The functionffis assumed to be continuous,mmis the degree of accuracy of formula (1), the pointsxi_(alpha)\xi_{\alpha}on the one hand and the pointsxi_(alpha)^(')\xi_{\alpha}^{\prime}on the other hand, are distinct but generally depend on the functionff. The constantsA,BA, Bare independent of the functionff. Finally[y_(1),y_(2),dots,y_(r);f]\left[y_{1}, y_{2}, \ldots, y_{r}; f\right]denotes the divided difference, of orderr-1r-1, of the functionffon the knotsy_(1),y_(2),dots,y_(r)y_{1}, y_{2}, \ldots, y_{r}.
When in (2) we can takeB=0B=0the restR[f]R[f](or the quadrature formula (1)) is said to be of the simple form. This latter notion is closely linked to the theory of higher-order convex functions [1].
In the present work we show how, under well-specified hypotheses, in the case where the remainder is not of the simple form, we can re-establish a sort of simplicity by a suitable generalization of the notion of divided difference and of the corresponding convexity.
[1] Popoviciu, Tiberiu, Mathematica 1 (24), 95-142 1959.
Endomorphism ring in the Galoisschen Theory *)
Wolfgang Krull
Es seiNNein beliebiger Körper. Jedemc in Nc \in Nwerde der durch ,,c^(')a=c*ac^{\prime} a=c \cdot afor alla inN^('')a \in N^{\prime \prime}festgelegte Endomorphismusc^(')c^{\prime}the additive groupNNzugeordnet. Dann gilt: Allgemeinster Unabhängigkeitssatz: SindhA_(1),dotsA_(n)A_{1}, \ldots A_{n}It is possible to change the Automorphism of the Körpers (and the Endomorphism of the Additive Group)NN, so folgt aus,(sum_(i=1)^(n)c_(i)^(')A_(i))alpha=0\left(\sum_{i=1}^{n} c_{i}^{\prime} A_{i}\right) \alpha=0for allalpha inN^('')\alpha \in N^{\prime \prime}stetsc_(1)^(')=cdots=c_(n)^(')=0c_{1}^{\prime}=\cdots=c_{n}^{\prime}=0. - Der Beweis arbeitet mit der Vandermondeschen Determinante; It is a construction and a fully-fledged element. - This is what I'm doingNNseparabel und normal überKKwith the Galois groupG={A_(1),dots,A_(n)}G=\left\{A_{1}, \ldots, A_{n}\right\}. It's a lovely thing to do.LLzwischenNNandKKwerdeL^(')={c^(')∣c in L}L^{\prime}=\left\{c^{\prime} \mid c \in L\right\}gesetzt. Nach Artin betrachtet et man schon in der elementaren Galoisschen Theorie den RingK_(G)^(')K_{G}^{\prime}go Endomorphisms{sum_(i=1)^(n)a_(i)^(')A_(i)∣a_(i)in K}\left\{\sum_{i=1}^{n} a_{i}^{\prime} A_{i} \mid a_{i} \in K\right\}, der zum Gruppenring vonGGüberKKisomorph ist. Angesichts des allgemeinsten Unabhängigkeitssatzes erscheint es angebracht, nebenK_(G)^(')K_{G}^{\prime}gleich auch den RingN_(G)^(')N_{G}^{\prime}go Endomorphisms{sum_(i=1)^(n)c_(i)^(')A_(i)∣c^(')in N}\left\{\sum_{i=1}^{n} c_{i}^{\prime} A_{i} \mid c^{\prime} \in N\right\}einzuführen.N_(G)^(')N_{G}^{\prime}ist a Vektorraum der Dimensionn^(2)n^{2}überK^(')K^{\prime}, aber nicht zum Gruppenring vonGGüberNNisomorph, weil iaA_(i)c^(')=(A_(i)c)^(')A_(i)!=c^(')A_(i)A_{i} c^{\prime}=\left(A_{i} c\right)^{\prime} A_{i} \neq c^{\prime} A_{i}. Definiert man für den KörperLLdas RechtsidealR_(G,L)^(')R_{G, L}^{\prime}fromN_(G)^(')N_{G}^{\prime}throughR_(G,L)^(')={phi∣phi c in L\mathrm{R}_{G, L}^{\prime}=\{\phi \mid \phi c \in Lfor allc in N}c \in N\}, so gelten die Sätze: Es istR_(G,L)^(')R_{G, L}^{\prime}gleich of the KomplexproduktL^(')*R_(G,K)^(')L^{\prime} \cdot R_{G, K}^{\prime}erzeugten additiven
*) Received December 12, 1967
**) Received on 12.12.1967