On the Remainder in Certain Quadrature Formulas

Abstract

Authors

Tiberiu Popoviciu
Institutul de Calcul

Keywords

?

Paper coordinates

T. Popoviciu, Sur le reste de certaines formules de quadrature, Aequationes Math., 2 (1968) no. 1, pp. 128-129 (short communication) (in French)

PDF

About this paper

Journal

Aequationes Math.

Publisher Name

 

DOI

http://doi.org/10.1007/BF01833507

Print ISSN

 

Online ISSN

 

[/vc_column]

Paper (preprint) in HTML form

1969 a -Popoviciu- Aeq. Math. - On the remainder of certain quadrature formulas - short communicati
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

On the rest of some quadrature formulas**)

Tiberiu Popoviciu

The rest R [ f ] R [ f ] R[f]R[f]R[f]of the quadrature formula
(1) has b f ( x ) d x = α = 1 n HAS α f ( x α ) + R [ f ] (1) has b f ( x ) d x = α = 1 n HAS α f x α + R [ f ] {:(1)int_(a)^(b)f(x)dx=sum_(alpha=1)^(n)A_(alpha)f(x_(alpha))+R[f]:}\begin{equation*} \int_{a}^{b} f(x) dx=\sum_{\alpha=1}^{n} A_{\alpha} f\left(x_{\alpha}\right)+R[f] \tag{1} \end{equation*}(1)hasbf(x)dx=α=1nHASαf(xα)+R[f]
where the nodes x α x α x_(alpha)x_{\alpha}xαof the real axis are distinct and the HAS α HAS α A_(alpha)A_{\alpha}HASαare given real constants, is of the form
(2) R [ f ] = HAS [ ξ 1 , ξ 2 , , ξ m + 2 ; f ] + B [ ξ 1 , ξ 2 , , ξ m + 2 ; f ] (2) R [ f ] = HAS ξ 1 , ξ 2 , , ξ m + 2 ; f + B ξ 1 , ξ 2 , , ξ m + 2 ; f {:(2)R[f]=A[xi_(1),xi_(2),dots,xi_(m+2);f]+B[xi_(1)^('),xi_(2)^('),dots,xi_(m+2)^(');f]:}\begin{equation*} R[f]=A\left[\xi_{1}, \xi_{2}, \ldots, \xi_{m+2}; f\right]+B\left[\xi_{1}^{\prime}, \xi_{2}^{\prime}, \ldots, \xi_{m+2}^{\prime}; f\right] \tag{2} \end{equation*}(2)R[f]=HAS[ξ1,ξ2,,ξm+2;f]+B[ξ1,ξ2,,ξm+2;f]
The function f f fffis assumed to be continuous, m m mmmis the degree of accuracy of formula (1), the points ξ α ξ α xi_(alpha)\xi_{\alpha}ξαon the one hand and the points ξ α ξ α xi_(alpha)^(')\xi_{\alpha}^{\prime}ξαon the other hand, are distinct but generally depend on the function f f fff. The constants HAS , B HAS , B A,BA, BHAS,Bare independent of the function f f fff. Finally [ y 1 , y 2 , , y r ; f ] y 1 , y 2 , , y r ; f [y_(1),y_(2),dots,y_(r);f]\left[y_{1}, y_{2}, \ldots, y_{r}; f\right][y1,y2,,yr;f]denotes the divided difference, of order r 1 r 1 r-1r-1r1, of the function f f fffon the knots y 1 , y 2 , , y r y 1 , y 2 , , y r y_(1),y_(2),dots,y_(r)y_{1}, y_{2}, \ldots, y_{r}y1,y2,,yr.
When in (2) we can take B = 0 B = 0 B=0B=0B=0the rest R [ f ] R [ f ] R[f]R[f]R[f](or the quadrature formula (1)) is said to be of the simple form. This latter notion is closely linked to the theory of higher-order convex functions [1].
In the present work we show how, under well-specified hypotheses, in the case where the remainder is not of the simple form, we can re-establish a sort of simplicity by a suitable generalization of the notion of divided difference and of the corresponding convexity.
[1] Popoviciu, Tiberiu, Mathematica 1 (24), 95-142 1959.

Endomorphism ring in the Galoisschen Theory *)

Wolfgang Krull

Es sei N N NNNein beliebiger Körper. Jedem c N c N c in Nc \in NcNwerde der durch ,, c has = c has c has = c has c^(')a=c*ac^{\prime} a=c \cdot achas=chasfor all has N has N a inN^('')a \in N^{\prime \prime}hasNfestgelegte Endomorphismus c c c^(')c^{\prime}cthe additive group N N NNNzugeordnet. Dann gilt: Allgemeinster Unabhängigkeitssatz: Sindh HAS 1 , HAS n HAS 1 , HAS n A_(1),dotsA_(n)A_{1}, \ldots A_{n}HAS1,HASnIt is possible to change the Automorphism of the Körpers (and the Endomorphism of the Additive Group) N N NNN, so folgt aus, ( i = 1 n c i HAS i ) α = 0 i = 1 n c i HAS i α = 0 (sum_(i=1)^(n)c_(i)^(')A_(i))alpha=0\left(\sum_{i=1}^{n} c_{i}^{\prime} A_{i}\right) \alpha=0(i=1nciHASi)α=0for all α N α N alpha inN^('')\alpha \in N^{\prime \prime}αNstets c 1 = = c n = 0 c 1 = = c n = 0 c_(1)^(')=cdots=c_(n)^(')=0c_{1}^{\prime}=\cdots=c_{n}^{\prime}=0c1==cn=0. - Der Beweis arbeitet mit der Vandermondeschen Determinante; It is a construction and a fully-fledged element. - This is what I'm doing N N NNNseparabel und normal über K K KKKwith the Galois group G = { HAS 1 , , HAS n } G = HAS 1 , , HAS n G={A_(1),dots,A_(n)}G=\left\{A_{1}, \ldots, A_{n}\right\}G={HAS1,,HASn}. It's a lovely thing to do. L L LLLzwischen N N NNNand K K KKKwerde L = { c c L } L = c c L L^(')={c^(')∣c in L}L^{\prime}=\left\{c^{\prime} \mid c \in L\right\}L={ccL}gesetzt. Nach Artin betrachtet et man schon in der elementaren Galoisschen Theorie den Ring K G K G K_(G)^(')K_{G}^{\prime}KGgo Endomorphisms { i = 1 n has i HAS i has i K } i = 1 n has i HAS i has i K {sum_(i=1)^(n)a_(i)^(')A_(i)∣a_(i)in K}\left\{\sum_{i=1}^{n} a_{i}^{\prime} A_{i} \mid a_{i} \in K\right\}{i=1nhasiHASihasiK}, der zum Gruppenring von G G GGGüber K K KKKisomorph ist. Angesichts des allgemeinsten Unabhängigkeitssatzes erscheint es angebracht, neben K G K G K_(G)^(')K_{G}^{\prime}KGgleich auch den Ring N G N G N_(G)^(')N_{G}^{\prime}NGgo Endomorphisms { i = 1 n c i HAS i c N } i = 1 n c i HAS i c N {sum_(i=1)^(n)c_(i)^(')A_(i)∣c^(')in N}\left\{\sum_{i=1}^{n} c_{i}^{\prime} A_{i} \mid c^{\prime} \in N\right\}{i=1nciHASicN}einzuführen. N G N G N_(G)^(')N_{G}^{\prime}NGist a Vektorraum der Dimension n 2 n 2 n^(2)n^{2}n2über K K K^(')K^{\prime}K, aber nicht zum Gruppenring von G G GGGüber N N NNNisomorph, weil ia HAS i c = ( HAS i c ) HAS i c HAS i HAS i c = HAS i c HAS i c HAS i A_(i)c^(')=(A_(i)c)^(')A_(i)!=c^(')A_(i)A_{i} c^{\prime}=\left(A_{i} c\right)^{\prime} A_{i} \neq c^{\prime} A_{i}HASic=(HASic)HASicHASi. Definiert man für den Körper L L LLLdas Rechtsideal R G , L R G , L R_(G,L)^(')R_{G, L}^{\prime}RG,Lfrom N G N G N_(G)^(')N_{G}^{\prime}NGthrough R G , L = { ϕ ϕ c L R G , L = { ϕ ϕ c L R_(G,L)^(')={phi∣phi c in L\mathrm{R}_{G, L}^{\prime}=\{\phi \mid \phi c \in LRG,L={ϕϕcLfor all c N } c N } c in N}c \in N\}cN}, so gelten die Sätze: Es ist R G , L R G , L R_(G,L)^(')R_{G, L}^{\prime}RG,Lgleich of the Komplexprodukt L R G , K L R G , K L^(')*R_(G,K)^(')L^{\prime} \cdot R_{G, K}^{\prime}LRG,Kerzeugten additiven

  1. *) Received December 12, 1967
    **) Received on 12.12.1967
  2. *) Entries on 13.12.1967

google scholar link

1968

Related Posts