive points in the string (64).

PolynomialsAm,and(x),and=0.1,,mA_{m,i}(x),i=0,1,\ldots,mcan be calculated explicitly by putting them in a convenient form. Deriving formula (63) with respect toxxand taking into account formulas (59) and (61), we deduce

and=0m+1Am+1,and(x)[x,x,,xand+1,x1,x2,,xp+1and;f]=\displaystyle\sum_{i=0}^{m+1}A_{m+1,i}(x)[\underbrace{x,x,\ldots,x}_{i+1},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1-i}^{\prime};f]=
=\displaystyle= and=0mAmand(x)[x,x,,xand+1,x1,x2,,xp+1and;f]+\displaystyle\sum_{i=0}^{m}A_{m_{i}^{\prime}}^{\prime}(x)[\underbrace{x,x,\ldots,x}_{i+1},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1-i}^{\prime};f]+ (65)
+\displaystyle+ and=0m(and+1)Am,and(x)[x,x,,xand+2,x1,x2,,xp+1and;f]\displaystyle\sum_{i=0}^{m}(i+1)A_{m,i}(x)[\underbrace{x,x,\ldots,x}_{i+2},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1-i}^{\prime};f]

Taking into account the recurrence formula

[x,x,,xand+2,x1,x2,,xp+1and;f]=\displaystyle\left.\frac{[x,x,\ldots,x}{i+2},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1-i}^{\prime};f\right]=
=1xxp+1and{[x,x,,x,x1,x2,,xpand;f]and+2\displaystyle\quad=\frac{1}{x-x_{p+1-i}^{\prime}}\left\{\frac{\left[x,x,\ldots,x,x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p-i}^{\prime};f\right]}{i+2}\right. (66)
[x,x,,x,x1,x2,,xp+1and;f]and+1\displaystyle\quad-\left[\frac{\left.x,x,\ldots,x,x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1-i}^{\prime};f\right]}{i+1}\right.

and identifying the coefficients in (65) we deduce

Am+1,and(x)=Am,and(x)(and+1)Am,and(x)xxp+1and+andAm,and1(x)xxp+2and\displaystyle A_{m+1,i}(x)=A_{m,i}^{\prime}(x)-(i+1)\frac{A_{m,i}(x)}{x-x_{p+1-i}^{\prime}}+i\frac{A_{m,i-1}(x)}{x-x_{p+2-i}^{\prime}} (67)
and=0.1,,m+1,[Am,1(x)=Am,m+1(x)=0]\displaystyle i=0,1,\ldots,m+1,\quad\left[A_{m,1}(x)=A_{m,m+1}(x)=0\right]
  1. 28.

    To find the explicit form of polynomialsAm,and(x)A_{m,i}(x)we will introduce some more useful notations. We put

it0(x)=1,itand(x)=(xx1)(xx2),,(xxand),and=1.2,,p+1l_{0}(x)=1,\quad l_{i}(x)=\left(x-x_{1}^{\prime}\right)\left(x-x_{2}^{\prime}\right),\ldots,\left(x-x_{i}^{\prime}\right),\quad i=1,2,\ldots,p+1

We then haveitp+1(x)=it(x)l_{p+1}(x)=l(x)and

itand+1(x)=(xxand+1)itand(x),and=0.1,,pl_{i+1}(x)=\left(x-x_{i+1}^{\prime}\right)l_{i}(x),\quad i=0,1,\ldots,p (68)

If, for the sake of simplicity, we agree to put

itand,α(x)=1(andα)!itand(andα)(x),α=0.1,,andl_{i,\alpha}(x)=\frac{1}{(i-\alpha)!}l_{i}^{(i-\alpha)}(x),\quad\alpha=0,1,\ldots,i (69)

from (68) we immediately deduce the relations

itand+1,α+1(x)\displaystyle l_{i+1,\alpha+1}(x) =itand,α+1(x)+(xxand+1)itand,α(x)\displaystyle=l_{i,\alpha+1}(x)+\left(x-x_{i+1}^{\prime}\right)l_{i,\alpha}(x) (70)
itand,α(β)(x)\displaystyle l_{i,\alpha}^{(\beta)}(x) =(andα+β)!(andα)!itand,αβ(x)\displaystyle=\frac{(i-\alpha+\beta)!}{(i-\alpha)!}l_{i,\alpha-\beta}(x) (74)

It is always taken into account in calculationsitand,α(x)=0l_{i,\alpha}(x)=0, ifα<0\alpha<0orα>and\alpha>i
We can write the nodes (6) in the form

xand=x0+hand,and=1.2,,p+1x_{i}^{\prime}=x_{0}+h_{i},\quad i=1,2,\ldots,p+1 (72)

thenh1,h2,,hp+1h_{1},h_{2},\ldots,h_{p+1}are the deviations of the respective nodes from the derivation pointx0x_{0}.

We will note withHand,and=0.1,,p+1(H0=1)H_{i},i=0,1,\ldots,p+1\left(H_{0}=1\right)fundamental symmetric polynomials of deviationshand,and=1.2,,p+1h_{i},i=1,2,\ldots,p+1and we will always putHand=0H_{i}=0, ifand<0i<0orand>p+1i>p+1We will also denote byHand,αH_{i,\alpha},α=0.1,,and\alpha=0,1,\ldots,ithe fundamental symmetric polynomials of the firstandiDEVIATIONSh1,h2,,hand(Hand,0=1,(and0)h_{1},h_{2},\ldots,h_{i}\left(H_{i,0}=1,(i\geqslant 0)\right.andHand,α=0H_{i,\alpha}=0forα<0\alpha<0andα>and)\left.\alpha>i\right)We then have the formulasHp+1,α=Hα,α=0.1,,p+1H_{p+1,\alpha}=H_{\alpha},\alpha=0,1,\ldots,p+1and

itand,α(x0)=(1)αHand,α,α=0.1,,and,and=0.1,,p+1l_{i,\alpha}\left(x_{0}\right)=(-1)^{\alpha}H_{i,\alpha},\alpha=0,1,\ldots,i,i=0,1,\ldots,p+1 (73)

Considering the above, we will prove that we have

Am,and(x)=m!(xxp+1and)itpand,pm(x),and=0.1,,mA_{m,i}(x)=m!\left(x-x_{p+1-i}^{\prime}\right)l_{p-i,p-m}(x),i=0,1,\ldots,m (74)

For this we note thatA0.0(x)=it(x)=(xxp+1)itp,p(x)A_{0,0}(x)=l(x)=\left(x-x_{p+1}^{\prime}\right)l_{p,p}(x)and therefore form=0m=0, formulas (74) are true. Let us assume that these formulas are true formmand let's demonstrate them form+1m+1. Taking into account (67) and (74), we deduce

Am+1,and(x)\displaystyle A_{m+1,i}(x) =m![itpand,pm(x)+(xxp+1and)itpand,pm(x)\displaystyle=m!\left[l_{p-i,p-m}(x)+\left(x-x_{p+1-i}^{\prime}\right)l_{p-i,p-m}^{\prime}(x)-\right.
(and+1)itpand,pm(x)+anditpand+1,pm(x)]\displaystyle\left.-(i+1)l_{p-i,p-m}(x)+il_{p-i+1,p-m}(x)\right] (75)

But from (70), (71) it follows that

itpand,pm(x)=(mand+1)itpand,pm1(x)itpand+1,pm(x)=itpand,pm(x)+(xxp+1and)itpand,pm(x)\begin{gathered}l_{p-i,p-m}^{\prime}(x)=(m-i+1)l_{p-i,p-m-1}(x)\\ l_{p-i+1,p-m}(x)=l_{p-i,p-m}(x)+\left(x-x_{p+1-i}^{\prime}\right)l_{p-i,p-m}(x)\end{gathered}

and substituting in (75), we find

Am+1,and(x)=(m+1)!(xxp+1and)itpand,pm1(x),and=0.1,,m+1A_{m+1,i}(x)=(m+1)!\left(x-x_{p+1-i}^{\prime}\right)l_{p-i,p-m-1}(x),i=0,1,\ldots,m+1

which shows that formulas (74) are general.
29. Applying Abel's transformation formula to formula (63), we have

R(m)(x)=and=0m1[α=1mandAm,and+α(x)]{[x,x,,x,x1,x2,,xpand;f]and+2\displaystyle R^{(m)}(x)=\sum_{i=0}^{m-1}\left[\sum_{\alpha=1}^{m-i}A_{m,i+\alpha}(x)\right]\left\{\frac{\left[x,x,\ldots,x,x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p-i}^{\prime};f\right]}{i+2}\right. (76)
[x,x,,xand+1,x1,x2,,xp+1and;f]}+[and=0mAm,and(x)][x,x1,x2,,xp+1;f].\displaystyle\left.-\left[\frac{x,x,\ldots,x}{i+1},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1-i}^{\prime};f\right]\right\}+\left[\sum_{i=0}^{m}A_{m,i}(x)\right]\left[x,x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1};f\right].

If, however, in formula (63) we putf(x)=xp+1f(x)=x^{p+1}and taking into account (30) we deduce

and=0mAm,and(x)=it(m)(x)\sum_{i=0}^{m}A_{m,i}(x)=l^{(m)}(x) (77)

We observe that from (70), (74) it follows

α=1mandAm,and+α(x)=m!α=1mand[itp+1andα,pm+1(x)itp+andα,pm+1(x)]==m!itpand,pm+1(x)\begin{gathered}\sum_{\alpha=1}^{m-i}A_{m,i+\alpha}(x)=m!\sum_{\alpha=1}^{m-i}\left[l_{p+1-i-\alpha,p-m+1}(x)-l_{p+i-\alpha,p-m+1}(x)\right]=\\ =m!l_{p-i,p-m+1}(x)\end{gathered}

Taking into account the recurrence formula (66) and (77), formula (76) becomes

R(m)(x)=mand=0m1Am1,and(x)[x,x,,xand+2,x1,x2,,xp+1and;f]+\displaystyle R^{(m)}(x)=m\sum_{i=0}^{m-1}A_{m-1,i}(x)[\underbrace{x,x,\ldots,x}_{i+2},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1-i}^{\prime};f]+ (78)
+it(m)(x)[x,x1,x2,,xp+1;f].\displaystyle+l^{(m)}(x)\left[x,x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\right].

Formulas (63), (78) remain, of course, whateverxx(and ifxxcoincides with one of the nodesxandx_{i}^{\prime}).
30. NumbersAm,and(x),and=0.1,,mA_{m,i}(x),i=0,1,\ldots,mcannot all be zero. Otherwise, we would haveR[f]=0R[f]=0, whatever the functionf(x)f(x), which is in contradiction with the fact that formula (57) has, based on the assumptions made in point 2, a certain degree of accuracy. At least one of the numbersAm,and(x),and=0.1,,mA_{m,i}(x),i=0,1,\ldots,mis different from zero. This result, as well as the following ones, holds if we slightly broaden the assumptions from point 2. We can assume, more generally, thatx0x_{0}may also coincide with a node. But we must then assume that

mRand if x0=xand,and=1.2,,Sm\geq r_{i}\text{ dacă }x_{0}=x_{i},\quad i=1,2,\ldots,s (79)

Ifx0=xandx_{0}=x_{i}andm<Randm<r_{i}the rest of formula (57) is null whatever the functionf(x)f(x).
Suppose the numbersAm,and(x0)A_{m,i}\left(x_{0}\right)are all of the same sign 1 ). Then, from the above observation and from (77), it follows thatit(m)(x0)0l^{(m)}\left(x_{0}\right)\neq 0Therefore, the degree of accuracy of formula (57) isppTo fix the ideas, let's assume that

Am,j(x0)0A_{m,j}\left(x_{0}\right)\neq 0 (80)

From formula (74) it then follows that

x0xp+1andx_{0}\neq x_{p+1-i}^{\prime} (81)
0 0 footnotetext: 1 ) See reference 1 ), on page 75.

If nowf(x)f(x)is a convex function of orderpp, we have

[x0,x0,,x0,and+1x1,x2,,xp+1and;f]0,and=0.1,,m.\underbrace{\left[x_{0},x_{0},\ldots,x_{0},\right.}_{i+1}x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1-i}^{\prime};f]\geq 0,i=0,1,\ldots,m. (82)

But, a convex function of orderp(0)p(\geqq 0)enjoys the property that differences divided by the orderp+1p+1its, on nodes not all confused, are positive. From (81) it follows that

[x0,x0,,x0j+1,x1,x2,,xp+1and;f]>0.\left[\frac{x_{0},x_{0},\ldots,x_{0}}{j+1},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1-i}^{\prime};f\right]>0. (83)

From formulas (74), (80), (82), (83) it then follows that we haveR[f]0R[f]\neq 0Based on criterion C
we can state the following theorem:
Theorem 12. If the numbersAm,1(x0),and=0.1,,m\mathrm{A}_{\mathrm{m},1}\left(\mathrm{x}_{0}\right),\mathrm{i}=0,1,\ldots,\mathrm{\penalty 10000\ m}are all of the same sign, the degree of accuracy of formula (57) is p and the rest is of simple form.

Under the conditions of the theorem, the remainder is therefore of the form

R=it(m)(x0)Dp+1[f].R=l^{(m)}\left(x_{0}\right)D_{p+1}[f].

If we assume thatit(m)(x0)=0l^{(m)}\left(x_{0}\right)=0, an absolutely analogous demonstration based on formula (78), allows us to state

Theorem 13. If(x0)(m)=0{}^{(\mathrm{m})}\left(\mathrm{x}_{0}\right)=0and if the numbersAm1,and(x0)\mathrm{A}_{\mathrm{m}-1,\mathrm{i}}\left(\mathrm{x}_{0}\right),and=0.1,,m1\mathrm{i}=0,1,\ldots,\mathrm{\penalty 10000\ m}-1are of the same sign, the degree of accuracy of formula (57) is equal to p + 1 and the remainder is of simple form.

Under the conditions of the theorem, the remainder is of the form

R=mitm11(x0)Dp+2[f]R=ml^{m-11}\left(x_{0}\right)D_{p+2}[f]

because from (62) we deduce

R[xp+2]=mit(m1)(x0).R\left[x^{p+2}\right]=ml^{(m-1)}\left(x_{0}\right).

Theorems 12, 13 are valid under hypothesis (79). Indeed, ifRandmr_{i}\leqq mandx0=xandx_{0}=x_{i}, equalitiesit(m)(x0)=0l^{(m)}\left(x_{0}\right)=0andit(m1)(x0)=0l^{(m-1)}\left(x_{0}\right)=0are incompatible by Lemma 1.
31. Let us now consider the general case of formula (E). We will show how this case can be reduced to the caseR=0r=0.

If we consider the polynomial of degreeR1r-1

IT(x)=IT(x0,x0,,x0R;fx)L(x)=L\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r};f\mid x) (84)

and if we take into account formulas (28), (29), we deduce

f(x)IT(x)(xx0)R=[x,x0,x0,,x0R;f].\frac{f(x)-L(x)}{\left(x-x_{0}\right)^{r}}=[\underbrace{x,x_{0},x_{0},\ldots,x_{0}}_{r};f]. (85)

Now applying the formula

IT(x0,x0,,x0R,x1,x2,,xp+1;fx)=L(\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x)= (86)

=it(x)IT(x0,x0,,x0R;f(x)it(x)|x)+(xx0)RIT(x1,x2,,xp+1;f(x)(xx0)R|x)=l(x)L(\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r};\left.\frac{f(x)}{l(x)}\right\rvert\,x)+\left(x-x_{0}\right)^{r}L\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};\left.\frac{f(x)}{\left(x-x_{0}\right)^{r}}\right\rvert\,x\right)
Servicef(x)IT(x)f(x)-L(x)and taking into account the relationships

IT(x0,x0R,,x0;f(x)IT(x)(xx0)R|x)=0IT(x0,x0,,x0R,x1,x2,,xp+1;f(x)IT(x)x)==IT(x0,x0,,x0R,x1,x2,,xp+1;fx)IT(x)\begin{gathered}L(\underbrace{x_{0},x_{0}}_{r},\ldots,x_{0};\left.\frac{f(x)-L(x)}{\left(x-x_{0}\right)^{r}}\right\rvert\,x)=0\\ L(\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f(x)-L(x)\mid x)=\\ =L(\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x)-L(x)\end{gathered}

deduce

IT(x0,x0,,x0R,x1,x2,,xp+1;fx)==IT(x)+(xx0)RIT(x1,x2,,xp+1;[x,x0,x0,,x0R;f]x)\begin{gathered}L(\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x)=\\ =L(x)+\left(x-x_{0}\right)^{r}L(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};[x,\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r};f]\mid x)\end{gathered}

from where

IT(m+R)(x0,x0,,x0R,x1,x2,,xp+1;fx0)=\displaystyle L^{(m+r)}(\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x_{0})=
(m+R)!m!IT(m)(x1,x2,,xp+1;[x,x0,x0,,x0R;f]x0)\displaystyle\Rightarrow\frac{(m+r)!}{m!}L^{(m)}(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};[x,\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r};f]\mid x_{0}) (87)

But, from (85) it also follows

f(m+R)(x0)=(m+R)!m![x,x0,x0,,x0R]x=x0(m)f^{(m+r)}\left(x_{0}\right)=\frac{(m+r)!}{m!}[x,\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r}]_{x=x_{0}}^{(m)} (88)

Let's note withR[f]R[f]the rest of the formula (E) and withR1[f]R_{1}[f]the rest of formula (57). We then have, taking into account (87) and (88),

R[f]=(m+R)!m!R1[[x,x0,x0,,x0𝟎;f]]R[f]=\frac{(m+r)!}{m!}R_{1}[[x,\underbrace{x_{0},x_{0},\ldots,x_{0}}_{\boldsymbol{0}};f]] (89)

and formula (E) can be written

f(m+R)(x0)=(m+R)!m!IT(m)(x1,x2,,xp+1;[x,x0,x0,,x0R;f]x0)+\displaystyle f^{(m+r)}\left(x_{0}\right)=\frac{(m+r)!}{m!}L^{(m)}(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};[x,\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r};f]\mid x_{0})+
+(m+R)!m!R1[[x,x0,x0,,x0R;f]]\displaystyle+\frac{(m+r)!}{m!}R_{1}[[x,\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r};f]] (90)
  1. 32.

    To proceed further, we will first demonstrate

Le ma 4. If the additive and homogeneous functionalR1\mathrm{R}_{1}[f] is of degree of accuracyn(0)\mathrm{n}(\geqq 0)and of simple form, then the additive and homogeneous functional

R[f]=KR1[[x,α1,α2,,αk;f]]R[f]=K\cdot R_{1}\left[\left[x,\alpha_{1},\alpha_{2},\ldots,\alpha_{k};f\right]\right] (91)

whereK0K\neq 0is a constant (independent of the functionf(x)f(x)) andα1,α2,,αk\alpha_{1},\alpha_{2},\ldots,\alpha_{k}there are k fixed points, it is of degree of accuracy n + k and it is of simple form.

The proof is easy. We have[x,α1,α2,,αk;xand]=0\left[x,\alpha_{1},\alpha_{2},\ldots,\alpha_{k};x^{i}\right]=0, forand=0.1,,k1i=0,1,\ldots,k-1, and forandki\geq kthis divided difference is a polynomial of degreeandki-k, with the first coefficient 1 , so

[x,α1,α2,,αk;xand]=xandk+\left[x,\alpha_{1},\alpha_{2},\ldots,\alpha_{k};x^{i}\right]=x^{i-k}+\ldots

From here follows the property relative to the degree of accuracy.
Let us now suppose thatf(x)f(x)is a convex function of ordern+kn+kWe then say that the functionx[x,α1,α2,,αk;f]x\left[x,\alpha_{1},\alpha_{2},\ldots,\alpha_{k};f\right]is convex of order n. Indeed, we have
[β1,β2,,βn+2;[x,α1,α2,,αk;f]]=[β1,β2,,βn+2,α1,α2,αk;f]>0\left[\beta_{1},\beta_{2},\ldots,\beta_{n+2};\left[x,\alpha_{1},\alpha_{2},\ldots,\alpha_{k};f\right]\right]=\left[\beta_{1},\beta_{2},\ldots,\beta_{n+2},\alpha_{1},\alpha_{2},\ldots\alpha_{k};f\right]>0
if the nodes are not all confused. Equality (91) shows us thatR[f]0R[f]\neq 0, for any functionf(x)f(x)convex of the ordern+kn+k, becauseR𝟏[φ]0R_{\mathbf{1}}[\varphi]\neq 0for any functionφ(x)\varphi(x)convex of the ordernn, so in particular,R1[[x,α1,α2,,αk;f]]0R_{1}\left[\left[x,\alpha_{1},\alpha_{2},\ldots,\alpha_{k};f\right]\right]\neq 0.

Lemma 4 is completely proven.
Taking into account formula (89), from theorems 12, 13 we deduce, based on the previous lemma

Theorem 14. IfR0\mathrm{r}\geqslant 0is integer and if the numbersAm,and(x0)\mathrm{A}_{\mathrm{m},\mathrm{i}}\left(\mathrm{x}_{0}\right),and=0.1,,m\mathrm{i}=0,1,\ldots,\mathrm{\penalty 10000\ m}are of the same sign, the numerical derivation formula(It is)(E)has the degree of accuracyp+R\mathrm{p}+\mathrm{r}and the rest of simple form.

Based on formula (12) the remainder is then written

R=(m+R)!m!it(m)(x0)Dp+R+1[f]R=\frac{(m+r)!}{m!}l^{(m)}\left(x_{0}\right)D_{p+r+1}[f] (92)

Theorem 15. IfR0\mathrm{r}\geq 0is whole, if1(m)(x0)=01^{(\mathrm{m})}\left(\mathrm{x}_{0}\right)=0and if the numbersAm1,and(x0),and=0.1,,m1\mathrm{A}_{\mathrm{m}-1,\mathrm{i}}\left(\mathrm{x}_{0}\right),\mathrm{i}=0,1,\ldots,\mathrm{\penalty 10000\ m}-1are of the same sign, the numerical derivation formula (E) has the degree of accuracyp+R+1\mathrm{p}+\mathrm{r}+1and the rest of simple form.

Based on formulas (12) the remainder is then written

R=(m+R)!(m1)!it(m1)(x0)Dp+R+2[f]R=\frac{(m+r)!}{(m-1)!}l^{(m-1)}\left(x_{0}\right)D_{p+r+2}[f]

Theorems 14, 15 are valid under the hypothesis expressed by relation (79).
33. From what has been said it follows that formula (E) certainly has the remainder of simple form ifm=0m=0. Formula (E) form=0m=0has the degree of accuracyp+Rp+rand the rest

R=it(x0)Dp+R+1[f]R=l\left(x_{0}\right)D_{p+r+1}[f]

in the assumptions of point 2. Under the same conditions, formula (E) has the degree of accuracyp+R+1p+r+1and the rest

R=it(x0)Dp+R+2[f]R=l\left(x_{0}\right)D_{p+r+2}[f]

ifm=1m=1andx0x_{0}is a root, different from nodes, ofit(x)l^{\prime}(x).
The condition imposed on numbersAm,and(x0),and=0.1,,mA_{m,i}\left(x_{0}\right),i=0,1,\ldots,m, respectively the numbersAm1,and(x0),and=0.1,,m1A_{m-1},i\left(x_{0}\right),i=0,1,\ldots,m-1, is sufficient for formula (E) to have the remainder in simple form. Number formationAm,and(x0)A_{m,i}\left(x_{0}\right)depends on the order in which the nodes are taken (6). More precisely, a number systemand=0.1,,mi=0,1,\ldots,mis characterized by the order in which the clouds are taken. In order for formula (E) to be of a certain degree of accuracyp+Rp+rand to be of simple form, it is sufficient that one of these systems be added to the remaining numbers of the same sign. We do not examine here the necessity of this general form. However, it follows from § 4 that in the case ofm=1m=1the condition is conditions in

§ 4. On some applications of the preceding results

We will apply the previous formulas to the following 3 examples: 34. Example 1. The point of derivationx0x_{0}is outside the smallest open interval containing the nodes (2).

If we assume that, more generally, the hypothesis expressed by condition (79) is fulfilled, we have

it(m)(x0)0l^{(m)}\left(x_{0}\right)\neq 0 (93)

so formula (E) is of degree of accuracyp+Rp+\mathrm{r}and, in particular, is never exceptional. Indeed, the roots ofit(m)(x)l^{(m)}(x)belong to the smallest closed interval containing the nodes (2). Ifx0x_{0}does not belong to this interval, (93) is proven. Suppose thatx0x_{0}coincides with an extreme nodexandx_{i}. In this caseit(α)(xand)0l^{(\alpha)}\left(x_{i}\right)\neq 0forαRand\alpha\geq r_{i}ButmRandm\geq r_{i}, based on hypothesis (79), so (93) results this time as well.

Deviations 1 )hand,and=1.2,,p+1h_{i},i=1,2,\ldots,p+1of the nodes of the derivation point are in this case of the same sign, namely non-positive, respectively non-negative, as

x0xand,and=1.2,,p+1, respectively x0xand,and=1.2,,p+1x_{0}\geqq x_{i}^{\prime},i=1,2,\ldots,p+1,\text{ respectiv }x_{0}\leqq x_{i}^{\prime},i=1,2,\ldots,p+1

Formula (73) then shows us that

itα,γ(x0)=(1)ΣγHα,γ0,respectively(1)γ˙itα,γ(x0)=Hα,γ0,l_{\alpha,\gamma}\left(x_{0}\right)=(-1)_{\Sigma}^{\gamma}H_{\alpha,\gamma}\geq 0,\operatorname{respectiv}(-1)^{\dot{\gamma}}l_{\alpha,\gamma}\left(x_{0}\right)=H_{\alpha,\gamma}\geq 0,

whateverα\alphaandγ\gamma.

0 0 footnotetext: 1) See point 28.

Taking into account formulas (74), we then have, respectively,

Am,and(x0)=(1)pm+1m!hp+1andHpand,pm0,and=0.1,,m,(1)pm+1Am,and(x0)=m!hp+1andHpand,pm0,and=0.1,,m.\begin{gathered}A_{m,i}\left(x_{0}\right)=(-1)^{p-m+1}m!h_{p+1-i}H_{p-i,p-m}\geqq 0,i=0,1,\ldots,m,\\ (-1)^{p-m+1}A_{m,i}\left(x_{0}\right)=m!h_{p+1-i}H_{p-i,p-m}\geqq 0,i=0,1,\ldots,m.\end{gathered}

All the hypotheses in which Theorem 14 was established are therefore fulfilled and we can state

Theorem 16. IfR0\mathrm{r}\geq 0is integer, m satisfies the condition expressed by (79) andx0\mathrm{x}_{0}is outside the smallest open interval containing the nodes (2), we have the numerical derivation formula (It isE), with the degree of accuracyp+R\mathrm{p}+\mathrm{r}and with the remainder of the form (92).

The assumptions under which the theorem is true require that in the case whenS=1s=1, the pointx0x_{0}to be different from the nodes.
35. Example 2. The nodes (2) are symmetrically distributed with respect to the derivation pointx0x_{0}To simplify the language we will say, in this case, that formula (E) is a symmetric formula.

In the symmetric case, we can assume that the point of derivationx0x_{0}is different from the nodes, so that the deviationshandh^{i}are different from zero. The number of nodes is then even and equal to2q=p+12q=p+1, whereq>0q>0For greater clarity we will denote by±tand,and=1.2,,q\pm t_{i},i=1,2,\ldots,qdeviations, wheret1,t2,,tqt_{1},t_{2},\ldots,t_{q}areqqpositive numbers (distinct or not). We will denote byTand,and=0.1,,qT_{i},i=0,1,\ldots,qfundamental symmetric polynomials of numberst12,t22,,tη2(T0=1,Tand=0t_{1}^{2},t_{2}^{2},\ldots,t_{\eta}^{2}\left(T_{0}=1,T_{i}=0\right., forand<0i<0and forand>qi>q). We will also denote byTand,α,α=0.1,,andT_{i,\alpha},\alpha=0,1,\ldots,ifundamental symmetric polynomials of numberst12,t22,,tand2(Tand,0=1t_{1}^{2},t_{2}^{2},\ldots,t_{i}^{2}\left(T_{i,0}=1\right.,Tand,α=0T_{i,\alpha}=0, forα<0\alpha<0and forα>and\alpha>i). We then haveTq,and=Tand,and=0.1,,qT_{q,i}=T_{i},i=0,1,\ldots,q.

we

it(m)(x0)={0, if m it is odd (1)m2m!Tqm2 if m it is even. l^{(m)}\left(x_{0}\right)=\begin{cases}0,&\text{ dacă }m\text{ este impar }\\ (-1)^{\frac{m}{2}}m!T_{q-\frac{m}{2}}&\text{ dacă }m\text{ este par. }\end{cases}

It follows thatit(m)(x0)0l^{(m)}\left(x_{0}\right)\neq 0or=0=0, asmmis even or odd. Formula (E) is in this case exceptional ifR>0r>0, and the results from point 11 show us that it is enough to consider only the case whenmmit is even, the casemmodd reducing to this by changing the numberRr.

In case the derivation indexmmis even, we will denote it by2μ2\mu, som=2μm=2\mu, where0μ<q0\leq\mu<q.

Let's now take the nodes in the following order:

x0t1,x0+t1,x0t2,x0+t2,,x0tq,x0+tqx_{0}-t_{1},x_{0}+t_{1},x_{0}-t_{2},x_{0}+t_{2},\ldots,x_{0}-t_{q},x_{0}+t_{q}

We have, so but 1 )

hα=xαx0=(1)αt[α+12],α=1.2,,2q.h_{\alpha}=x_{\alpha}^{\prime}-x_{0}=(-1)^{\alpha}t_{\left[\frac{\alpha+1}{2}\right]},\quad\alpha=1,2,\ldots,2q. (94)

To calculate numbersA2μ,and(x0)A_{2\mu,i}\left(x_{0}\right)we will first calculate the corresponding numbers (73), whereHand,αH_{i,\alpha}correspond to deviations (94).

0 0 footnotetext: 1 ) [z] means the largest integer contained in z.

Ifα\alphait is hair,Hα,γ,γ=0.1,,α\mathrm{H}_{\alpha,\gamma},\gamma=0,1,\ldots,\alphaare the fundamental symmetric polynomials of the numbers±tand,and=1.2,,α2\pm t_{i},i=1,2,\ldots,\frac{\alpha}{2}An elementary calculation shows us that

Hα,γ={0, if γ it is odd (1)γ2Tα2,γ2, if γ it is even. (α hair )H_{\alpha,\gamma}=\left\{\begin{array}[]{ll}0,&\text{ dacă }\gamma\text{ este impar }\\ (-1)^{\frac{\gamma}{2}}T_{\frac{\alpha}{2}},\frac{\gamma}{2},&\text{ dacă }\gamma\text{ este par. }\end{array}\quad(\alpha\text{ par })\right.

Ifα\alphait is oddHα,γ,γ=0.1,,αH_{\alpha,\gamma},\gamma=0,1,\ldots,\alphaare the fundamental symmetric polynomials of the numbers±tand,and=1.2,,α12\pm t_{i},i=1,2,\ldots,\frac{\alpha-1}{2}andtα+12\frac{t_{\alpha+1}}{2}. Formulas (70), (73) together with (94), (95) give us

Hα,γ={(1)γ12tα+12Tα12,γ12, if γ it is odd (1)γ2Tα12,γ2, if γ it is even. H_{\alpha,\gamma}=\begin{cases}(-1)^{\frac{\gamma-1}{2}}t_{\frac{\alpha+1}{2}}T_{\frac{\alpha-1}{2},\frac{\gamma-1}{2},}&\text{ dacă }\gamma\text{ este impar }\\ (-1)^{\frac{\gamma}{2}}T_{\frac{\alpha-1}{2},\frac{\gamma}{2}},&\text{ dacă }\gamma\text{ este par. }\end{cases}

Formulas (74) show us that we have

A2μ,and(x0)={0, if and it is odd (1)qμ(2μ)!tqand22Tq1and2,qμ1, if and it is even. A_{2\mu,i}\left(x_{0}\right)=\left\{\begin{array}[]{cc}0,&\text{ dacă }i\text{ este impar }\\ (-1)^{q-\mu}(2\mu)!t_{q-\frac{i}{2}}^{2}T_{q-1-\frac{i}{2},q-\mu-1},&\text{ dacă }i\text{ este par. }\end{array}\right.

It is clear, however, that we have

(1)qμA2μ,and(x0)0,and=0.1,,2q(-1)^{q-\mu}A_{2\mu,i}\left(x_{0}\right)\geqq 0,\quad i=0,1,\ldots,2q

and therefore that all the conditions of Theorem 14 are fulfilled. We can then
state Theorem 17. IfR0\mathrm{r}\geqq 0is an integer, ifμ\muis an integer, so0μ<q0\leq\mu<q, andt1,t2,,tq,q1\mathrm{t}_{1},\mathrm{t}_{2},\ldots,\mathrm{t}_{q},q\geqq 1positive numbers, we have the numerical derivative formula 1 )

f(2μ+R)(x0)=IT(2μ+R)(x0,x0,,x0R,x0±t1,x0±t2,,x0±tq;fx0)++(1)qμ(2μ+R)!TqμD2q+R[f]\begin{gathered}f^{(2\mu+r)}\left(x_{0}\right)=L^{(2\mu+r)}(x_{0},\underbrace{x_{0},\ldots,x_{0}}_{r},x_{0}\pm t_{1},x_{0}\pm t_{2},\ldots,x_{0}\pm t_{q};f\mid x_{0})+\\ +(-1)^{q-\mu}(2\mu+r)!T_{q-\mu}D_{2q+r}[f]\end{gathered}

the degree of accuracy2q+R12q+r-1.
36. Example 3. Derivation indexmmis equal to 1.

To examine this case, we will assume that nodes (2), and therefore (6), are in non-decreasing order, so

x1x2xp+1x_{1}^{\prime}\leqq x_{2}^{\prime}\leqq\ldots\leqq x_{p+1}^{\prime}

as well as

x1<x2<<xS.x_{1}<x_{2}<\ldots<x_{s}. (96)
0 0 footnotetext: 1. To simplify the notations in the interpolation polynomial and in the divided difference, we denote by x0±tandx_{0}\pm t_{i}the two symmetrical nodesx0tand,x0+tandx_{0}-t_{i},x_{0}+t_{i}.

providedm=1m=1GET INVOLVEDp1p\geqq 1We will assumeS>1s>1, so that the nodes are not all confused. Otherwise, we return to example 1 studied above, which then exhausts the problem.

For simplicity, let us denote byφ(x)\varphi(x)polynomialitp(x)l_{p}(x)So we have

φ(x)=(xxp+1)φ(x)\varphi(x)=\left(x-x_{p+1}^{\prime}\right)\varphi(x) (97)

and

A1.0(x)=(xxp+1)φ(x),A1.1(x)=φ(x)A_{1,0}(x)=\left(x-x_{p+1}^{\prime}\right)\varphi^{\prime}(x),\quad A_{1,1}(x)=\varphi(x)

from where

A1.0(x)A1.1(x)=it(x)φ(x)A_{1,0}(x)A_{1,1}(x)=l(x)\varphi^{\prime}(x)

if the polynomialsA1.0(x),A1.1(x)A_{1,0}(x),A_{1,1}(x)are constructed by taking the nodes in order (6).

The condition that these polynomials be of the same sign therefore becomes

it(x)φ(x)0.l(x)\varphi^{\prime}(x)\geqq 0. (98)

Analogously, if we put

it(x)=(xx1)ψ(x)l(x)=\left(x-x_{1}^{\prime}\right)\psi(x)

so

ψ(x)=(xx2)(xx3)(xxp+1)\psi(x)=\left(x-x_{2}^{\prime}\right)\left(x-x_{3}^{\prime}\right)\ldots\left(x-x_{p+1}^{\prime}\right)

and if we form the polynomialsA1.0(x),A1.1(x)A_{1,0}(x),A_{1,1}(x)taking the knots in reverse orderxp+1,xp,,x1x_{p+1}^{\prime},x_{p}^{\prime},\ldots,x_{1}^{\prime}, the condition for these polynomials to be of the same sign is that

it(x)Ψ(x)0.l(x)\Psi^{\prime}(x)\geqq 0. (99)

The hypothesis expressed by condition (79) here comes back to the fact thatx0x_{0}does not coincide with a node which is not simple.

Both inequalities (98), (99) are verified forx=x0x=x_{0}, ifx0x_{0}coincides with a node or ifx0x_{0}is outside the smallest interval containing the nodes. We are then in the case of example 1 above.

If we have

φ(x)ψ(x)0\varphi^{\prime}(x)\psi^{\prime}(x)\leqq 0 (100)

one of the inequalities (98), (99) is verified forx=x0x=x_{0}. So if, in this case,x0x_{0}does not coincide with a node that is not simple, our formula has the degree of accuracyp+Rp+rand the rest of simple form. It will therefore be sufficient to examine the pointx0x_{0}from the open interval (x1,xSx_{1},x_{s}), for which inequality (100) is not verified. If in addition, in this case, the degree of accuracy isp+Rp+r, we will see that the remainder is not simple.
37. To show this, we will rely on criterion C and first prove

Lemma 5. Ifx0(x1,xS)\mathrm{x}_{0}\in\left(\mathrm{x}_{1},\mathrm{x}_{s}\right)and if

φ(x0)Ψ(x0)>0\varphi^{\prime}\left(x_{0}\right)\Psi^{\prime}\left(x_{0}\right)>0 (101)

we can find a convex function🐟(🐱)\mathbf{f}(\mathbf{x})of the orderp+R\mathrm{p}+\mathrm{r}in the interval[🐱1,🐱S]\left[\mathbf{x}_{1},\mathbf{x}_{s}\right], so that we haveR[f]=0\mathrm{R}[\mathrm{f}]=0.

Let us assume that condition (79) is fulfilled.
Based on Lemma 3, it is enough to construct two functionsf1(x),f2(x)f_{1}(x),f_{2}(x)non-concave of the orderp+Rp+r, so that inequality (32) is verified. For this, let us consider the functions

φλ(x)={0, for x[x1,λ](xλ)p+R, for x[λ,xS]\varphi_{\lambda}(x)=\left\{\begin{array}[]{cl}0,&\text{ pentru }x\in\left[x_{1},\lambda\right]\\ (x-\lambda)^{p+r},&\text{ pentru }x\in\left[\lambda,x_{s}\right]\end{array}\right.

defined forλ[x1,xS]\lambda\in\left[x_{1},x_{s}\right].
Functionφλ(x)\varphi_{\lambda}(x)is non-concave of the orderp+Rp+rin [x1,xSx_{1},x_{s}]. If we look atλ\lambdaas a variable,R[φλ]R\left[\varphi_{\lambda}\right]is a polynomial of degreep+Rp+rin relation toxλx-\lambda, in any interval that does not containx0x_{0}and the nodes.

We have the formula
R[φλ]=(x0xS)φ(x0)[x0,x0,,x00,x1,x2,,xp;φλ]++φ(x0)[x0,x0,,x0R,x1,x2,,xp+1;φλ]\displaystyle\qquad\begin{array}[]{l}R\left[\varphi_{\lambda}\right]=\left(x_{0}-x_{s}\right)\varphi^{\prime}\left(x_{0}\right)[\underbrace{x_{0},x_{0},\ldots,x_{0}}_{0},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p}^{\prime};\varphi_{\lambda}]+\\ \qquad+\varphi\left(x_{0}\right)[\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};\varphi_{\lambda}]\end{array}

If we assumexS1<λ<xSx_{s-1}<\lambda<x_{s}andxS<λx_{s}<\lambda, then it is seen thatR[φλ]R\left[\varphi_{\lambda}\right]is a polynomial inxSλx_{s}-\lambda, which divides by(xSλ)p+RRS+1\left(x_{s}-\lambda\right)^{p+r-r_{s}+1}and the coefficients of this power ofxSλx_{s}-\lambdacome only from the first term of the second member of formula (103). But then we have

[x0,x0,,x0R,x1,x2,,xp+1;φλ]=\displaystyle{[\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};\varphi_{\lambda}]=}
=[xS,xS,,xSRS;(xλ)p+R(xx0)R+1kS(x)]=\displaystyle=[\underbrace{x_{s},x_{s},\ldots,x_{s}}_{r_{s}};\frac{(x-\lambda)^{p+r}}{\left(x-x_{0}\right)^{r+1}k_{s}(x)}]=
=1(RS1)![(xλ)p+R(xx0)R+1kS(x)]x=x0(RS1)\displaystyle=\frac{1}{\left(r_{s}-1\right)!}\left[\frac{(x-\lambda)^{p+r}}{\left(x-x_{0}\right)^{r+1}k_{s}(x)}\right]_{x=x_{0}}^{\left(r_{s}-1\right)}

polynomialkS(x)k_{s}(x)being given byit(x)=(xx0)RSkS(x)l(x)=\left(x-x_{0}\right)^{r_{s}}k_{s}(x).
Doing the calculations we find

R[φλ]=(xSλ)p+RRS+1[(p+RRS1)(x0xS)φ(x0)(xx0)R+1kS(xS)+]R\left[\varphi_{\lambda}\right]=\left(x_{s}-\lambda\right)^{p+r-r_{s}+1}\left[\binom{p+r}{r_{s}-1}\frac{\left(x_{0}-x_{s}\right)\varphi^{\prime}\left(x_{0}\right)}{\left(x-x_{0}\right)^{r+1}k_{s}\left(x_{s}\right)}+\cdots\right]

the unwritten terms being divisible byxSλx_{s}-\lambdaFrom this
it is seen that, ifλ\lambdait is close enough toxSx_{s}HAVER[φλ]0R\left[\varphi_{\lambda}\right]\neq 0, and more precisely 1 )

sgR[φλ]=sgφ(x0).\operatorname{sg}R\left[\varphi_{\lambda}\right]=-\operatorname{sg}\varphi^{\prime}\left(x_{0}\right). (104)
0 0 footnotetext: 1. We put sg z=1,0,1z=-1,0,1, asz<0,z=0,z>0z<0,z=0,z>0We have the fundamental relationshipsgz1z2=sgz1sgz2\operatorname{sg}z_{1}z_{2}=\operatorname{sg}z_{1}\cdot\operatorname{sg}z_{2}.

functionψλ(x)=φλ(x)(xλ)p+R\psi_{\lambda}(x)=\varphi_{\lambda}(x)-(x-\lambda)^{p+r}is also non-concave of the orderp+Rp+rIf we assumeλ<x0,λ(x1,x2)\lambda<x_{0},\lambda\in\left(x_{1},x_{2}\right)and we use the formula

R[ψλ]=(x0x1)φ(x0)\displaystyle R\left[\psi_{\lambda}\right]=\left(x_{0}-x_{1}\right)\varphi^{\prime}\left(x_{0}\right) [x0,x0,,x0R+1,x1,x2,,xp+1;ψλ]+\displaystyle{[\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r+1},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};\psi_{\lambda}]+}
+ψ(x0)[x0,x0,,x0R+2,x2,x3,,xp+1;ψλ]\displaystyle+\psi\left(x_{0}\right)\left[\frac{x_{0},x_{0},\ldots,x_{0}}{r+2},x_{2}^{\prime},x_{3}^{\prime},\ldots,x_{p+1}^{\prime};\psi_{\lambda}\right]

we find, as above, that the polynomialR[ψλ]R\left[\psi_{\lambda}\right]inx1λx_{1}-\lambdais of the form

R[ψλ]=(x1λ)p+RR1+1[(p+RR11)(x0x1)ψ(x0)(x1x0)R+1k1(x1)+]R\left[\psi_{\lambda}\right]=-\left(x_{1}-\lambda\right)^{p+r-r_{1}+1}\left[\binom{p+r}{r_{1}-1}\frac{\left(x_{0}-x_{1}\right)\psi^{\prime}\left(x_{0}\right)}{\left(x_{1}-x_{0}\right)^{r+1}k_{1}\left(x_{1}\right)}+\cdots\right]

where the polynomialk1(x)k_{1}(x)is given byit(x)=(xx1)R1k1(x)l(x)=\left(x-x_{1}\right)^{r_{1}}k_{1}(x), and the unordered terms are divided byx1λx_{1}-\lambdaFrom this it is seen that, ifλ\lambdait is close enough tox1x_{1}, we haveR[ψλ]0R\left[\psi_{\lambda}\right]\neq 0, and more precisely

sgR[ψλ]=sgψ(x0)\operatorname{sg}R\left[\psi_{\lambda}\right]=\operatorname{sg}\psi^{\prime}\left(x_{0}\right) (105)

Formulas (104), (105) were deduced in addition to the hypothesesφ(x0)0\varphi^{\prime}\left(x_{0}\right)\neq 0,ψ(x0)0\psi^{\prime}\left(x_{0}\right)\neq 0.

Let us now consider the functions

f1(x)=φλS(x),f2(x)=ψλ1(x)f_{1}(x)=\varphi_{\lambda_{s}}(x),\quad f_{2}(x)=\psi_{\lambda_{1}}(x)

Then, ifλ1\lambda_{1}it is close enough tox1x_{1}andλS\lambda_{s}close enough toxSx_{s}, from (101), (104), (105), we deduce

sgR[f1]R[f2]=sgφ(x0)ψ(x0)=1\operatorname{sg}R\left[f_{1}\right]R\left[f_{2}\right]=-\operatorname{sg}\varphi^{\prime}\left(x_{0}\right)\psi^{\prime}\left(x_{0}\right)=-1

and inequality (32) is verified.
Lemma 5 is completely proven.
From the above it follows that, ifm=1m=1and ifx0x_{0}does not coincide with a node that is not simple, the numerical derivation formulas (E) present one of the following 3 aspects:
11^{\circ}Ifit(x0)=0l^{\prime}\left(x_{0}\right)=0, the degree of accuracy isp+R+1p+r+1, with the rest of the form simple.
22^{\circ}Ifx0(x1,xS),it(x0)0x_{0}\in\left(x_{1},x_{s}\right),l^{\prime}\left(x_{0}\right)\neq 0and if inequality (101) is verified, the degree of accuracy isp+Rp+r, but the rest is not of simple form.
33^{\circ}For all other values ​​ofx0x_{0}, the degree of accuracy isp+Rp+rand the rest of the simple form.
38. We can determine the position of the point more preciselyx0x_{0}after the three reported cases.

Whethery1,y2,,yS1y_{1},y_{2},\ldots,y_{s-1}the distinct roots of the nodes, of the derivativeit(x)l^{\prime}(x)These roots are separated from the nodes (96) and we can assume

xand<yand<xand+1,j=1.2,,S1x_{i}<y_{i}<x_{i+1},\quad j=1,2,\ldots,s-1

polynomialφ(x)\varphi^{\prime}(x)hasS2s-2, respectivelyS1s-1, different roots of nodes asRS=1r_{s}=1, respectivelyRS>1r_{s}>1Let us denote these roots, in their ascending order, byz1,z2,,zS1z_{1}^{\prime},z_{2}^{\prime},\ldots,z_{s-1}^{\prime}, wherezS1z_{s-1}^{\prime}does not exist ifRS=1r_{s}=1We then have

xj<zj<yand+1,j=1.2,,S2x_{j}<z_{j}^{\prime}<y_{i+1},\quad j=1,2,\ldots,s-2

and ifRS>1r_{s}>1, these inequalities also hold forj=S1j=s-1From the well -
known property of the variation of the roots of the derivative of a polynomial with all real roots [8], it follows that

yj<zj,j=1.2,,S2y_{j}<z_{j}^{\prime},\quad j=1,2,\ldots,s-2 (106)

inequality that also occurs forj=S1j=s-1, ifRS>1r_{s}>1
Let us now, by definition , zS1=xSz_{s-1}^{\prime}=x_{s}, ifRS=1r_{s}=1. Then, inequality (106) is always true forj=S1j=s-1.

In the intervals between the nodes,φ(x)\varphi^{\prime}(x), so andit(x)φ(x)l(x)\varphi^{\prime}(x), changes sign, passing through the pointsz1,z2,z_{1}^{\prime},z_{2}^{\prime},\ldotsBut, from (97) it follows that

it(yand)φ(yj)=φ2(yj)<0l\left(y_{i}\right)\varphi^{\prime}\left(y_{j}\right)=-\varphi^{2}\left(y_{j}\right)<0

It follows, therefore, that inequality (98) is verified only in the intervals

(,x1],[z1,x2],[z2,x3],,[zS2,xS1],[zS1,)\left(-\infty,x_{1}\right],\left[z_{1}^{\prime},x_{2}\right],\left[z_{2}^{\prime},x_{3}\right],\ldots,\left[z_{s-2}^{\prime},x_{s-1}\right],\left[z_{s-1}^{\prime},\infty\right)

Let us also note withz1",z2",,zS1"z_{1}^{\prime\prime},z_{2}^{\prime\prime},\ldots,z_{s-1}^{\prime\prime}the roots, different from the nodes, ofΨ(x)\Psi^{\prime}(x), wherez1"z_{1}^{\prime\prime}does not exist ifR1=1r_{1}=1As above, it is seen that

xj<zj"<yj<xj+1,j=1.2,,S1x_{j}<z_{j}^{\prime\prime}<y_{j}<x_{j+1},\quad j=1,2,\ldots,s-1

inequalities that are always true, agreeing to put, by definition,z1"=x1z_{1}^{\prime\prime}=x_{1}ifR1=1r_{1}=1.

It then follows, as above, that inequality (105) is verified only in the intervals

(,z1"],[x2,z2"],[x3,z3"],,[xS1,zS1"],[xS,)\left(-\infty,z_{1}^{\prime\prime}\right],\left[x_{2},z_{2}^{\prime\prime}\right],\left[x_{3},z_{3}^{\prime\prime}\right],\ldots,\left[x_{s-1},z_{s-1}^{\prime\prime}\right],\left[x_{s},\infty\right)

From the previous analysis it finally results
that Te o rema 18. Ifр0\mathbf{r}\geq 0is an integer, if🐱0\mathbf{x}_{0}does not coincide with a node that is not simple and ifm=1\mathrm{m}=1, the numerical derivation formula (E) is:
11^{\circ}. With the degree of accuracyp+R+1\mathrm{p}+\mathrm{r}+1and like the rest of the simple form, ifx0\mathrm{x}_{0}coincidecyoucuone of the pointsy1,y2,,y51\mathrm{y}_{1},\mathrm{y}_{2},\ldots,\mathrm{y}_{5-1}.
22^{\circ}. With the degree of accuracyp+R\mathrm{p}+\mathrm{r}and with the rest of the simple form, ifx0\mathrm{x}_{0}belongs to one of the intervals

(,z1",]zS1,),[zj,zj+1"],j=1.2,,S2\left.\left(-\infty,z_{1}^{\prime\prime},\right]z_{s-1}^{\prime},\infty\right),\left[z_{j}^{\prime},z_{j+1}^{\prime\prime}\right],\quad j=1,2,\ldots,s-2

3.Cyou3^{\circ}.Cudegree of accuracyp+R\mathrm{p}+\mathrm{r}, but with a remainder different from the simple form, ifx˙0\dot{\mathrm{x}}_{0}belongs to one of the intervals

(zand",yand),(yand,zand),j=1.2,,S1\left(z_{i}^{\prime\prime},y_{i}\right),\left(y_{i},z_{i}^{\prime}\right),\quad j=1,2,\ldots,s-1

The rest, in cases101^{0}and202^{0}respectively is

R=(R+1)!it(x0)Dp+R+2[f],R=(R+1)!it(x0)Dp+R+1[f]R=(r+1)!l\left(x_{0}\right)D_{p+r+2}[f],R=(r+1)!l^{\prime}\left(x_{0}\right)D_{p+r+1}[f]

These results were found, in a different way and in a less general form, by GD Birkhoff [1].
39. From the previous results a conclusion can be drawn about formula (E) in the case whenm=2m=2In this case, ifit"(x)=0l^{\prime\prime}(x)=0and the numbersA1.0(x0)A_{1,0}\left(x_{0}\right),A1.1(x0)A_{1,1}\left(x_{0}\right)are of the same sign, the rest of the formula is of simple form. To satisfy the sign condition it will be sufficient to prove the following lemma:

Lemma 6. The roots of the second derivative1"(x)1^{\prime\prime}(\mathrm{x})of the polynomial1(x)1(\mathrm{x})are all contained in the open intervals

(,z1"),(zS1,),(zj,zj+1"),j=1.2,,S2\left(-\infty,z_{1}^{\prime\prime}\right),\left(z_{s-1}^{\prime},\infty\right),\left(z_{j}^{\prime},z_{j+1}^{\prime\prime}\right),\quad j=1,2,\ldots,s-2

The proof is simple, if we rely on the way the roots of the derivative vary when the roots of the polynomial vary [8]. Let us prove, for example, that in the interval[yand,zand]\left[y_{i},z_{i}^{\prime}\right] polynomialit"(x)l^{\prime\prime}(x)it is not canceled.

This is obvious ifj=S1j=s-1andRS=1r_{s}=1, because thenyS1y_{s-1}is the largest root ofit(x)l^{\prime}(x) and this root is simple.

In the other cases we observe thatit"(yj)0l^{\prime\prime}(y_{j})\neq 0, becauseyandy_{i}is a simple root ofit(x)l^{\prime}(x), and from (112) we deduce …

it"(zj)=φ"(zj)(zjxS)0l^{\prime\prime}\left(z_{j}^{\prime}\right)=\varphi^{\prime\prime}\left(z_{j}^{\prime}\right)\left(z_{j}^{\prime}-x_{s}\right)\neq 0

because thenzjxSz_{j}^{\prime}\neq x_{s}andφ"(zj)0\varphi^{\prime\prime}\left(z_{j}^{\prime}\right)\neq 0becausezjz_{j}^{\prime}is a simple root ofφ(x)\varphi^{\prime}(x).

In the open range(yj,zj)\left(y_{j},z_{j}^{\prime}\right), the polynomialit"(x)l^{\prime\prime}(x)can have at mostaoroot because, otherwise,it(x)l^{\prime}(x)should have a root in this interval, which is impossible. Suppose there were a root ofit"(x)l^{\prime\prime}(x)in the interval (yj,zjy_{j},z_{j}^{\prime}). This root would remain in the interval (yj,zjy_{j},z_{j}^{\prime}), while the firstR1+R2++Rj1r_{1}+r_{2}+\ldots+r_{j}-1knots and the lastRj+1+Rj+2+++RS2r_{j+1}+r_{j+2}++\ldots+r_{s}-2nodes would vary. Making the first ones tend towards-\infty, and on the last ones to++\infty, we see that the property should be true in the particular case

p=2,x1<x2x3,j=1p=2,x_{1}<x_{2}\leq x_{3},\quad j=1 (107)

because, during this variation,yj,zjy_{j},z_{j}^{\prime}they remain a finite distance apart on the real axis.

In case (107) we have howevery1<z1=x1+x22y_{1}<z_{1}^{\prime}=\frac{x_{1}+x_{2}}{2}and the rootx1+x2+x33\frac{x_{1}+x_{2}+x_{3}}{3}his/herit"(x)l^{\prime\prime}(x)is greater thanz1z_{1}^{\prime}The property is demonstrated.

polynomialit"(x)l^{\prime\prime}(x)therefore it does not cancel in the intervals[yj,zj]j=1.2,,S1\left[y_{j},z_{j}^{\prime}\right]j=1,2,\ldots,s-1It is also proven that this polynomial does not vanish in the intervals

[zj",yand],j=1.2,,S1\left[z_{j}^{\prime\prime},y_{i}\right],\quad j=1,2,\ldots,s-1

Lemma 6 is completely proven.
We therefore deduce
Theorem 19. IfR0\mathrm{r}\geq 0is an integer, ifx0\mathrm{x}_{0}does not coincide with a node that is not simple and ifm=2,it"(x0)=0\mathrm{m}=2,\mathrm{l}^{\prime\prime}\left(\mathrm{x}_{0}\right)=0, numerical derivation formula(It is)(E)has the degree of accuracyp+R+1\mathrm{p}+\mathrm{r}+1and the rest of simple form.

The rest of the formula is

R=(R+2)!it(x0)Dp+R+2[f]R=(r+2)!\cdot l^{\prime}\left(x_{0}\right)D_{p+r+2}[f]

§5. On some explicit formulas for numerical derivation

The practical use of numerical derivation formulas (E) depends largely on the explicit form under which the respective derivative of the interpolation polynomial is put. The speed and accuracy of the actual numerical calculation depend on this explicit form. Also, the eventual use of numerical tables and calculating machines requires a thorough study of these explicit forms. This problem has a very extensive literature. We limit ourselves here to citing the research of SE Micheladze [4] and JF Steffensen [10].

We will examine two kinds of such explicit forms:
11^{\circ}Numerical derivative formulas without differences.
22^{\circ}. Numerical differentiation formulas with differences.
In this paper we are mainly interested in giving a completion of the results from the previous §§. In a subsequent paper we will resume other important examples.

Formulas without differences

  1. 40.

    Maximum accuracy numerical derivation formulas can be classified according to the values ​​of the numbersp,m,R,R1,R2,,RSp,m,r,r_{1},r_{2},\ldots,r_{s}which fall into the characteristics of this formula, as well as according to their particular nature, such as: degree of accuracy, reducibility, exceptionality, symmetry. In particular, symmetric formulas are of particular interest and their study has been resumed recently by SE Micheladze [4].

We will always assumempm\leq p.
Ignoring the values ​​of the nodes and their mutual order of magnitude, a system of values ​​ofp,m,Rp,m,rthere are as many types of formulas corresponding to it as there are ways we can choose the orders of multiplicityR1,R2,,RSr_{1},r_{2},\ldots,r^{s}with an amount equal top+1p+1This number is equal to the numberΩp+1\Omega_{p+1}of solutions in non-negative integersα1,α2,,αp+1\alpha_{1},\alpha_{2},\ldots,\alpha_{p+1}of the Diophantine equation

α1+2α2+3α3++pαp+(p+1)αp+1=p+1\alpha_{1}+2\alpha_{2}+3\alpha_{3}+\ldots+p\alpha_{p}+(p+1)\alpha_{p+1}=p+1

Becausemmtake the values0.1,,p0,1,\ldots,p, the number of formulas forppandRrgive it to you too(p+1)Ωp+1(p+1)\Omega_{p+1}.

It follows that the number of formulas (E) with degree of exartityit is(0)e(\geq 0)and non-exceptional (general) is equal to

Ω1+2Ω2+3Ω3++(it is+1)Ωit is+1\Omega_{1}+2\Omega_{2}+3\Omega_{3}+\ldots+(e+1)\Omega_{e+1}

To enumerate the exceptional formulas (E), it is sufficient, based on the results from point 10, to consider only those exceptional formulas that result from increasing the degree of accuracy by one unit ( 1 ). The number of these formulas forp,Rp,rgiven isp(Ωp+11)p\left(\Omega_{p+1}-1\right), because such formulas cannot exist forS=1s=1and form=0m=0Instead, forS>1s>1andm>0m>0, based on inequalities (24), there are such formulas. Forp,R,mp,r,mgive (andS>1s>1) these
1) Formulas presenting the aspect11^{\circ}(point 10).
formulas vanish only for particular mutual positions of the nodes. In enumerating exceptional formulas we do not distinguish between the different roots, distinct from the nodes, of the polynomialit(m)(x)l^{(m)}(x)It then follows that the number of exceptional formulas with the degree of accuracyit is(2)e(\geq 2)is

Ω2+2Ω3+3Ω4++(it is1)ΩSit is(it is1)2\Omega_{2}+2\Omega_{3}+3\Omega_{4}+\ldots+(e-1)\Omega_{s}-\frac{e(e-1)}{2}

To enumerate the symmetric formulas, we takep=2q1,q>0p=2q-1,q>0We have seen that we can assumem=2μm=2\muForq,R,μq,r,\muyes there will beΩq\Omega_{q}types of such formulas. Forq,Rq,rgiven we will have thenqΩqq\Omega_{q}such formulas. Finally, the degree of accuracy of the formula being2q+R12q+r-1, the number formula 1 . symmetrical s, with the degree of accuracyit is(1)e(\geq 1)is

Ω1+2Ω2+3Ω3++[it is+12]Ω[it is+12]\Omega_{1}+2\Omega_{2}+3\Omega_{3}+\ldots+\left[\frac{e+1}{2}\right]\Omega_{\left[\frac{e+1}{2}\right]}

Ifit iseis even, all these formulas are exceptional. However, ifit iseis odd forR=0r=0, the formulas are not exceptional. So in this case,it is+12Ωit is+12\frac{e+1}{2}\Omega_{\frac{e+1}{2}}of these formulas are unexceptional.

To enumerate the reducible formulas, we distinguish two cases. Some with all the nodes confused (R=0,S=1r=0,s=1). For appgiven existsppsuch formulas, corresponding to the values1.2,,p1,2,\ldots,phis/hersmmTheir degree of accuracy ispp ; therefore, there isit isesuch formulas of degree of accuracyit is(1)e(\geq 1)The other reducible formulas have two distinct nodes (R=0,S=2r=0,s=2), which may present[p+12]\left[\frac{p+1}{2}\right]different types. Of these, however, only at[p+12]1\left[\frac{p+1}{2}\right]-1reducible formulas can correspond, because ifR1=1r_{1}=1,R2=pr_{2}=p, the polynomial (27) has all its roots mixed up. Also,mmcan only take the values2.3,,p12,3,\ldots,p-1For ap(3)p(\geq 3)given, so we have(p2)([p+12]1)(p-2)\left(\left[\frac{p+1}{2}\right]-1\right)such formulas. These formulas being non-exceptional, there are(it is2)([it is+12]1)(e-2)\left(\left[\frac{e+1}{2}\right]-1\right)such formulas with the degree of accuracyit is(3)e(\geq 3).

The following table summarizes the above discussion, relative to the number of maximum accuracy formulas, by their specified nature, from the degree of accuracy0to the degree of accuracy55inclusive.

We take into account the following values ​​of the numbers,

Ω1=1,Ω2=2,Ω3=3,Ω4=5,Ω5=7,Ω6=11\Omega_{1}=1,\quad\Omega_{2}=2,\quad\Omega_{3}=3,\quad\Omega_{4}=5,\quad\Omega_{5}=7,\quad\Omega_{6}=11
  1. 41.

    To obtain the formulas of maximum accuracy, we can start from the caseR=0,S=p+1r=0,s=p+1. This last condition is equivalent to the fact that all the nodes are simple, that is, the points (6) are distinct. We then have

IT(x1,x2,,xp+1;fx)=and=1p+1it(x)(xxand)it(xand)f(xand)L\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x\right)=\sum_{i=1}^{p+1}\frac{l(x)}{\left(x-x_{i}^{\prime}\right)l^{\prime}\left(x_{i}^{\prime}\right)}f\left(x_{i}^{\prime}\right) (108)

To express the coefficients of formula (E) using deviationshandh_{i}of the nodes of the derivation point, we introduce, in addition to the notations of point 28, the numbersHα(and),α=0.1,,pH_{\alpha}^{(i)},\alpha=0,1,\ldots,pwhat are the fundamental symmetric polynomials ofh1,h2,,hand1,hand+1,,hp+1(H0(and)=1,Hα(and)=0h_{1},h_{2},\ldots,h_{i-1},h_{i+1},\ldots,h_{p+1}\left(H_{0}^{(i)}=1,H_{\alpha}^{(i)}=0\right.forα<0\alpha<0and forα>p\alpha>p). Either

λ(x)=(xh1)(xh2)(xhp+1).\lambda(x)=\left(x-h_{1}\right)\left(x-h_{2}\right)\ldots\left(x-h_{p+1}\right).

We then haveit(x)=λ(xx0)l(x)=\lambda\left(x-x_{0}\right), soit(xand)=λ(hand)l^{\prime}\left(x_{i}^{\prime}\right)=\lambda^{\prime}\left(h_{i}\right)and formula (73) gives us

it(m)(x0)=(1)p+1mm!Hp+1ml^{(m)}\left(x_{0}\right)=(-1)^{p+1-m}m!H_{p+1-m}

as well as

[it(x)xxand]x=x0(m)=(1)pmm|Hpm(and),and=1.2,,p+1\left.\left[\frac{l(x)}{x-x_{i}^{\prime}}\right]_{x=x_{0}}^{(m)}=(-1)^{p-m}m\right\rvert\,H_{p-m}^{(i)},\quad i=1,2,\ldots,p+1

Taking into account formula (108), we deduce

(1)pmm!f(m)(x0)=and=1p+1Hpm(and)λ(h¯and)f(x0+hand)+R\frac{(-1)^{p-m}}{m!}f^{(m)}\left(x_{0}\right)=\sum_{i=1}^{p+1}\frac{H_{p-m}^{(i)}}{\lambda^{\prime}\left(\bar{h}_{i}\right)}f\left(x_{0}+h_{i}\right)+R (109)

Passing the caseR=0r=0in caseR>0r>0is done using formula (90). Formula (84) gives us

IT(x)=IT(x0,x0,,x0R;fx)=and=0R1(xx0)jjf(j)(x0)L(x)=L\underbrace{\left(x_{0},x_{0},\ldots,x_{0}\right.}_{r};f\mid x)=\sum_{i=0}^{r-1}\frac{\left(x-x_{0}\right)^{j}}{j\mid}f^{(j)}\left(x_{0}\right) (110)

and from (85) we then deduce

[x0+hand,x0,x0,,x0R;f]=1handR[f(x0+hand)and=0R1handandj!f(j)(x0)][x_{0}+h_{i},\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r};f]=\frac{1}{h_{i}^{r}}\left[f\left(x_{0}+h_{i}\right)-\sum_{i=0}^{r-1}\frac{h_{i}^{i}}{j!}f^{(j)}\left(x_{0}\right)\right] (111)

so taking into account formulas (90) and (109) we deduce

(1)pm(m+R)!f(m+R)(x0)=j=0R1[and=1p+1Hpm(and)handRjλ(hand)]f(j)(x0)j!+\displaystyle\frac{(-1)^{p-m}}{(m+r)!}f^{(m+r)}\left(x_{0}\right)=-\sum_{j=0}^{r-1}\left[\sum_{i=1}^{p+1}\frac{H_{p-m}^{(i)}}{h_{i}^{r-j}\lambda^{\prime}\left(h_{i}\right)}\right]\cdot\frac{f^{(j)}\left(x_{0}\right)}{j!}+ (112)
+and=1p+1Hpm(and)handRλ(hand)f(x0+hand)+R\displaystyle+\sum_{i=1}^{p+1}\frac{H_{p-m}^{(i)}}{h_{i}^{r}\lambda^{\prime}\left(h_{i}\right)}f\left(x_{0}+h_{i}\right)+R

IfHp+1m0H_{p+1-m}\neq 0, this formula has the degree of accuracyp+Rp+r, and if the remainder is of simple form, we have

R=Hp+1mDp+R+1[f].R=-H_{p+1-m}D_{p+r+1}[f].

IfHp+1m=0H_{p+1-m}=0, the formula becomes exceptional and has the degree of accuracyp+R+1p+r+1and if the remainder is of simple form, we have

R=Hp+2mDp+R++2[f]R=H_{p+2-m}D_{p+r_{+}+2}[f]

Starting from formula (111), established in the case when the deviationshhare distinct (and different from zero), we obtain the other types of numerical derivation formulas (E) by making, in convenient groups, the deviations tend towards each other.
42. To evaluate the coefficients off(j)(x0),j=0.1,,R1f^{(j)}\left(x_{0}\right),j=0,1,\ldots,r-1in formula (112), we can use formula (86). Referring to the notations in formula (10), we deduce from (86)

j=0R1cjf(j)(x0)=[it(x)IT(x0,x0,,x0R;f(x)it(x)|x)]x=x0(m+R)\sum_{j=0}^{r-1}c_{j}f^{(j)}\left(x_{0}\right)=[l(x)L(\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r};\left.\frac{f(x)}{l(x)}\right\rvert\,x)]_{x=x_{0}}^{(m+r)} (113)

Taking into account (110) we have

[it(x)IT(x0,x0,,x0R;f(x)it(x)|x)]x=x0(m+R)=\displaystyle{[l(x)L(\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r};\left.\frac{f(x)}{l(x)}\right\rvert\,x)]_{x=x_{0}}^{(m+r)}=} (114)
=j=0R11j![it(x)(xx0)]x=x0(m+R)[f(x)it(x)]x+x0(j)\displaystyle=\sum_{j=0}^{r-1}\frac{1}{j!}\left[l(x)\left(x-x_{0}\right)\right]_{x=x_{0}}^{(m+r)}\cdot\left[\frac{f(x)}{l(x)}\right]_{x+x_{0}}^{(j)}

However, based on formulas (69), (73),

[it(x)(xx0)j]x=xf(m+R)=(1)p+1mR+j(m+R)!Hp+1mR+j\left[l(x)\left(x-x_{0}\right)^{j}\right]_{x=x_{\mathrm{f}}}^{(m+r)}=(-1)^{p+1-m-r+j}(m+r)!H_{p+1-m-r+j}

From the comparison of formulas (113), (114) we deduce therefore

cR1j=(1)pmj(m+R)!(R1j)!α=0jHpmj+α(1)αα![1it(x)]x=x0(α).c_{r-1-j}=\frac{(-1)^{p-m-j}(m+r)!}{(r-1-j)!}\sum_{\alpha=0}^{j}H_{p-m-j+\alpha}\frac{(-1)^{\alpha}}{\alpha!}\left[\frac{1}{l(x)}\right]_{x=x_{0}}^{(\alpha)}. (115)

But, from the equality

it(x)1it(x)=1l(x)\frac{1}{l(x)}=1

deduce

(1)p+1Hp+1[1it(x)]x=x0=1α=0andHp+1and+α(1)αα![1it(x)|A=x0(α)=0,and=1.2,}\left.\begin{array}[]{l}(-1)^{p+1}H_{p+1}\left[\frac{1}{l(x)}\right]_{x=x_{0}}=1\\ \sum_{\alpha=0}^{i}H_{p+1-i+\alpha}\frac{(-1)^{\alpha}}{\alpha!}\left[\left.\frac{1}{l(x)}\right|_{a=x_{0}}^{(\alpha)}=0,\quad i=1,2,\ldots\right.\end{array}\right\}

Eliminating the

(1)αα![1it(x)]x=xθ(α),α=0.1,,j\frac{(-1)^{\alpha}}{\alpha!}\left[\frac{1}{l(x)}\right]_{x=x_{\theta}}^{(\alpha)},\quad\alpha=0,1,\ldots,j

from equation (115) and from the firstj+1j+1equations (116), we deduce

cR1j=(1)m+1(m+R)!(R1j)!Hp+1and+1|HpHp+1000Hp1HpHp+100Hp+1jHp+2jHp+1HpmjHpmj+1Hpm|\displaystyle c_{r-1-j}=\frac{(-1)^{m+1}(m+r)!}{(r-1-j)!H_{p+1}^{i+1}}\left|\begin{array}[]{llllll}H_{p}&H_{p+1}&0&0\ldots\ldots&0\\ H_{p-1}&H_{p}&H_{p+1}&0\ldots\ldots&0\\ \ldots\ldots\ldots\ldots\ldots\ldots&\ldots\ldots&\ldots&\ldots&\ldots\\ H_{p+1-j}&H_{p+2-j}&\ldots\ldots&\ldots&H_{p+1}\\ H_{p-m-j}&H_{p-m-j+1}&\ldots\ldots&\ldots&H_{p-m}\end{array}\right|
j=0.1,,R1.\displaystyle\quad j=1,\ldots,r-1.

Comparing this formula with (112) we finally deduce

and=1p+1Hpm(and)handj+1λ(hand)=(1)pHp+1j+1\displaystyle\sum_{i=1}^{p+1}\frac{H_{p-m}^{(i)}}{h_{i}^{j+1}\lambda^{\prime}\left(h_{i}\right)}=\frac{(-1)^{p}}{H_{p+1}^{j+1}} |HpHp+100Hp1HpHp+100Hp+1jHp+2jHpmjHpmj+1Hp+1\displaystyle\left\lvert\,\begin{array}[]{ccccc}H_{p}&H_{p+1}&0&0&\ldots\\ H_{p-1}&H_{p}&H_{p+1}&0&\ldots\\ \cdots&\ldots&\ldots&0\\ H_{p+1-j}&H_{p+2-j}&\ldots&\ldots&\ldots\\ H_{p-m-j}&H_{p-m-j+1}&\ldots&\ldots&\ldots\end{array}H_{p+1}\right. (117)
j=0.1,,R1.\displaystyle\quad j=0,1,\ldots,r-1.
  1. 43.

    Let's consider some particular cases
    11^{\circ}ForR=0,S=1r=0,s=1, we have

f(m)(x0)=j=0pm(1)andhandj!f(m+j)(x0+h)+\displaystyle f^{(m)}\left(x_{0}\right)=\sum_{j=0}^{p-m}(-1)^{i}\frac{h^{i}}{j!}f^{(m+j)}\left(x_{0}+h\right)+ (118)\displaystyle(118) (118)
+(1)p+1m(p+1)!(p+1m)!hp+1mDp+1[f]\displaystyle+(-1)^{p+1-m}\frac{(p+1)!}{(p+1-m)!}h^{p+1-m}D_{p+1}[f]

This is Taylor's formula, with a new expression for the remainder. Form>0m>0, we obtain the first series of reducible formulas.
22^{\circ}Forp=m=0p=m=0, we obtain the formula

1R!f(R)(x0)=and=0R11j!hRjf(j)(x0)+1R!f(x0+h)hDR+1[f]\frac{1}{r!}f^{(r)}\left(x_{0}\right)=-\sum_{i=0}^{r-1}\frac{1}{j!h^{r-j}}f^{(j)}\left(x_{0}\right)+\frac{1}{r!}f\left(x_{0}+h\right)-hD_{r+1}[f] (119)

This formula also results from Taylor's formula (118) (form=0m=0and with a change in notation). Forpm=R=0p\Rightarrow m=r=0, the two formulas (118), (119) coincide.
33^{\circ}Let's assume thatp=1,m=0p=1,m=0A simple calculation shows us that the determinant in the second member of formula (117) is equal to

h1j+2h2j+2h1h2\frac{h_{1}^{j+2}-h_{2}^{j+2}}{h_{1}-h_{2}}

and we derive the formula

1R!f(R)(x0)=j=0R11j!(h1h2)Rjh1Rj+1h2Rj+1h1h2f(j)(x0)\displaystyle\frac{1}{r!}f^{(r)}\left(x_{0}\right)=-\sum_{j=0}^{r-1}\frac{1}{j!\left(h_{1}h_{2}\right)^{r-j}}\cdot\frac{h_{1}^{r-j+1}-h_{2}^{r-j+1}}{h_{1}-h_{2}}f^{(j)}\left(x_{0}\right)-
1(h1h2)R(h1h2)[h2R+1f(x0+h1)h1R+1f(x0+h2)]+h1h2DR+2[f].\displaystyle\quad-\frac{1}{\left(h_{1}h_{2}\right)^{r}\left(h_{1}-h_{2}\right)}\left[h_{2}^{r+1}f\left(x_{0}+h_{1}\right)-h_{1}^{r+1}f\left(x_{0}+h_{2}\right)\right]+h_{1}h_{2}D_{r+2}[f]. (120)

From this, the limit formula (h2h1=h)\left.h_{2}\rightarrow h_{1}=h\right)

1R!f(R)(x0)=\displaystyle\frac{1}{r!}f^{(r)}\left(x_{0}\right)= j=0R1Rj+1j!hRjf(j)(x0)+R+1hRf(x0+h)\displaystyle-\sum_{j=0}^{r-1}\frac{r-j+1}{j!h^{r-j}}f^{(j)}\left(x_{0}\right)+\frac{r+1}{h^{r}}f\left(x_{0}+h\right)-
1hR1f(x0+h)+h2DR+2[f]\displaystyle-\frac{1}{h^{r-1}}f^{\prime}\left(x_{0}+h\right)+h^{2}D_{r+2}[f] (121)

44^{\circ}Forp=m=1p=m=1, the determinant in the second member of formula (116) is equal to

h1and+1h2and+1h1h2\frac{h_{1}^{i+1}-h_{2}^{i+1}}{h_{1}-h_{2}}

and we deduce the formula

1(R+1)!f(R+1)(x0)=and=0R11j!(h1h2)Rjh1Rjh2Rjh1h2f(j)(x0)+\displaystyle\frac{1}{(r+1)!}f^{(r+1)}\left(x_{0}\right)=\sum_{i=0}^{r-1}\frac{1}{j!\left(h_{1}h_{2}\right)^{r-j}}\cdot\frac{h_{1}^{r-j}-h_{2}^{r-j}}{h_{1}-h_{2}}f^{(j)}\left(x_{0}\right)+
+1(h1h2)R(h1h2)[h2Rf(x0+h1)h1Rf(x0+h2)]+R\displaystyle\quad+\frac{1}{\left(h_{1}h_{2}\right)^{r}\left(h_{1}-h_{2}\right)}\left[h_{2}^{r}f\left(x_{0}+h_{1}\right)-h_{1}^{r}f\left(x_{0}+h_{2}\right)\right]+R (122)

This formula is of the degree of accuracyR+1r+1, ifh1+h20h_{1}+h_{2}\neq 0, but the rest is generally not of simple form. From this formula we also deduce the limit formula (h2h1=hh_{2}\rightarrow h_{1}=h)

1(R+1)!f(R+1)(x0)=j=0R1Randj!hRand+1f(j)(x0)RhR+1f(x0+h)+\displaystyle\frac{1}{(r+1)!}f^{(r+1)}\left(x_{0}\right)=\sum_{j=0}^{r-1}\frac{r-i}{j!h^{r-i+1}}f^{(j)}\left(x_{0}\right)-\frac{r}{h^{r+1}}f\left(x_{0}+h\right)+
+1hRf(x0+h)2hDR+2[f]\displaystyle+\frac{1}{h^{r}}f^{\prime}\left(x_{0}+h\right)-2hD_{r+2}[f] (123)

Ifh1+h2=0h_{1}+h_{2}=0, formula (122) becomes exceptional and can be written in the form

1(R+1)!f(R+1)(x0)=j=0[R12]1(R12j)!1h2and+2f(R12j)(x0)++12hR+1[f(x0+h)+(1)R+1f(x0h)]h2DR+3[f]\begin{array}[]{r}\frac{1}{(r+1)!}f^{(r+1)}\left(x_{0}\right)=-\sum_{j=0}^{\left[\frac{r-1}{2}\right]}\frac{1}{(r-1-2j)!}\cdot\frac{1}{h^{2i+2}}f^{(r-1-2j)}\left(x_{0}\right)+\\ +\frac{1}{2h^{r+1}}\left[f\left(x_{0}+h\right)+(-1)^{r+1}f\left(x_{0}-h\right)\right]-h^{2}D_{r+3}[f]\end{array}
  1. 44.

    Among the formulas of the degree of accuracy5\leqq 5we will only write explicitly those for whichS1s\Rightarrow 1, so for which the nodes are all confused, except of course those that have been signaled. The rest of these formulas are of simple form. For the degrees of accuracy0,1,2,3,4,50,1,2,3,4,5, there is respectively1,3,6,10,15,211,3,6,10,15,21such formulas. Of these formulas 1,3,4,53,4,5respectively 6 are deduced from formula (118) and one of formulas (119), (121), (123). We group the0,0,0,3,70,0,0,3,7respectively the remaining 12 formulas according to their degree of accuracy. In parentheses, after the formula, we indicate in turn the corresponding values ​​of the numbersp,R,mp,r,mFor the sake of simplicity, we write the particulars, assumingx0=0x_{0}=0. Moving on to his casex0x_{0}any, through a simple linear transformation.

Accuracy level 3:
(F1)f(0)=3h[f(h)f(0)]2f(h)+h2f"(h)h3D4[f](2,1,0)\quad f^{\prime}(0)=\frac{3}{h}[f(h)-f(0)]-2f^{\prime}(h)+\frac{h}{2}f^{\prime\prime}(h)-h^{3}D_{4}[f]\quad(2,1,0)
(F2)f"(0)=6h2[f(0)f(h)]+6hf(h)2f"(h)+6h2D4[f](2,1,1)f^{\prime\prime}(0)=\frac{6}{h^{2}}[f(0)-f(h)]+\frac{6}{h}f^{\prime}(h)-2f^{\prime\prime}(h)+6h^{2}D_{4}[f]\quad(2,1,1)
(F3)f′′′(0)=6h3[f(h)f(0)]6h2f(h)+3hf"(h)18hD4[f](2,1,2)f^{\prime\prime\prime}(0)=\frac{6}{h^{3}}[f(h)-f(0)]-\frac{6}{h^{2}}f^{\prime}(h)+\frac{3}{h}f^{\prime\prime}(h)-18hD_{4}[f]\quad(2,1,2)
Accuracy level 4:
(F4)f(0)=4h[f(h)f(0)]3f(h)+hf"(h)h26f′′′(h)+h4D5[f](3.1.0)f^{\prime}(0)=\frac{4}{h}[f(h)-f(0)]-3f^{\prime}(h)+hf^{\prime\prime}(h)-\frac{h^{2}}{6}f^{\prime\prime\prime}(h)+h^{4}D_{5}[f](3,1,0)
(F5)f"(0)=12h2[f(0)f(h)]+12hf(h)5f"(h)+hf′′′(h)8h3D5[f](3,1,1)f^{\prime\prime}(0)=\frac{12}{h^{2}}[f(0)-f(h)]+\frac{12}{h}f^{\prime}(h)-5f^{\prime\prime}(h)+hf^{\prime\prime\prime}(h)-8h^{3}D_{5}[f](3,1,1)
(F6)f′′′(0)=24h3[f(h)f(0)]24h2f(h)+12hf"(h)3f′′′(h)+f^{\prime\prime\prime}(0)=\frac{24}{h^{3}}[f(h)-f(0)]-\frac{24}{h^{2}}f^{\prime}(h)+\frac{12}{h}f^{\prime\prime}(h)-3f^{\prime\prime\prime}(h)+

+36h2D5[f]+36h^{2}D_{5}[f] (3,1,2)
fandV(x)=24h4[f(0)f(h)]+24h3f(h)12h2f"(h)+4hf′′′(h)96hD5[f]\begin{array}[]{r}f^{IV}(x)=\frac{24}{h^{4}}[f(0)-f(h)]+\frac{24}{h^{3}}f^{\prime}(h)-\frac{12}{h^{2}}f^{\prime\prime}(h)+\\ \frac{4}{h}f^{\prime\prime\prime}(h)-96hD_{5}[f]\end{array}

(F8)f"(0)=12h2[f(h)f(0)]6h[f(0)+f(h)]+f"(h)2h3D5[f](2,2,0)f^{\prime\prime}(0)=\frac{12}{h^{2}}[f(h)-f(0)]-\frac{6}{h}\left[f^{\prime}(0)+f^{\prime}(h)\right]+f^{\prime\prime}(h)-2h^{3}D_{5}[f](2,2,0).
(F9)f′′′(0)=48h3[f(0)f(h)]+18h2f(0)+80h2f(h)f^{\prime\prime\prime}(0)=\frac{48}{h^{3}}[f(0)-f(h)]+\frac{18}{h^{2}}f^{\prime}(0)+\frac{80}{h^{2}}f^{\prime}(h)-

6hf"(h)+18h2D5[γ]-\frac{6}{h}f^{\prime\prime}(h)+18h^{2}D_{5}[\gamma]

(F10)fandV(0)=72h4[f(h)f(0)]24h3f(0)48h3f(h)+f^{IV}(0)=\frac{72}{h^{4}}[f(h)-f(0)]-\frac{24}{h^{3}}f^{\prime}(0)-\frac{48}{h^{3}}f^{\prime}(h)+

12h2f"(h)72hD5[f]\frac{12}{h^{2}}f^{\prime\prime}(h)-72hD_{5}[f]

Accuracy level 5:
(F11)f(0)=5h[f(h)f(0)]4f(h)+32hf"(h)f^{\prime}(0)=\frac{5}{h}[f(h)-f(0)]-4f^{\prime}(h)+\frac{3}{2}hf^{\prime\prime}(h)-

13h2f′′′(h)+h324fandV(h)h5D6[f]\frac{1}{3}h^{2}f^{\prime\prime\prime}(h)+\frac{h^{3}}{24}f^{IV}(h)-h^{5}D_{6}[f] (4,1,0)

(F12)f"(0)=20h2[f(0)(fh)]+20hf(h)9f"(h)+f^{\prime\prime}(0)=\frac{20}{h^{2}}[f(0)-(fh)]+\frac{20}{h}f^{\prime}(h)-9f^{\prime\prime}(h)+

+73hf′′′(h)h23fandV(h)+10h4D6[f]+\frac{7}{3}hf^{\prime\prime\prime}(h)-\frac{h^{2}}{3}f^{IV}(h)+10h^{4}D_{6}[f]

(F13)f′′′(0)=60h3[f(h)f(0)]60h2f(h)+30hf"(h)f^{\prime\prime\prime}(0)=\frac{60}{h^{3}}[f(h)-f(0)]-\frac{60}{h^{2}}f^{\prime}(h)+\frac{30}{h}f^{\prime\prime}(h)-

9f′′′(h)+32hfitV(h)60h3D6[f]-9f^{\prime\prime\prime}(h)+\frac{3}{2}hf^{lV}(h)-60h^{3}D_{6}[f] (4,1,2)

(F14)fV(0)=120h4[f(0)f(h)]+120h3f(h)60h2f"(h)+f^{\prime V}(0)=\frac{120}{h^{4}}[f(0)-f(h)]+\frac{120}{h^{3}}f^{\prime}(h)-\frac{60}{h^{2}}f^{\prime\prime}(h)+

+20hf′′′(h)4fitV(h)+240h2D6[f]+\frac{20}{h}f^{\prime\prime\prime}(h)-4f^{lV}(h)+240h^{2}D_{6}[f] (4,1,3)

(F15)fV(0)=120h5[f(h)f(0)]120h4f(h)+60h3f"(h)f^{V}(0)=\frac{120}{h^{5}}[f(h)-f(0)]-\frac{120}{h^{4}}f^{\prime}(h)+\frac{60}{h^{3}}f^{\prime\prime}(h)-
(4,1,4)(4,1,4).

20h2f′′′(h)+5hfandV(h)600hD6[f]-\frac{20}{h^{2}}f^{\prime\prime\prime}(h)+\frac{5}{h}f^{IV}(h)-600hD_{6}[f]

(F16)f"(0)=20h2[f(h)f(0)]8hf(0)12hf(h)+f^{\prime\prime}(0)=\frac{20}{h^{2}}[f(h)-f(0)]-\frac{8}{h}f^{\prime}(0)-\frac{12}{h}f^{\prime}(h)+
(F17)f′′′(0)=120h3[f(0)f(h)]+36h2f(0)+84h2f(h)f^{\prime\prime\prime}(0)=\frac{120}{h^{3}}[f(0)-f(h)]+\frac{36}{h^{2}}f^{\prime}(0)+\frac{84}{h^{2}}f^{\prime}(h)-

24hf"(h)+3f′′′(h)24h3D6[f]-\frac{24}{h}f^{\prime\prime}(h)+3f^{\prime\prime\prime}(h)-24h^{3}D_{6}[f] (3,2,1)

(F18)fandV(0)=360h4[f(h)f(0)]96h3f(0)264h3f(h)+f^{IV}(0)=\frac{360}{h^{4}}[f(h)-f(0)]-\frac{96}{h^{3}}f^{\prime}(0)-\frac{264}{h^{3}}f^{\prime}(h)+

84h2f"(h)12hf′′′(h)+144h2D6[f]\frac{84}{h^{2}}f^{\prime\prime}(h)-\frac{12}{h}f^{\prime\prime\prime}(h)+144h^{2}D_{6}[f] (3,2,2)

(F19)fV(0)=480h5[f(0)f(h)]+120h4f(0)+360h4f(h)f^{V}(0)=\frac{480}{h^{5}}[f(0)-f(h)]+\frac{120}{h^{4}}f^{\prime}(0)+\frac{360}{h^{4}}f^{\prime}(h)-

120h3j"(h)+20h2f′′′(h)480hD6[-\frac{120}{h^{3}}j^{\prime\prime}(h)+\frac{20}{h^{2}}f^{\prime\prime\prime}(h)-480hD_{6}[\not] (3,2,3)
f′′′(0)=60h3[f(h)f(0)]36h2f(0)9hf"(0)f^{\prime\prime\prime}(0)=\frac{60}{h^{3}}[f(h)-f(0)]-\frac{36}{h^{2}}f^{\prime}(0)-\frac{9}{h}f^{\prime\prime}(0)- (F20)
24h2f(h)+3hf"(h)6h3D6[f]-\frac{24}{h^{2}}f^{\prime}(h)+\frac{3}{h}f^{\prime\prime}(h)-6h^{3}D_{6}[f] (2,3,0)

(F21)fV(0)=360h4[f(0)f(h)]+192h3f(0)+36h2f"(0)+\quad f^{\prime V}(0)=\frac{360}{h^{4}}[f(0)-f(h)]+\frac{192}{h^{3}}f^{\prime}(0)+\frac{36}{h^{2}}f^{\prime\prime}(0)+

+168h3f(h)24h2f"(h)+72h2D6[f]+\frac{168}{h^{3}}f^{\prime}(h)-\frac{24}{h^{2}}f^{\prime\prime}(h)+72h^{2}D_{6}[f] (2,3,1)

(F22)fV(0)=720h5[f(h)f(0)]360h4f(0)60h3f"(0)f^{V}(0)=\frac{720}{h^{5}}[f(h)-f(0)]-\frac{360}{h^{4}}f^{\prime}(0)-\frac{60}{h^{3}}f^{\prime\prime}(0)-

360h𝟒f(h)+60h3f"(h)360hD6[f]-\frac{360}{h^{\mathbf{4}}}f^{\prime}(h)+\frac{60}{h^{3}}f^{\prime\prime}(h)-360hD_{6}[f] (2,3,2)
  1. 45.

    Exceptional formulas are obtained by imposing the restriction on deviationsHp+1m=0H_{p+1-m}=0We will write the exceptional degree of accuracy formulas5\leq 5, but only those corresponding toS=2s=2, without those resulting from formula (124). In this case, the two distinct deviationsh1,h2h_{1},h_{2}are linked by a relationship that allows us to express them in the formαh,βh(α,β\alpha h,\beta h(\alpha,\betabeing two fixed numbers). The ratio of the numbersα,β\alpha,\betais not always rational. The rest of these formulas are of simple form whenm=1.2m=1,2, or when the formula is symmetric. For the degrees of accuracy3,4,53,4,5we have respectively2,8,162,8,16such formulas, of which 6 the simple form of the remainder does not result from the preceding ones. In parentheses, we indicate the values ​​ofp,R,mp,r,m, as well as the restriction to which it is subjecth1h_{1}andh2h_{2}, the order of multiplicity of the nodex2x_{2}being at least equal to hisx1x_{1}.

+3f"(h)h3f′′′(h)+2h4D6[f]+3f^{\prime\prime}(h)-\frac{h}{3}f^{\prime\prime\prime}(h)+2h^{4}D_{6}[f]

Accuracy level 3:

f(0)=49h[f(h)f(2h)]13f(2h)4h3D4[f]f^{\prime}(0)=\frac{4}{9h}[f(h)-f(-2h)]-\frac{1}{3}f^{\prime}(-2h)-4h^{3}D_{4}[f] (F23)
(2.0.1;2h1+h2=0)\left(2,0,1;2h_{1}+h_{2}=0\right)
f"(0)=29h2[f(2h)f(h)]+23hf(h)6h2D4[f]\displaystyle f^{\prime\prime}(0)=\frac{2}{9h^{2}}[f(-2h)-f(h)]+\frac{2}{3h}f^{\prime}(h)-6h^{2}D_{4}[f] (F24)
(2.0.2;h1+2h3=0)\displaystyle\left(2,0,2;h_{1}+2h_{3}=0\right)

Accuracy level 4:

(F25)f(0)=2764h[f(h)f(3h)]1116f(3h)\quad f^{\prime}(0)=\frac{27}{64h}[f(h)-f(-3h)]-\frac{11}{16}f^{\prime}(-3h)-

3h8f"(3h)27h4D5[f](3.0.1;3h1+h2=0)-\frac{3h}{8}f^{\prime\prime}(-3h)-27h^{4}D_{5}[f]\quad\left(3,0,1;3h_{1}+h_{2}=0\right)
f(0)=34h[f(h)f(h)]14[f(h)+f(h)]+h4D5[f]f^{\prime}(0)=\frac{3}{4h}[f(h)-f(-h)]-\frac{1}{4}\left[f^{\prime}(h)+f^{\prime}(-h)\right]+h^{4}D_{5}[f] (F26)
(3.0.1;h1+h2=0)\left(3,0,1;h_{1}+h_{2}=0\right)

(F27)

f"(0)=34h2[f(h)f(h)]32hf(h)12f"(h)4h3D5[f]f^{\prime\prime}(0)=\frac{3}{4h^{2}}[f(h)-f(-h)]-\frac{3}{2h}f^{\prime}(-h)-\frac{1}{2}f^{\prime\prime}(-h)-4h^{3}D_{5}[f]
(3.0.2;h1+h2=0)\left(3,0,2;h_{1}+h_{2}=0\right)

(F28)

f"(0)=23+33h2{f(h)f([23]h)(23)hf(h)\displaystyle f^{\prime\prime}(0)=\frac{2\sqrt{3}+3}{3h^{2}}\left\{f(h)-f(-[2-\sqrt{3}]h)-(2-\sqrt{3})hf^{\prime}(h)-\right.
hf([23]h)}+4(335)h3D5[f]\displaystyle\left.-hf^{\prime}(-[2-\sqrt{3}]h)\right\}+4(3\sqrt{3}-5)h^{3}D_{5}[f]
(3.0.2;h12+4h1h2+h22=0)\displaystyle\left(3,0,2;h_{1}^{2}+4h_{1}h_{2}+h_{2}^{2}=0\right)

(F29)

f′′′(0)=332h3[f(h)f(3h)]38h2f(h)+34hf"(h)+R(3.0.3;h1+3h2=0)\begin{array}[]{r}f^{\prime\prime\prime}(0)=\frac{3}{32h^{3}}[f(h)-f(-3h)]-\frac{3}{8h^{2}}f^{\prime}(h)+\frac{3}{4h}f^{\prime\prime}(h)+R\\ \left(3,0,3;h_{1}+3h_{2}=0\right)\end{array}

(F30)

f′′′(0)=32h3[f(h)f(h)]+32h2[f(h)+f(h)]12h2D5[f]f^{\prime\prime\prime}(0)=\frac{3}{2h^{3}}[f(-h)-f(h)]+\frac{3}{2h^{2}}\left[f^{\prime}(h)+f^{\prime}(-h)\right]-12h^{2}D_{5}[f]
(3.0.3;h1+h2=0)\left(3,0,3;h_{1}+h_{2}=0\right)

(F31)

f"(0)=118h2[16f(h)+11f(2h)27f(0)]+13hf(2h)8h3D5[f](2,1,1;2h1+h2=0)\begin{array}[]{r}f^{\prime\prime}(0)=\frac{1}{18h^{2}}[16f(h)+11f(-2h)-27f(0)]+\frac{1}{3h}f^{\prime}(-2h)-\\ -8h^{3}D_{5}[f]\quad\left(2,1,1;2h_{1}+h_{2}=0\right)\end{array}

(F32)

f′′′(0)=13h3[9f(0)8f(h)f(2h)]+2h2f(h)18h2D5[7](2,1,2);h1+2h2=0)\begin{array}[]{r}f^{\prime\prime\prime}(0)=\frac{1}{3h^{3}}[9f(0)-8f(h)-f(-2h)]+\frac{2}{h^{2}}f^{\prime}(h)-18h^{2}D_{5}[7]\\ \left.(2,1,2);h_{1}+2h_{2}=0\right)\end{array}

Accuracy level 5:

f(0)\displaystyle f^{\prime}(0) =256625h[f(h)f(4h)]131125f(4h)2825hf"(4h)\displaystyle=\frac{256}{625h}[f(h)-f(-4h)]-\frac{131}{125}f^{\prime}(-4h)-\frac{28}{25}hf^{\prime\prime}(-4h)- (F33)
815h2f′′′(4h)256h5D6[f](4.0.1;4h1+h2=0)\displaystyle-\frac{8}{15}h^{2}f^{\prime\prime\prime}(-4h)-256h^{5}D_{6}[f]\quad\left(4,0,1;4h_{1}+h_{2}=0\right)

(F34)

f(0)=\displaystyle f^{\prime}(0)= 216625h[f(2h)f(3h)]1125[27f(2h)+64f(3h)]\displaystyle\frac{216}{625h}[f(2h)-f(-3h)]-\frac{1}{125}\left[27f^{\prime}(2h)+64f^{\prime}(-3h)\right]-
6h25f"(3h)+108h5D6[f](4.0.1;3h1+2h2=0)\displaystyle-\frac{6h}{25}f^{\prime\prime}(-3h)+08h^{5}D_{6}[f]\quad\left(4,0,1;3h_{1}+2h_{2}=0\right)

(F35)f"(0)=108625h2[f(2h)f(3h)]108125hf(3h)2925f"(3h)f^{\prime\prime}(0)=\frac{108}{625h^{2}}[f(2h)-f(-3h)]-\frac{108}{125h}f^{\prime}(-3h)-\frac{29}{25}f^{\prime\prime}(-3h)-

3h5f′′′(3h)270h4D6[f](4.0.2;3h1+2h2=0)-\frac{3h}{5}f^{\prime\prime\prime}(-3h)-270h^{4}D_{6}[f]\quad\left(4,0,2;3h_{1}+2h_{2}=0\right)

(F36)f"(0)=9(117+626)625h2[f(h)f(363h)]++9(54+196)250h[(62)f(h)+63f(363h)]+36225f"\quad f^{\prime\prime}(0)=\frac{9(117+62\sqrt{6})}{625h^{2}}\left[f(h)-f\left(-\frac{3-\sqrt{6}}{3}h\right)\right]++\frac{9(54+19\sqrt{6})}{250h}\left[(\sqrt{6}-2)f^{\prime}(h)+\frac{\sqrt{6}}{3}f^{\prime}\left(-\frac{3-\sqrt{6}}{3}h\right)\right]+\frac{3\sqrt{6}-2}{25}f^{\prime\prime}

23(3+46)h4D6[f](4.0.2;3h12+6h1h2+h22=0)-\frac{2}{3}(3+4\sqrt{6})h^{4}D_{6}[f]\quad\left(4,0,2;3h_{1}^{2}+6h_{1}h_{2}+h_{2}^{2}=0\right) (h)

(F37)f′′′(0)=48625h3[f(3h)f(2h)]48125h2f(2h)2425hf"(2h)f^{\prime\prime\prime}(0)=\frac{48}{625h^{3}}[f(3h)-f(-2h)]-\frac{48}{125h^{2}}f^{\prime}(-2h)-\frac{24}{25h}f^{\prime\prime}(-2h)-

35f′′′(2h)+R(4.0.3;2h1+3h2=0)-\frac{3}{5}f^{\prime\prime\prime}(-2h)+R\quad\left(4,0,3;2h_{1}+3h_{2}=0\right)

(F38)f′′′(0)=6(311+1296)625h3[f([36]h)f(h)]+\quad f^{\prime\prime\prime}(0)=\frac{6(311+129\sqrt{6})}{625h^{3}}[f(-[3-\sqrt{6}]h)-f(h)]+

+3(81+346)125h2f([36]h)+3(107+486)125h2f(h)\displaystyle+\frac{3(81+34\sqrt{6})}{125h^{2}}f^{\prime}(-[3-\sqrt{6}]h)+\frac{3(107+48\sqrt{6})}{125h^{2}}f^{\prime}(h)-
3(2+36)25f"(h)+R(4.0.3;h12+6h1h2+3h22=0)\displaystyle\quad-\frac{3(2+3\sqrt{6})}{25}f^{\prime\prime}(h)+R\quad\left(4,0,3;h_{1}^{2}+6h_{1}h_{2}+3h_{2}^{2}=0\right)

(F39)fandV(0)=24625h4[f(4h)f(h)]+24125h3f(h)1225h2f"(h)+\quad f^{IV}(0)=\frac{24}{625h^{4}}[f(-4h)-f(h)]+\frac{24}{125h^{3}}f^{\prime}(h)-\frac{12}{25h^{2}}f^{\prime\prime}(h)+

+45hf′′′(h)+R(4.0.4;h1+4h2=0)+\frac{4}{5h}f^{\prime\prime\prime}(h)+R\quad\left(4,0,4;h_{1}+4h_{2}=0\right)

(F40)fandV(0)+72625h4[f(2h)f(3h)]+24125h3[f(3h)+2f(2h)]+\quad f^{IV}(0)+\frac{72}{625h^{4}}[f(-2h)-f(3h)]+\frac{24}{125h^{3}}\left[f^{\prime}(3h)+2f^{\prime}(-2h)\right]+

+1225h2t"(2h)+R(4.0.4;2h1+3h2=0)+\frac{12}{25h^{2}}t^{\prime\prime}(-2h)+R\quad\left(4,0,4;2h_{1}+3h_{2}=0\right)

(F41)f"(0)=196h2[81f(h)+47f(3h)128f(0)]+58hf(3h)+\quad f^{\prime\prime}(0)=\frac{1}{96h^{2}}[81f(h)+47f(-3h)-128f(0)]+\frac{5}{8h}f^{\prime}(-3h)+

+14f"(3h)54h4D6[f](3,1,1;3h1+h2=0)+\frac{1}{4}f^{\prime\prime}(-3h)-54h^{4}D_{6}[f]\quad\left(3,1,1;3h_{1}+h_{2}=0\right)

(F42)f"(0)=2h2[f(h)2f(0)+f(h)]+12h[f(h)f(h)]+2h4D6[f]\quad f^{\prime\prime}(0)=\frac{2}{h^{2}}[f(-h)-2f(0)+f(h)]+\frac{1}{2h}\left[f^{\prime}(-h)-f^{\prime}(h)\right]+2h^{4}D_{6}[f]

(3,1,1;h1+h2=0)\left(3,1,1;h_{1}+h_{2}=0\right)

(F43)f′′′(0)=14h3[48f(0)9f(h)39f(H)]+152hf(h)32f"(h)+\quad f^{\prime\prime\prime}(0)=\frac{1}{4h^{3}}[48f(0)-9f(-h)-39f(H)]+\frac{15}{2h}f^{\prime}(h)-\frac{3}{2}f^{\prime\prime}(h)+

12h4D6[f](3,1,2;h1+h2=0)12h^{4}D_{6}[f]\quad\left(3,1,2;h_{1}+h_{2}=0\right)

(F44)f′′′(0)=12(5+33)h3f(0)+3(1+3)h3f(h)++3(19+113)h3f([32]h)3h2f(h)+12+73h2f([32]h)++12(335)h3D6[f](3,1,2;h12+4h1h2+h22=0)\quad f^{\prime\prime\prime}(0)=\frac{-12(5+3\sqrt{3})}{h^{3}}f(0)+\frac{3(1+\sqrt{3})}{h^{3}}f(h)++\frac{3(19+11\sqrt{3})}{h^{3}}f([\sqrt{3}-2]h)-\frac{\sqrt{3}}{h^{2}}f^{\prime}(h)+\frac{12+7\sqrt{3}}{h^{2}}f^{\prime}([\sqrt{3}-2]h)++12(3\sqrt{3}-5)h^{3}D_{6}[f]\quad\left(3,1,2;h_{1}^{2}+4h_{1}h_{2}+h_{2}^{2}=0\right)
(F45)

fV(0)=\displaystyle f^{\prime V}(0)= 18h4[f(3h)+63f(h)64f(0)]\displaystyle\frac{1}{8h^{4}}[f(-3h)+3f(h)-4f(0)]-
152h3f(h)+3h2f"(h)+R(3,1,3;h1+3h2=0)\displaystyle-\frac{15}{2h^{3}}f^{\prime}(h)+\frac{3}{h^{2}}f^{\prime\prime}(h)+R\quad\left(3,1,3;h_{1}+3h_{2}=0\right)

(F46)fV(0)=12h4[2f(0)f(h)f(h)]+6h3[f(h)f(h)]\quad f^{\prime V}(0)=\frac{12}{h^{4}}[2f(0)-f(h)-f(-h)]+\frac{6}{h^{3}}\left[f^{\prime}(h)-f^{\prime}(-h)\right]-

48h2D6[f](3,1,3,h1+h2=0)-48h^{2}D_{6}[f]\quad\left(3,1,3,h_{1}+h_{2}=0\right)

(F47)f′′′(0)=16h3[16f(h)9f(0)7f(2h)]\quad f^{\prime\prime\prime}(0)=\frac{1}{6h^{3}}[16f(h)-9f(0)-7f(-2h)]-

12h2[9f(0)+f(2h)]24h3D6[f](2,2,1;2h1+h2=0)-\frac{1}{2h^{2}}\left[9f^{\prime}(0)+f^{\prime}(-2h)\right]-24h^{3}D_{6}[f]\quad\left(2,2,1;2h_{1}+h_{2}=0\right)

(F48)

fandV(0)=23h4[27f(0)+f(2h)28f(h)]+4h˙3[3f(0)+2f(h)]72h2D6[f](2,2,2;h1+2h2=0)\begin{array}[]{r}f^{IV}(0)=\frac{2}{3h^{4}}[27f(0)+f(-2h)-28f(h)]+\frac{4}{\dot{h}^{3}}\left[3f^{\prime}(0)+2f^{\prime}(h)\right]-\\ -72h^{2}D_{6}[f]\quad\left(2,2,2;h_{1}+2h_{2}=0\right)\end{array}
  1. 46.

    The reducible formulas in the second series (withS=2s=2) are easily obtained from exceptional formulas because such a formula is exceptional as a formula for numerical derivation of the functionf(x)f^{\prime}(x)A reducible formula with the characteristicsp,(R=)0,mp,(r=)0,mis obtained from the exceptional formula corresponding to the respective characteristicsp2.0,m1p-2,0,m-1The 9 reducible formulas of degree of accuracy5\leq 5, from this series, are obtained from formula (124) forR=0r=0and from formulas (F23) - (F30). These formulas are

Accuracy level 3:

(F49)

f"(0)=12h[f(h)f(h)]4h2D4[f]f^{\prime\prime}(0)=\frac{1}{2h}\left[f^{\prime}(h)-f^{\prime}(-h)\right]-4h^{2}D_{4}[f] (3,0,2)

Accuracy level 4:
(F50)

f"(0)=49h[f(h)f(2h)]13f"(2h)20h3D5[f;(4.0.2;2h1+h2=0)\begin{array}[]{r}f^{\prime\prime}(0)=\frac{4}{9h}\left[f^{\prime}(h)-f^{\prime}(-2h)\right]-\frac{1}{3}f^{\prime\prime}(-2h)-20h^{3}D_{5}[f;\\ \left(4,0,2;2h_{1}+h_{2}=0\right)\end{array}

(F51)

f′′′(0)=29h2[f(2h)f(h)]+23hf"(h)30h2D5[f]f^{\prime\prime\prime}(0)=\frac{2}{9h^{2}}\left[f^{\prime}(-2h)-f^{\prime}(h)\right]+\frac{2}{3h}f^{\prime\prime}(h)-30h^{2}D_{5}[f]

(4.0.3;h1+2h2=0)\left(4,0,3;h_{1}+2h_{2}=0\right)
Accuracy level 5:

f"(0)=2764h[f(h)f(3h)]1116f"(2h)3h8f′′′(3h)\displaystyle f^{\prime\prime}(0)=\frac{27}{64h}\left[f^{\prime}(h)-f^{\prime}(-3h)\right]-\frac{11}{16}f^{\prime\prime}(-2h)-\frac{3h}{8}f^{\prime\prime\prime}(-3h)- (F52)
162h4D6[f](5.0.2;3h1+h2=0)\displaystyle-162h^{4}D_{6}[f]\quad\left(5,0,2;3h_{1}+h_{2}=0\right)

(F53)

f"(0)=34h[f(h)f(h)]14[f"(h)+f"(h)]+6h4D6[f](5.0.2;h1+h2=0)\begin{array}[]{r}f^{\prime\prime}(0)=\frac{3}{4h}\left[f^{\prime}(h)-f^{\prime}(-h)\right]-\frac{1}{4}\left[f^{\prime\prime}(h)+f^{\prime\prime}(-h)\right]+6h^{4}D_{6}[f]\\ \left(5,0,2;h_{1}+h_{2}=0\right)\end{array}

(F54)f′′′(0)=34h2[f(h)f(h)]32hf"(h)\quad f^{\prime\prime\prime}(0)=\frac{3}{4h^{2}}\left[f^{\prime}(h)-f^{\prime}(-h)\right]-\frac{3}{2h}f^{\prime\prime}(-h)-

12f′′′(h)24h3D6[f](5.0.3;h1+h2=0)-\frac{1}{2}f^{\prime\prime\prime}(-h)-24h^{3}D_{6}[f]\quad\left(5,0,3;h_{1}+h_{2}=0\right)

(F55)

f′′′(0)=23+33h2{f(h)f([23]h)(23)hf"(h)hf"([23]h)}+24(335)h3D6[f](5.0.3;h12+4h1h2+h22=0)\begin{array}[]{r}f^{\prime\prime\prime}(0)=\frac{2\sqrt{3}+3}{3h^{2}}\left\{f^{\prime}(h)-f^{\prime}(-[2-\sqrt{3}]h)-(2-\sqrt{3})hf^{\prime\prime}(h)-\right.\\ \left.-hf^{\prime\prime}(-[2-\sqrt{3}]h)\right\}+24(3\sqrt{3}-5)h^{3}D_{6}[f]\\ \left(5,0,3;h_{1}^{2}+4h_{1}h_{2}+h_{2}^{2}=0\right)\end{array}

(F56)fV(0)=332h3[f(h)f(3h)]38h2f"(h)+34hf′′′(h)+𝑹\quad f^{\prime}V(0)=\frac{3}{32h^{3}}\left[f^{\prime}(h)-f^{\prime}(-3h)\right]-\frac{3}{8h^{2}}f^{\prime\prime}(h)+\frac{3}{4h}f^{\prime\prime\prime}(h)+\boldsymbol{R}

(5.0.4;h1+3h2=0)\left(5,0,4;h_{1}+3h_{2}=0\right)

(F57)

fandV(0)=32h3[f(h)f(h)]+32h2[f"(h)+f"(h)]72h2D6[f](5.0.4;h1+h2=0)\begin{array}[]{r}f^{IV}(0)=\frac{3}{2h^{3}}\left[f^{\prime}(-h)-f^{\prime}(h)\right]+\frac{3}{2h^{2}}\left[f^{\prime\prime}(h)+f^{\prime\prime}(-h)\right]-72h^{2}D_{6}[f]\\ \left(5,0,4;h_{1}+h_{2}=0\right)\end{array}

The simplicity of the remainder, in the case of formulas (F49), (F53), (F57), results from the symmetry of these formulas.

The remainders of formulas (F50), (F51), (F52), (F54) and (F55) can be written respectively as

4h3D4[f],6h2D4[f],27h4D5[f],4h3D5[f],4(335)h3D5[f].\begin{gathered}-4h^{3}D_{4}\left[f^{\prime}\right],\quad-6h^{2}D_{4}\left[f^{\prime}\right],\quad-27h^{4}D_{5}\left[f^{\prime}\right],\quad-4h^{3}D_{5}\left[f^{\prime}\right],\\ 4(3\sqrt{3}-5)h^{3}D_{5}\left[f^{\prime}\right].\end{gathered}

But the functional (n2n\geqq 2)

R[f]=[α1,α2,,αn;f]R[f]=\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{n};f^{\prime}\right]

whereα1,α2,,α^n\alpha_{1},\alpha_{2},\ldots,\hat{\alpha}_{n}arennfixed points, not all confused, is of a degree of accuracyn1n-1and is of simple form. The property relative to the degree of accuracy results from formula (30). The simplicity results from the fact that, iff(x)f(x)is a convex function of ordern=1,f(x)n=1,f^{\prime}(x)is a convex function of ordern2n-2We have in this caseR[xn]=nR\left[x^{n}\right]=n, so

[α1,α2,,αn;f]=nDn[f]\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{n};f^{\prime}\right]=nD_{n}[f]

RANGE[A,b][a,b]being the smallest closed interval containing the pointsα1,α2,,αn\alpha_{1},\alpha_{2},\ldots,\alpha_{n}. From here the formula results

Dn1[f]=nDn[f]D_{n-1}\left[f^{\prime}\right]=nD_{n}[f]

whose meaning is clear and from which we have deduced the remainders of formulas (F50), (F51), (F52), (F54) and (F55).
47. The symmetrical formulas (E) can be written using the notations of point 35, writing the deviations in the form±tand,and=1.2,,q\pm t_{i},i=1,2,\ldots,qIf we denote byTα(and),α=0.1,,q1T_{\alpha}^{(i)},\alpha=0,1,\ldots,q-1the fundamental symmetric polynomials oft12,t22,,tand12,tand+12,,tit2(T0(and)=1,Tα(and)=0t_{1}^{2},t_{2}^{2},\ldots,t_{i-1}^{2},t_{i+1}^{2},\ldots,t_{l}^{2}\left(T_{0}^{(i)}=1,T_{\alpha}^{(i)}=0\right., forα<0\alpha<0andα>q1)\left.\alpha>q-1\right)and if we take into account (94), we deduce

H2q2μ1(2and)=(1)qμtITqμ1(and),H2q2μ1(2and1)=(1)qμ1tandTqμ1(and)and=1.2,,q\begin{gathered}H_{2q-2\mu-1}^{(2i)}=(-1)^{q-\mu}t_{\iota}T_{q-\mu-1}^{(i)},H_{2q-2\mu-1}^{(2i-1)}=(-1)^{q-\mu-1}t_{i}T_{q-\mu-1}^{(i)}\\ i=1,2,\ldots,q\end{gathered}

We also have

Hα={0, for α odd (1)α2Tα2 for α hair. H_{\alpha}=\left\{\begin{array}[]{cc}0,&\text{ pentru }\alpha\text{ impar }\\ (-1)^{\frac{\alpha}{2}}T_{\frac{\alpha}{2}}&\text{ pentru }\alpha\text{ par. }\end{array}\right.

Let's put

ρ(x)=(xt12)(xt22)(xtq2)\rho(x)=\left(x-t_{1}^{2}\right)\left(x-t_{2}^{2}\right)\ldots\left(x-t_{q}^{2}\right)

thenλ(x)=ρ(x2)\lambda(x)=\rho\left(x^{2}\right), whence, taking into account (94),

λ(h2and)=2tandρ(tand2),λ(h2and1)=2tandρ(tand2).\lambda^{\prime}\left(h_{2i}\right)=2t_{i}\rho^{\prime}\left(t_{i}^{2}\right),\quad\lambda^{\prime}\left(h_{2i-1}\right)=-2t_{i}\rho^{\prime}\left(t_{i}^{2}\right).

Doing the calculations, formula (109) becomes

(1)qμ1(2μ)!f2μ(x0)=and=1qTημ1(and)2ρ(tand2)[f(x0+tand)+f(x0tand)]TqμD2q[f]\frac{(-1)^{q-\mu-1}}{(2\mu)!}f^{2\mu}\left(x_{0}\right)=\sum_{i=1}^{q}\frac{T_{\eta-\mu-1}^{(i)}}{2\rho^{\prime}\left(t_{i}^{2}\right)}\left[f\left(x_{0}+t_{i}\right)+f\left(x_{0}^{\prime}-t_{i}\right)\right]-T_{q-\mu}D_{2q}[f]

To move on to the caseR>0r>0, we take into account formulas (85) and(90)(90)We note that

[x0+tand,x0,x0,,x0R;f]+[x0tand,x0,x0,,x0R;f]==2[x0±tand,x0,x0,,x0R1;f]\begin{gathered}{[x_{0}+t_{i},\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r};f]+[x_{0}-t_{i},\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r};f]=}\\ =2[x_{0}\pm t_{i},\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r-1};f]\end{gathered}

the second member reducing by definition tof(x0+tand)+f(x0tand)f\left(x_{0}+t_{i}\right)+f\left(x_{0}-t_{i}\right), whenR=0r=0. We therefore deduce 1 )

(1)qμ1(2μ+R)!f(2μ+R)(x0)=\displaystyle\frac{(-1)^{q-\mu-1}}{(2\mu+r)!}f^{(2\mu+r)}\left(x_{0}\right)= and=1qTqμ1(and)ρ(tand2)[x0±tand,x0,x0,,x0R1;f]\displaystyle\sum_{i=1}^{q}\frac{T_{q-\mu-1}^{(i)}}{\rho^{\prime}\left(t_{i}^{2}\right)}[x_{0}\pm t_{i},\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r-1};f]-
TqμD2q+R[f].\displaystyle-T_{q-\mu}D_{2q+r}[f]. (126)

Taking into account (111), we also deduce

[x0±tand,x0,x0,,x0R1;f]=12tandR[f(x0+tand)+(1)Rf(x0tand)2and=0[R2]tandR2and(R2j)!f(R2j)(x0)]\begin{gathered}{[x_{0}\pm t_{i},\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r-1};f]=\frac{1}{2t_{i}^{r}}\left[f\left(x_{0}+t_{i}\right)+(-1)^{r}f\left(x_{0}-t_{i}\right)-\right.}\\ \left.-2\sum_{i=0}^{\left[\frac{r}{2}\right]}\frac{t_{i}^{r-2i}}{(r-2j)!}f^{(r-2j)}\left(x_{0}\right)\right]\end{gathered}

Substituting into (126), we finally obtain the formula

(1)qμ1(2μ+R)!f(2μ+R)(x0)=j=0[R2][and=1ηTqμ1(and)tand2jρ(tand2)]f(R2j)(x0)(R2j)!+\displaystyle\frac{(-1)^{q-\mu-1}}{(2\mu+r)!}f^{(2\mu+r)}\left(x_{0}\right)=-\sum_{j=0}^{\left[\frac{r}{2}\right]}\left[\sum_{i=1}^{\eta}\frac{T_{q-\mu-1}^{(i)}}{t_{i}^{2j}\rho^{\prime}\left(t_{i}^{2}\right)}\right]\frac{f^{(r-2j)}\left(x_{0}\right)}{(r-2j)!}+
+and=1qTqμ1(and)2tandRρ(tand2)[f(x0+tand)+(1)Rf(x0tand)]TqμD2q+R[f].\displaystyle+\sum_{i=1}^{q}\frac{T_{q-\mu-1}^{(i)}}{2t_{i}^{r}\rho^{\prime}\left(t_{i}^{2}\right)}\left[f\left(x_{0}+t_{i}\right)+(-1)^{r}f\left(x_{0}-t_{i}\right)\right]-T_{q-\mu}D_{2q+r}[f]. (127)
0 0 footnotetext: 1 ) See the abbreviated notation at -1 ), on page 39.

His coefficientsf(R2j)(x0),j=0.1,,[R2]f^{(r-2j)}\left(x_{0}\right),j=0,1,\ldots,\left[\frac{r}{2}\right]in this formula can be calculated as above, in the case of formula (112). By making the calculations and following the above procedure, we deduce

and=1qTqμ1(and)tand2jp(tI2)=(1)q1Tqj|Tq1Tq00Tq2Tq1Tq00Tqj+1Tqand+2TqμandTqμj+1Tq=0.1,,[R2]\begin{gathered}\sum_{i=1}^{q}\frac{T_{q-\mu-1}^{(i)}}{t_{i}^{2j}p^{\prime}\left(t_{\imath}^{2}\right)}=\frac{(-1)^{q-1}}{T_{q}^{j}}\left\lvert\,\begin{array}[]{ccccc}T_{q-1}&T_{q}&0&0&\ldots\\ T_{q-2}&T_{q-1}&T_{q}&0&\ldots\\ \cdots&\cdots&\cdots&0\\ T_{q-j+1}&T_{q-i+2}&\cdots&\cdots&\cdots\\ T_{q-\mu-i}&T_{q-\mu-j+1}&\cdots&\cdots&T_{q}\\ &=0,1,\ldots,\left[\frac{r}{2}\right]\end{array}\right.\end{gathered}

This result can also be deduced from (117), taking into account (125). Formula (127) is valid as long as the deviations±tand\pm t_{i}are distinct. The formulas of the other types are obtained by making the deviationstand,and=1.2,,qt_{i},i=1,2,\ldots,q. tend, in groups, towards each other.
48. From (120) we deduce the symmetric formula (h1+h2=0h_{1}+h_{2}=0)

1R!f(R)(x0)=j=1[R2]f(R2and)(x0)(R2j)!h2j+12hR[f(x0+h)+(1)Rf(x0h)]h2DR+2[f].\frac{1}{r!}f^{(r)}\left(x_{0}\right)=-\sum_{j=1}^{\left[\frac{r}{2}\right]}\frac{f^{(r-2i)}\left(x_{0}\right)}{(r-2j)!h^{2j}}+\frac{1}{2h^{r}}\left[f\left(x_{0}+h\right)+(-1)^{r}f\left(x_{0}-h\right)\right]-h^{2}D_{r+2}[f].

This, forR=0,1,2,3,4r=0,1,2,3,4, gives us the symmetric formulas of degree of accuracy1,2,3,4,51,2,3,4,5,

 (F58) f(0)=12[f(h)+f](h)h2D2[f](1.0.0)( F59) f(0)=12h[f(h)f(h)]h2D3[f](1,1,0) F60) 12f"(0)=f(0)h2+12h2[f(h)+f(h)]h2D4[f](1,2,0) F61) 16f′′′(0)=f(0)h2+12h3[f(h)f(h)]h2D5[f](1,3,0) F62) 124fandV(0)=f(0)h4f"(0)2h2+12h4[f(h)+f(h)]h2D6[f](1.4.0)\begin{array}[]{ll}\text{ (F58) }f(0)=\frac{1}{2}[f(h)+f](-h)-h^{2}D_{2}[f]&(1,0,0)\\ \left(\text{ F59) }f^{\prime}(0)=\frac{1}{2h}[f(h)-f(-h)]-h^{2}D_{3}[f]\right.&(1,1,0)\\ \text{ F60) }\frac{1}{2}f^{\prime\prime}(0)=-\frac{f(0)}{h^{2}}+\frac{1}{2h^{2}}[f(h)+f(-h)]-h^{2}D_{4}[f]&(1,2,0)\\ \text{ F61) }\frac{1}{6}f^{\prime\prime\prime}(0)=-\frac{f^{\prime}(0)}{h^{2}}+\frac{1}{2h^{3}}[f(h)-f(-h)]-h^{2}D_{5}[f]&(1,3,0)\\ \text{ F62) }\frac{1}{24}f^{IV}(0)=-\frac{f(0)}{h^{4}}-\frac{f^{\prime\prime}(0)}{2h^{2}}+\frac{1}{2h^{4}}[f(h)+f(-h)]-h^{2}D_{6}[f]&(1,4,0)\end{array}

Apart from this, we also have the following symmetric formulas of degree of accuracy5\leq 5 :

Accuracy level 3:

 (F63) f(0)=you2[f(t)+f(t)]t2[f(you)+f(you)]2(you2t2)+t2you2D4[f](3.0.0)\text{ (F63) }f(0)=\frac{u^{2}[f(t)+f(-t)]-t^{2}[f(u)+f(-u)]}{2\left(u^{2}-t^{2}\right)}+t^{2}u^{2}D_{4}[f]\quad(-3,0,0)

(F64)f(0)=f(h)+f(h)2h4[f(h)f(h)]+h4D4[f]f(0)=\frac{f(h)+f(-h)}{2}-\frac{h}{4}\left[f^{\prime}(h)-f^{\prime}(-h)\right]+h^{4}D_{4}[f]
(F65)f"(0)=f(t)+f(t)f(you)f(you)t2you22(t2+you2)D4[f](3.0.2)f^{\prime\prime}(0)=\frac{f(t)+f(-t)-f(u)-f(-u)}{t^{2}-u^{2}}-2\left(t^{2}+u^{2}\right)D_{4}[f]\quad(3,0,2).
To these is added the formula (F49).
Degree of accuracy 4 :
(F66)f(0)=you3[f(t)f(t)]t3[f(you)f(you)]2yout(you2t2)+t2you2D5[f](3.1.0)f^{\prime}(0)=\frac{u^{3}[f(t)-f(-t)]-t^{3}[f(u)-f(-u)]}{2ut\left(u^{2}-t^{2}\right)}+t^{2}u^{2}D_{5}[f]\quad(3,1,0).
(F67)f′′′(0)=3you[f(t)f(t)]t[f(you)f(you)]yout(t2you2)6(t2+you2)D5[f].(3,1,2)f^{\prime\prime\prime}(0)=3\frac{u[f(t)-f(-t)]-t[f(u)-f(-u)]}{ut\left(t^{2}-u^{2}\right)}-6\left(t^{2}+u^{2}\right)D_{5}[f].(3,1,2)
To these are added the formulas (F26), (F30).
Accuracy level 5:
(F68)f(0)=you2n2(n2you2)[f(t)+f(t)](n2you2)(n2t2)(you2t2)t2you2n2D6[f]f(0)=\frac{\sum u^{2}\nu^{2}\left(\nu^{2}-u^{2}\right)[f(t)+f(-t)]}{\left(\nu^{2}-u^{2}\right)\left(\nu^{2}-t^{2}\right)\left(u^{2}-t^{2}\right)}-t^{2}u^{2}\nu^{2}D_{6}[f]
(F69)f(0)=you2(you22t2)[f(t)+f(t)]+t4[f(you)+f(you)]2(you2t2)2f(0)=\frac{u^{2}\left(u^{2}-2t^{2}\right)[f(t)+f(-t)]+t^{4}[f(u)+f(-u)]}{2\left(u^{2}-t^{2}\right)^{2}}-

you2t4(you2t2)[f(t)f(t)]t4you2D6[f]-\frac{u^{2}t}{4\left(u^{2}-t^{2}\right)}\left[f^{\prime}(t)-f^{\prime}(-t)\right]-t^{4}u^{2}D_{6}[f] (5,0,0)

(F70)f(0)=f(h)+f(h)25h16[f(h)f(h)]+f(0)=\frac{f(h)+f(-h)}{2}-\frac{5h}{16}\left[f^{\prime}(h)-f^{\prime}(-h)\right]+

+h216[f"(h)+f"(h)]h6D6[f]+\frac{h^{2}}{16}\left[f^{\prime\prime}(h)+f^{\prime\prime}(-h)\right]-h^{6}D_{6}[f] (5,0,0)

(F71)f"(0)=Σ(you4p4)[f(t)+f(t)](V2you2)(V2t2)(you2t2)+2(Σt2you2)D6[f]f^{\prime\prime}(0)=\frac{\Sigma\left(u^{4}-p^{4}\right)[f(t)+f(-t)]}{\left(v^{2}-u^{2}\right)\left(v^{2}-t^{2}\right)\left(u^{2}-t^{2}\right)}+2\left(\Sigma t^{2}u^{2}\right)D_{6}[f]
(F72)f"(0)=2t2(you2t2)2[f(t)+f(t)f(you)f(you)]+f^{\prime\prime}(0)=\frac{2t^{2}}{\left(u^{2}-t^{2}\right)^{2}}[f(t)+f(-t)-f(u)-f(-u)]+

you2+t22t(yout2t2)[f(t)f(t)]+2t2(t2+2you2)D6[/]\frac{u^{2}+t^{2}}{2t\left(ut^{2}-t^{2}\right)}\left[f^{\prime}(t)-f^{\prime}(-t)\right]+2t^{2}\left(t^{2}+2u^{2}\right)D_{6}[/] (5,0,2)

(F73)f"(0)=12Σ(V2you2)[f(t)+f(t)](V2you2)(V2t2)(you2t2)24(Σt2)D6[f]f^{\prime\prime}(0)=\frac{12\Sigma\left(v^{2}-u^{2}\right)[f(t)+f(-t)]}{\left(v^{2}-u^{2}\right)\left(v^{2}-t^{2}\right)\left(u^{2}-t^{2}\right)}-24\left(\Sigma t^{2}\right)D_{6}[f]
(F74)fandV(0)=12(you2t2)2[f(you)+f(you)f(t)f(t)]f^{IV}(0)=\frac{12}{\left(u^{2}-t^{2}\right)^{2}}[f(u)+f(-u)-f(t)-f(-t)]-

6t(you2t2)[f(t)f(t)]24(2t2+you2)D6[/]\frac{6}{t\left(u^{2}-t^{2}\right)}\left[f^{\prime}(t)-f^{\prime}(-t)\right]-24\left(2t^{2}+u^{2}\right)D_{6}[/] (5,0,4)

(F75)f"(0)=2you2+t2you2t2f(0)+you4[/(t)+f(t)]t4[f(you)f(you)]t2you2(you2t2)+f^{\prime\prime}(0)=-2\frac{u^{2}+t^{2}}{u^{2}t^{2}}f(0)+\frac{u^{4}[/(t)+f(-t)]-t^{4}[f(u)-f(-u)]}{t^{2}u^{2}\left(u^{2}-t^{2}\right)}+

+2t2you2D6[f]+2t^{2}u^{2}D_{6}[f] (3,2,0)

(F76)fandV(0)=24you2t2f(0)12you2[f(t)+f(t)]t2[f(you)+f(you)]t2you2(you2t2)f^{IV}(0)=\frac{24}{u^{2}t^{2}}f(0)-12\frac{u^{2}[f(t)+f(-t)]-t^{2}[f(u)+f(-u)]}{t^{2}u^{2}\left(u^{2}-t^{2}\right)}

24(t2+you2)D6[f]-24\left(t^{2}+u^{2}\right)D_{6}[f] (3,2,2)

To these are added formulas (F42), (F46), (F53) and (F57). Deviationsh,t,you,V,h,t,u,v,\ldotswhich in a formula are assumed to be different from each other and different from zero. The summation in formulas (F68), (F71) and (F73) refers to the circular permutations of the letterst,you,0t,u,0. For the sake of simplicity, I have also assumed herex0=0x_{0}=0.

Formulas with differences

  1. 49.

    We will briefly indicate how these formulas are obtained, without now worrying about the form of the remainder. If we use the previous notations, Newton's formula

IT(x1,x2,,xp+1;fx)=and=0p(xx1)(xx2)(xxand)[x1,x2,,xand+1;f]L\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x\right)=\sum_{i=0}^{p}\left(x-x_{1}^{\prime}\right)\left(x-x_{2}^{\prime}\right)\ldots\left(x-x_{i}^{\prime}\right)\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{i+1}^{\prime};f\right]

gives us

IT(m)(x1,x2,,xp+1;fx0)=\displaystyle L^{(m)}\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x_{0}\right)=
=m!and=mn(1)andmHand,andm[h1,h2,,hand+1;f(x0+x)]\displaystyle\quad=m!\sum_{i=m}^{n}(-1)^{i-m}H_{i,i-m}\left[h_{1},h_{2},\ldots,h_{i+1};f\left(x_{0}+x\right)\right]

because, taking into account (72), we have 1 )

[x1,x2,,xand+1;f(x)]=[h1,h2,,hand+1;f(x0+x)].\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{i+1}^{\prime};f(x)\right]=\left[h_{1},h_{2},\ldots,h_{i+1};f\left(x_{0}+x\right)\right].

We derive the following numerical derivation formula

f(m)(x0)=m!and=mn(1)andmHand,andm[h1,h2,,hand+1;f(x0+x)]+Rf^{(m)}\left(x_{0}\right)=m!\sum_{i=m}^{n}(-1)^{i-m}H_{i,i-m}\left[h_{1},h_{2},\ldots,h_{i+1};f\left(x_{0}+x\right)\right]+R (128)

If we use formula (21), we deduce
IT(x1,x2,,xp;fx)=IT(x0,x1,x2,,xp;fx)+L\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p}^{\prime};f\mid x\right)=L\left(x_{0},x_{1},x_{2}^{\prime},\ldots,x_{p}^{\prime};f\mid x\right)+

+(xp+1x0)(xx1)(xx2)(xxp)[x0,x1,x2,,xp+1;f]+\left(x_{p+1}^{\prime}-x_{0}\right)\left(x-x_{1}^{\prime}\right)\left(x-x_{2}^{\prime}\right)\ldots\left(x-x_{p}^{\prime}\right)\left[x_{0},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\right]

from where we obtain the numerical derivation formula

f(m)(x0)=\displaystyle f^{(m)}\left(x_{0}\right)= m!\displaystyle m! (129)
j=m1p1(1)andm+1Hand,andm+1[0,h1,h2,,hand+1;f(x0+x)]+\displaystyle\sum_{j=m-1}^{p-1}(-1)^{i-m+1}H_{i,i-m+1}\left[0,h_{1},h_{2},\ldots,h_{i+1};f\left(x_{0}+x\right)\right]+
+m!hp+1Hp,pm[0,h1,h2,,hp+1;f(x0+x)]+R\displaystyle+m!h_{p+1}H_{p,p-m}\left[0,h_{1},h_{2},\ldots,h_{p+1};f\left(x_{0}+x\right)\right]+R
  1. 1.

    For greater clarity, we also highlight the variablexxin the notation of the divided difference (and of the interpolation polynomial).

  1. 50.

    Let's see how we get to the case.R>0r>0From the general formula 1 )

IT(x1,x2,,xp+1;fgx)=\displaystyle L\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};fg\mid x\right)= (130)
=and=0pIT(x1,x2,,xp+1;itand(x)g(x)x)[x1,x2,,xand+1;f]\displaystyle\quad=\sum_{i=0}^{p}L\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};l_{i}(x)g(x)\mid x\right)\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{i+1}^{\prime};f\right]

ifx0x_{0}is different from the nodes, we deduce

IT(x1,x2,,xp+1;f(x)(xx0)R|x)=\displaystyle L\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};\left.\frac{f(x)}{\left(x-x_{0}\right)^{r}}\right\rvert\,x\right)=
=and=0pIT(x1,x2,,xp+1;itand(x)(xx0)R|x)[x1,x2,,xp+1;f]\displaystyle\quad=\sum_{i=0}^{p}L\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};\left.\frac{l_{i}(x)}{\left(x-x_{0}\right)^{r}}\right\rvert\,x\right)\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\right]

Taking into account formulas (86) and (113), we obtain

IT(m+R)(x0,x0,,x0,\displaystyle L^{(m+r)}(\underbrace{x_{0},x_{0},\ldots,x_{0},} x1,x2,,xp+1;fx0)=j=0R1candf(j)(x0)+\displaystyle\left.x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x_{0}\right)=\sum_{j=0}^{r-1}c_{i}f^{(j)}\left(x_{0}\right)+
+(m+R)!m!and=0pandand(R)[h1,h2,,hp+1;f(x0+x)]\displaystyle+\frac{(m+r)!}{m!}\sum_{i=0}^{p}I_{i}^{(r)}\left[h_{1},h_{2},\ldots,h_{p+1};f\left(x_{0}+x\right)\right]

where the coefficientsandand(R)I_{i}^{(r)}are given by the formula

andand(R)=IT(m)(x1,x2,,xp+1;itand(x)(xx0)R|x0),and=0.1,,pI_{i}^{(r)}=L^{(m)}\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};\left.\frac{l_{i}(x)}{\left(x-x_{0}\right)^{r}}\right\rvert\,x_{0}\right),\quad i=0,1,\ldots,p

From formula (130) it can also be deduced that
IT(x0,x1,x2,,xp+1;fgx)=IT(x0,x1,x2,,xp+1;gx)f(x0)+L\left(x_{0},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};fg\mid x\right)=L\left(x_{0},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};g\mid x\right)f\left(x_{0}\right)+

+(xx0)and=0pIT(x1,x2,,xp+1;itand(x)g(x)x)[x0,x1,x2,,xp+1;].+\left(x-x_{0}\right)\sum_{i=0}^{p}L\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};l_{i}(x)g(x)\mid x\right)\left[x_{0},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};\lceil].\right.

Replacing here the functiong(x)g(x)with(xx0)g(x)\left(x-x_{0}\right)g(x), we deduce)2\left.{}^{2}\right)
IT(x1,x2,,xp+1;fgx)=IT(x1,x2,,xp+1;gx)f(x0)+L\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};fg\mid x\right)=L\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};g\mid x\right)f\left(x_{0}\right)+

+and=0pIT(x1,x2,,xp+1;itand(x)(xx0)g(x)x)[x0,x1,x2,,xand++\sum_{i=0}^{p}L\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};l_{i}(x)\left(x-x_{0}\right)g(x)\mid x\right)\left[x_{0},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{i+}^{\prime}\right.

We therefore also have the formula

IT(x1,x2,,xp+1;f(x)(xx0)R|x)=IT(x1,x2,,xp+1;1(xx0)R|x)f(x0)+\displaystyle L\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};\left.\frac{f(x)}{\left(x-x_{0}\right)^{r}}\right\rvert\,x\right)=L\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};\left.\frac{1}{\left(x-x_{0}\right)^{r}}\right\rvert\,x\right)f\left(x_{0}\right)+
+and=0pIT(x1,x2,,xp+1;itand(x)(xx0)R1|x)[x0,x1,x2,,xand+1;f]\displaystyle\quad+\sum_{i=0}^{p}L\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};\left.\frac{l_{i}(x)}{\left(x-x_{0}\right)^{r-1}}\right\rvert\,x\right)\left[x_{0},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{i+1}^{\prime};f\right]

1 ) The equality results from the fact that the two polynomials of degreepp, from the first and second members, coincide in the nodesxandx_{i}^{\prime}.
2 ) We can proceed as in formula (130).

We deduce from this that, ifR>0r>0and ifx0x_{0}is different from nodes,

IT(m+R)(x0,x0,,x0R,x1,x2,,xp+1;fx0)=j=0R1cjf(j)(x0)++(m+R)!m!{and0(and)/(x0)+and=0pandand(R1)[0,h1,h2,,hand+1;f(x0+x)]}\begin{gathered}L^{(m+r)}(\underbrace{x_{0},x_{0},\ldots,x_{0}}_{r},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{p+1}^{\prime};f\mid x_{0})=\sum_{j=0}^{r-1}c_{j}f^{(j)}\left(x_{0}\right)+\\ +\frac{(m+r)!}{m!}\left\{I_{0}^{(i)}/\left(x_{0}\right)+\sum_{i=0}^{p}I_{i}^{(r-1)}\left[0,h_{1},h_{2},\ldots,h_{i+1};f\left(x_{0}+x\right)\right]\right\}\end{gathered}

Finally, we have the following numerical derivation formulas

f(m+R)(x0)=j=0R1cjf(j)(x0)+\displaystyle f^{(m+r)}\left(x_{0}\right)=\sum_{j=0}^{r-1}c_{j}f^{(j)}\left(x_{0}\right)+
+(m+R)!m!and=0RandandR)[h1,h2,,hand+1;f(x0+x)]+R\displaystyle+\frac{(m+r)!}{m!}\sum_{i=0}^{r}I_{i}^{r)}\left[h_{1},h_{2},\ldots,h_{i+1};f\left(x_{0}+x\right)\right]+R (131)
f(m+R)(x0)=j=0R1candf(j)(x0)+\displaystyle f^{(m+r)}\left(x_{0}\right)=\sum_{j=0}^{r-1}c_{i}f^{(j)}\left(x_{0}\right)+ (132)
+(m+R)!m!{and0(R)f(x0)+and=0nandand(R1)[0,h1,h2,,hand+1;f(x0+x)]+R.\displaystyle+\frac{(m+r)!}{m!}\left\{I_{0}^{(r)}f\left(x_{0}\right)+\sum_{i=0}^{n}I_{i}^{(r-1)}\left[0,h_{1},h_{2},\ldots,h_{i+1};f\left(x_{0}+x\right)\right]+R.\right.

What are the efficiencies?andand(R)I_{i}^{(r)}can be calculated using the recurrence formula

andand(R)=andand+1(R+1)+hand+1andand(R+1)(andp+1(R)=0)I_{i}^{(r)}=I_{i+1}^{(r+1)}+h_{i+1}I_{i}^{(r+1)}\left(I_{p+1}^{(r)}=0\right)

giving himRr, successively, the values1,0,1,2,-1,0,1,2,\ldotsand noting that

and0(0)=and1(0)==andm1(0)=0,andand(0)=m!(1)andmHand,andmand=m,m+1,,p.\begin{gathered}I_{0}^{(0)}=I_{1}^{(0)}=\ldots=I_{m-1}^{(0)}=0,I_{i}^{(0)}=m!(-1)^{i-m}H_{i,i-m}\\ i=m,m+1,\ldots,p.\end{gathered}

Coefficientscj,j=0.1,,R1c_{j},j=0,1,\ldots,r-1were calculated above.
51. Formula (131) is convenient, in particular, if the nodes are equidistant, and formula (132), if the nodes and the derivation point form an equidistant system.

To illustrate what has been said, we will consider a particular case.
Let us suppose thatR=0,m=1r=0,m=1, that the nodes are equidistant and symmetrical with respect toxxUsing the notations (94), putting

tand=(2and1)h,and=1.2,,qt_{i}=(2i-1)h,\quad i=1,2,\ldots,q (133)

and noting that

Hand,and1=h1h2hand(1h1+1h2++1hand)H_{i,i-1}=h_{1}h_{2}\ldots h_{i}\left(\frac{1}{h_{1}}+\frac{1}{h_{2}}+\ldots+\frac{1}{h_{i}}\right)

deduce

Hand,and1={0, for and hair (1)and121232(and2)2hand1, for and odd (H1.0=1)H_{i,i-1}=\left\{\begin{array}[]{cc}0,&\text{ pentru }i\text{ par }\\ (-1)^{\frac{i-1}{2}1^{2}\cdot 3^{2}}&\ldots(i-2)^{2}h^{i-1},\text{ pentru }i\text{ impar }\\ &\left(H_{1,0}=1\right)\end{array}\right.

Formula (128) becomes

f(x0)=and=1qH2and1.2and2[h1,h2,,h2and;f(x0+x)]+Rf^{\prime}\left(x_{0}\right)=\sum_{i=1}^{q}H_{2i-1,2i-2}\left[h_{1},h_{2},\ldots,h_{2i};f\left(x_{0}+x\right)\right]+R

Introducing the usual notation of differences and taking into account (94), (133), we deduce

[h1,h2,,h2and;f(x0+x)]=Δ2h2and1f(x0[2and1]h)(2and1)!(2h)2and1,and=1.2,,q.\left[h_{1},h_{2},\ldots,h_{2i};f\left(x_{0}+x\right)\right]=\frac{\Delta_{2h}^{2i-1}f\left(x_{0}-[2i-1]h\right)}{(2i-1)!(2h)^{2i-1}},i=1,2,\ldots,q.

If we also use relations (134), we finally have the numerical derivative formula

f(x0)=and=1q(1)and1(2and2)!(2and1)[(and1)!]224and3hΔ2h2and1/(x0[2and1]h)++1232(2q1)2h2qD2q+1[f]\begin{gathered}f^{\prime}\left(x_{0}\right)=\sum_{i=1}^{q}\frac{(-1)^{i-1}(2i-2)!}{(2i-1)[(i-1)!]^{2}2^{4i-3}h}\Delta_{2h}^{2i-1}/\left(x_{0}-[2i-1]h\right)+\\ +1^{2}\cdot 3^{2}\cdots(2q-1)^{2}h^{2q}D_{2q+1}[f]\end{gathered}

Let us assume that the nodes are symmetric with respect tox0x_{0}and that together with this point it forms a system of equidistant points. Then we can use formula (129).

Instead of (133) we take

Iand=andh,and=1.2,q\iota_{i}=ih,i=1,2,\ldots q

We then have

Hand,and={(1)and+12[(and12)!]2and+12hand, for and odd (1)and2[(and2)!]2hand, for and hair H_{i,i}=\left\{\begin{array}[]{l}(-1)^{\frac{i+1}{2}}\left[\left(\frac{i-1}{2}\right)!\right]^{2}\frac{i+1}{2}h^{i},\text{ pentru }i\text{ impar }\\ (-1)^{\frac{i}{2}}\left[\left(\frac{i}{2}\right)!\right]^{2}h^{i},\text{ pentru }i\text{ par }\end{array}\right.

and

[0,h1,h2,,hand+1;n]={Δhand+1/(x0and+12h)(and+1)!hand+1, for and odd Δhand+1/(x0and+22h)(and+1)!hand+1, for and hair \left[0,h_{1},h_{2},\ldots,h_{i+1};n\right]=\left\{\begin{array}[]{l}\frac{\Delta_{h}^{i+1}/\left(x_{0}-\frac{i+1}{2}h\right)}{(i+1)!h^{i+1}},\text{ pentru }i\text{ impar }\\ \frac{\Delta_{h}^{i+1}/\left(x_{0}-\frac{i+2}{2}h\right)}{(i+1)!h^{i+1}},\text{ pentru }i\text{ par }\end{array}\right.

and we derive the numerical derivation formula

f(x0)=and=0q1(1)and(and!)2(2and+1)!2h[2Δh2and+1f(x0[and+1]h)+\displaystyle f^{\prime}\left(x_{0}\right)=\sum_{i=0}^{q-1}\frac{(-1)^{i}(i!)^{2}}{(2i+1)!2h}\left[2\Delta_{h}^{2i+1}f\left(x_{0}-[i+1]h\right)+\right.
+Δh2and+2f(x0[and+1]h)]+(q!)2D2q+1[!]\displaystyle\left.\quad+\Delta_{h}^{2i+2}f\left(x_{0}-[i+1]h\right)\right]+(q!)^{2}D_{2q+1}[!]

Mathematical Sciences Department of the RPR Academy Branch, Cluj

1952

Related Posts