Abstract
The aim of this paper is to extend the graphic contraction principle, well-known for self operators, to non-self operators. Data dependence of fixed points results for non self operators are also discussed. The results complement and extend results given in the paper: V. Ilea, A. Novac, D. Otrocol, Fixed point results for non-self operators on Rm+-metric spaces, Fixed Point Theory, 26 (2025) no. 1, 177-188.
Authors
Veronica Ilea
Babes-Bolyai University, Department of Mathematics, Romania
Adela Novac
Technical University of Cluj-Napoca, Department of Mathematics, Romania
Diana Otrocol
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
Keywords
Rm+-metric spaces, fixed point, weakly Picard operator, non-self operator, data dependence of fixed point
Paper coordinates
V. Ilea, A. Novac, D. Otrocol, Fixed point results for weakly Picard non-self operators in Rm+-metric spaces, Fixed Point Theory, 26(2025) no. 2, 553-562
DOI: http://doi.org/10.24193/fpt-ro.2025.2.13
??
About this paper
Journal
Publisher Name
DOI
Print ISSN
Online ISSN
google scholar link
[1] V. Berinde, S. M˘aru¸ster, I.A. Rus, Saturated contraction principles for non-self operators, generalizations and applications, Filomat, 31-11(2017), 3391-3406.
[2] V. Berinde, A. Petru¸sel, I.A. Rus, Remarks on the terminology of the mappings in fixed point iterative methods in metric space, Fixed Point Theory, 24(2023), no. 2, 525-540.
[3] A. Chi¸s-Novac, R. Precup, I.A. Rus, Data dependence of fixed points for non-self generalized contractions, Fixed Point Theory, 10(2009), no. 1, 73-87.
[4] L.B. Ciric, Generalized contraction and fixed point theorems, Publ. Inst. Math., 12(1971), 19-26.
[5] V. Ilea, A. Novac, D. Otrocol, Fixed point results for non-self operators on Rm-metric spaces, Fixed Point Theory, 26(2025), no. 1, 177-188.
[6] V. Ilea, D. Otrocol, I.A. Rus, M.A. S¸erban, Applications of fibre contraction principle to some classes of functional integral equations, Fixed Point Theory, 23(2022), no. 1, 279-292.
[7] J.M. Ortega, W.C. Reinboldt, On a class of approximative iterative processes, Arch. Rat. Mech. Anal., 23(1967), 352-365.
[8] A. Petru¸sel, I.A. Rus, Graphic contractions principle and applications, 395-416. In: Th. M. Rassias (ed.), Mathematical Analysis and Applications, Springer, 2019.
[9] B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226(1977), 257-290.
[10] I.A. Rus, On the method of successive approximations, Revue Roum. Math. Pures et Appl., 17 (1972), 1433-1437.
[11] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
[12] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58(2003), no. 1, 191-219.
[13] I.A. Rus, Metric space with fixed point property with respect to contractions, Stud. Univ. Babe¸sBolyai Math., 51(2006), no. 3, 115-121.
[14] I.A. Rus, The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory, 9(2008), no. 2, 541-559.
[15] I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babes-Bolyai Math., 61(2016), no. 3, 343-358.
[16] I.A. Rus, Relevant classes of weakly Picard operators, Anal. Univ. de Vest Timi¸soara Math. Inform., 54(2016), 2-19.
[17] I.A. Rus, A. Petru¸sel, G. Petru¸sel, Fixed Point Theory, Cluj University Press, Cluj-Napoca 2008.
[18] I.A. Rus, A. Petru¸sel, M.A. S¸erban, Weakly Picard Operators: Equivalent definitions, applications and open problems, Fixed Point Theory, 7(2006), no. 1, 3-22.
[19] I.A. Rus, M.A. Serban, Some generalizations of a Cauchy lemma and applications, Topics in Mathematics, Computer Science and Philosophy, Presa Universitar˘a Clujeana, 2008, 173-181.
[20] M.A. S¸erban, Fibre contraction theorem in generalized metric spaces, Automat. Comput. Appl. Math., 16(2007), no. 1, 139-144.