Notes on higher-order convex functions (X)

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Notes sur les fonctions convexes d’ordre supérieur (X), Ann. Sci. Univ. Iassy, 28 (1942), pp. 161-207 (in French).

PDF

About this paper

Journal

Ann. Sci. Univ. Iassy

Publisher Name
DOI
Print ISSN
Online ISSN

[MR0019679, Zbl 0060.14910]

google scholar link

??

Paper (preprint) in HTML form

(Manthematics, Physics, Chemistry)

Volume XXVIII, Year 1942

Booklet 1.

TABLE OF CONTENTS

Pages
BARBILIAN C. - v. BOGDAN H.
BEDREAG CG - Das Element23993\frac{239}{93}as uranide in the natural system of elements

  • Structure and natural systematics of the elements 143-148

  • Nuclear Stability II

BOGDAN CP - On the asymptotic lines of the Steiner surface.

BOGDAN H. (M-elle) and BARBILIAN C. - Combinations of the acid (H2\mathrm{H}_{2}(SNC) 3 ) H with some organic bases

CERNATESCU R. - v. PONI MP (Ms)
CLIMESCU AL. C. - On the class of analytical functions which keep the half-planes determined by the real axis

COZUBSCHI E. (Ms.) - The action of isothiocyanates on benzoinoximes

GHEORGHIU C. V, and STOICESCU L. (M-me) - Condensation products of hydrogen derivatives with thio-2-phenyl-3-ethoxy-4-tetra-hydro-1, 2, 3, 4quinazoline

PAPAFIL E. - The action of phenyl isothiocyanate on the oximes of cyclic ketones

PAPAFIL E. and PAPAFIL M. (M-me). - Mercury salts with isomeric phenylenediamines

PAPPHIL M. (M-m). - v. PAPAFIL E.
PONI MP (M-11th) and CERNATESCU R. - Acid neutral saltsPSO7H3\mathrm{PSO}_{7}\mathrm{H}_{3}

POPOVICIU T. - Notes on higher order convex functions

  • On the approximation of continuous functions of a real variable by polynomials

SIADBEI V. - On the determination of the points of convergence of Kapteyn's star currents,

STOICESCU N. (M-me). - v. GEORGE CV
TRIANDAF L. (M-me). - Lithium meta-arsenite

NOTES ON HIGHER ORDER CONVEX FUNCTIONS (X)

On some properties of divided differences and Lagrange polynomials.

Consider a functionf=f(x)f=f(x), real, of the real variablexx, defined on a linear setANDE. To any group ofn+1n+1points ofANDEwe can attach the Lagrange polynomial for the functionff, therefore the polynomial of minimum degree which takes the same values ​​as this function at the points considered.

AssumingANDEfinished, in § 3 we study the problem of Lagrange polynomials which are majorant (or minorant) for the functionff. A polynomialP(x)P(x)is majorant for the functionf(x)f(x)are you him and

P(x)f(x),xANDP(x)\geq f(x),\quad x\in E

We establish the necessary and sufficient conditions for a Lagrange polynomial, attached to a given group of points ofANDE, solt majorant for the functionff. We deduce from this, for any functionff, the existence of at least one upper bound Lagrange polynomial of given degree.

Always assumingANDEfinished, in § 4 we look for whether a non-concave function of orderkkcan admit a Lagrange polynomial of given degreennwhich is also non-concave in orderkkonANDE. Fork=1k=-1, so for the case of non-negativity, the answer, always affirmative, is a consequence of the results of § 3. This is no longer the case fork0k\geq 0. In this case, ifkkAndnnare of different parities there
always exists at least one Lagrange polynomial of degreennwhich is also non-concave in orderkkonANDE. But, ifkkAndnnare of the same parity, we demonstrate by an example that the property may not be true. In the latter case the problem of existence depends not only on the functionffbut also the distribution of points ofANDEWe conclude this § with a more detailed study of some simple particular cases.

In § 5 we say a few words about the problems dealt with in §§ 3 and 4 in the case whereANDEis a finite and closed interval. This case is quite different from the previous one, therefore from the one whereANDEis finished. We will only give a few indications on these problems.

In § 1 we recall some well-known definitions and formulas and in § 2 we give some new properties which are used later.

The problems we pose in this work raise many others. We hope that the simple cases, which are also the easiest, that we have presented, are sufficient to show the interest of these questions.

§ 1.

Some preliminary properties and formulas 1 ).

  1. 1.
    • We will consider only real, uniform and finite functions of the real variablexx.

Eitherf=f(x)f=f(x)such a function, defined on then+1n+1distinct points

x1,x2,,xn+1.x_{1},x_{2},\ldots,x_{n+1}. (1)

The divided difference of the functionffon points (1) is completely characterized by the following three properties
I. It is a linear functional offf.
II. It is zero for functionsf=1,x,x2,,xn1f=1,x,x^{2},\ldots,x^{n-1}.
III. It is equal to 1 for the functionf=xnf=x^{n}.

Property I means that the divided difference is of the form

00footnotetext: 1. For further details and proofs, see my earlier works. In particular; "On some properties of functions of one or two real variables". Mathematica, 8, 1-85 (1934) and "Introduction to the theory of divided differences". Bull, Math, Soc. Roumaine des Sci,, 42, 65-78 [1941]
i=1n+1lif(xi),\sum_{i=1}^{n+1}\lambda_{i}f\left(x_{i}\right),

li\lambda_{i}being independent of the functionff. Properties II, III then completely determine these coefficients.

We will designate, as usual, by
(2)

[x1,x2,,xn+1;f],\left[x_{1},x_{2},\ldots,x_{n+1};f\right],

or also by

[x1,x2,,xn+1;f(x)],\left[x_{1},x_{2},\ldots,x_{n+1};f(x)\right],

the divided difference thus defined.
We have the following formulas
(3)

[x1,x2,,xn+1;xr]={0,r=0,1,,n1,1,r=n1\left[x_{1},x_{2},\ldots,x_{n+1};x^{r}\right]=\left\{\begin{array}[]{l}0,r=0,1,\ldots,n-1,\\ 1,r=n_{1}\end{array}\right.

(4)

[x1,x2,,xn+1;Cf]=C[x1,x2,,xn+1;f],\left[x_{1},x_{2},\ldots,x_{n+1};Cf\right]=C\left[x_{1},x_{2},\ldots,x_{n+1};f\right],

(5) [x1,x2,,xn+1;f+g]=[x1,x9,,xn+1;f]+[x1,x2,,xn+1;g]\left[x_{1},x_{2},\ldots,x_{n+1};f+g\right]=\left[x_{1},x_{9},\ldots,x_{n+1};f\right]+\left[x_{1},x_{2},\ldots,x_{n+1};g\right], OrCCis a constant andf,gf,gtwo functions defined on (1).

The divided difference (2) can also be put in the form of a quotient of two determinants of ordern+1n+1,

[x1,x2,,xn+1;f]=IN(x1,x2,,xn+1;f)In(x1,x2,,xn+1)\left[x_{1},x_{2},\ldots,x_{n+1};f\right]=\frac{U\left(x_{1},x_{2},\ldots,x_{n+1};f\right)}{V\left(x_{1},x_{2},\ldots,x_{n+1}\right)} (6)

Or

IN(x1,x2,,xn+1;f)=|1xixi2xin1f(xi)|U\left(x_{1},x_{2},\ldots,x_{n+1};f\right)=\left|1x_{i}x_{i}^{2}\ldots x_{i}^{n-1}f\left(x_{i}\right)\right|

And

In(x1,x2,,xn+1)=IN(x1,x2,xn+1;xn)==i,j=1i>jn+1(xixj)=i=2n+1(xixi1)(xixi2)(xix1)\begin{gathered}V\left(x_{1},x_{2},\ldots,x_{n+1}\right)=U\left(x_{1},x_{2},\ldots x_{n+1};x^{n}\right)=\\ =\prod_{\begin{subarray}{c}i,j=1\\ i>j\end{subarray}}^{n+1}\left(x_{i}-x_{j}\right)=\prod_{i=2}^{n+1}\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i-2}\right)\ldots\left(x_{i}-x_{1}\right)\end{gathered}

is the Vandermonde determinant of numbersxix_{i}.
La formule (3) peut se compléter par les suivantes, correspondantes aux valeurs -1 et n+1n+1 de rr,

[x1,x2,,xn+1;1x]\displaystyle{\left[x_{1},x_{2},\ldots,x_{n+1};\frac{1}{x}\right]} =(1)nx1x2xn+1\displaystyle=\frac{(-1)^{n}}{x_{1}x_{2}\ldots x_{n+1}} (7)
[x1,x2,,xn+1;xn+1]\displaystyle{\left[x_{1},x_{2},\ldots,x_{n+1};x^{n+1}\right]} =x1+x2++xn+1\displaystyle=x_{1}+x_{2}+\cdots+x_{n+1} (8)

La différence divisée (2) est symétrique par rapport aux points (1).
2. - Considérons maintenant une fonction ff définie sur un ensemble linéaire quelconque EE. Sur tout groupe de n+1n+1 points (1) de EE on peut définir la différence divisée. Nous disons qu’une différence divisée définie sur n+1n+1 points est d’ordre nn. Si, en particulier, l’ensemble EE est fini et est formé par mm points

x1,x2,,xmx_{1},x_{2},\ldots,x_{m} (9)

la fonction ff a des différences divisées d’ordre 0,1,m10,1\ldots,m-1. En tout, la fonction a (mn+1)\binom{m}{n+1} différences divisées d’ordre n(mn+1)n(m\geq n+1). Si l’ensemble EE est infini la fonction a des différences divisées de tout ordre. Par définition, la différence divisée d’ordre 0 sur le point xix_{i} est la valeur f(xi)f\left(x_{i}\right) de la fonction en ce point,

[xi;f]=f(xi).\left[x_{i};f\right]=f\left(x_{i}\right).

Si nous posons
(10)

φ(x)=(xx1)(xx2)(xxn+1)\varphi(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)\ldots\left(x-x_{n+1}\right)

nous avons

[x1,x2,,xn+1;f]=i=1n+1f(xi)φ(xi)\left[x_{1},x_{2},\ldots,x_{n+1};f\right]=\sum_{i=1}^{n+1}\frac{f\left(x_{i}\right)}{\varphi^{\prime}\left(x_{i}\right)} (11)

φ\varphi^{\prime} est la dérivée du polynome φ1\varphi^{1} ).
A l’aide de la formule (11) il est facile d’établir la formule de récurrence des différences divisées,

[x1,x2,,xn+1;f]=[x2,x3,,xn+1;f][x1,x2,,xn;f]xn+1x1\left[x_{1},x_{2},\ldots,x_{n+1};f\right]=\frac{\left[x_{2},x_{3},\ldots,x_{n+1};f\right]-\left[x_{1},x_{2},\ldots,x_{n};f\right]}{x_{n+1}-x_{1}} (12)
00footnotetext: 1. La dérivation est ici une opération linéaire applicable aux polynomes et telle que (xn)=nxn1.(xn)^{\prime}=nx^{n-1}.

On prend d’habitude cette formule comme définition des différences divisées de divers ordres 1 ).

La formule (11) permet aussi d’établir la suivante

[x1,x2,,xn+1;f]=[x1,x2,,xr;f(x)(xxr+1)(xxr+1)(xxn+1)]+\left[x_{1},x_{2},\ldots,x_{n+1};f\right]=\left[x_{1},x_{2},\ldots,x_{r};\frac{f(x)}{\left(x-x_{r+1}\right)\left(x-x_{r+1}\right)\ldots\left(x-x_{n+1}\right)}\right]+
+[xr+1,xr+1,,xn+1;f(x)(xx1)(xx2)(xxr)]+\left[x_{r+1},x_{r+1},\ldots,x_{n+1};\frac{f(x)}{\left(x-x_{1}\right)\left(x-x_{2}\right)\ldots\left(x-x_{r}\right)}\right] (§13))

Les formules (3), (4) et (5) nous montrent que la différence divisée d’ordre nn d’un polynome de degré <n<n est constamment nulle et la différence divisée d’ordre nn du polynome c0xn+c1xn1+c_{0}x^{n}+c_{1}x^{n-1}+\cdots est constamment égale à c02c_{0}{}^{2} ).

Remarquons aussi la formule suivante
(14) [x1+h,x2+h,,xn+1+h;f(x)]=[x1,x2,,xn+1;f(x÷h)]\left[x_{1}+h,x_{2}+h,\ldots,x_{n+1}+h;f(x)\right]=\left[x_{1},x_{2},\ldots,x_{n+1};f(x\div h)\right].
3. - La formule (5) donne la différence divisée d’une somme de deux fonctions. De même, nous avons la formule
(15) [x1,x2,,xn+1;fg]=i=1n+1[x1,x2,,xi;f][xi,xi+1,,xn+1;g]\left[x_{1},x_{2},\ldots,x_{n+1};fg\right]=\sum_{i=1}^{n+1}\left[x_{1},x_{2},\ldots,x_{i};f\right]\left[x_{i},x_{i+1},\ldots,x_{n+1};g\right], qui donne la différence divisée du produit de deux fonctions ff et g. C’est la formule de Leibniz des différences divisées.

Considérons une fonction ff définie sur l’ensemble fini (9). Pour simplifier nous posons
(16) Δji(f)=[xi,xi+1,,xi+j;f],j=0,,m1,i=1,2,,m\Delta_{j}^{i}(f)=\left[x_{i},x_{i+1},\ldots,x_{i+j};f\right],j=0,\ldots,m-1,i=1,2,\ldots,m, et

Ψi,j+1=(x)i,j+1=(xxi)(xxi+1)(xxi+j),φi,0=1,\displaystyle\Psi_{i,j+1}={}_{i,j+1}(x)=\left(x-x_{i}\right)\left(x-x_{i+1}\right)\ldots\left(x-x_{i+j}\right),\varphi_{i,0}=1, (17)
j=0,,mi,i=1,2,m.\displaystyle j=0,\ldots,m-i,i=1,2\ldots,m.
  1. 1.

    C’est de cette façon que A. M. AMPÈRE a, pour la première foís, introduit les différences divisées. Voir N. E. Nörlund, „Differenzenrechnung", J. Springer, Berlin 1924.

  2. 2.

    Toute fonction de la foxme c0xn+c1xn1+c_{0}x^{n}+c_{1}x^{n-1}+\cdots est un polynome de degré nn, Si c 0*\neq 0, ce polynome est de degré effectif nn ; co est le premier coefficient du polynome. On voit que la notion de premier coefficient est relative au degré et non pas au degré effectif du polynome, La constante 0 est un polynome de degré - 1 ou de degré effectif - 1 .

Nous avons donc, compte tenant de (11),

Δji(f)=r=ii+jf(xr)φi,j+1(xr).\Delta_{j}^{i}(f)=\sum_{r=i}^{i+j}\frac{f\left(x_{r}\right)}{\varphi_{i,j+1}^{\prime}\left(x_{r}\right)}. (18)

Avec cette notation, la formule (15), pour mm points, devient

Δm11(fg)=i=1mΔmii(g)Δi11(f)\Delta_{m-1}^{1}(fg)=\sum_{i=1}^{m}\Delta_{m-i}^{i}(g)\Delta_{i-1}^{1}(f) (19)

Remarquons que si la fonction gg est donnée, Δm11(fg)\Delta_{m-1}^{1}(fg) est une fonctionnelle linéaire de ff. Réciproquement, toute fonctionnelle linéaire de ff,

F[f]=i=1mλif(xi),F[f]=\sum_{i=1}^{m}\lambda_{i}f\left(x_{i}\right), (20)

définie pour les fonctions ff définies sur l’ensemble fini (9), peut s’écrire sous la forme d’une différence divisée d’ordre m1m-1 du produit ff. gg, en déterminant convenablement la fonction g. Prenons, en effet,

g(xi)=λi(xix1)[xix2)(xixm)=λiψ1,m(xi)\displaystyle g\left(x_{i}\right)=\frac{\lambda_{i}}{\left(x_{i}-x_{1}\right)\left[x_{i}-x_{2}\right)\ldots\left(x_{i}-x_{m}\right)}=\frac{\lambda_{i}}{\psi_{1,m}^{\prime}\left(x_{i}\right)} (21)
i=1,2,,m\displaystyle i=1,2,\ldots,m

et nous avons alors

F[f]=Δm11(fg)=[x1,x3,xm;fg].F[f]=\Delta_{m-1}^{1}(fg)=\left[x_{1},x_{3},\ldots x_{m};fg\right]. (22)
  1. 4.
    • La fonctionnelle linéaire (20) peut s’écrire sous la forme

F[f]=i=1nui(n)Δi11(f)+i=1mnvi(n)Δnl(f),(mn+1),F[f]=\sum_{i=1}^{n}u_{i}^{(n)}\Delta_{i-1}^{1}(f)+\sum_{i=1}^{m-n}v_{i}^{(n)}\Delta_{n}^{l}(f),\quad(m\geq n+1), (23)

où les coefficients μi(n),vi(n)\mu_{i}^{(n)},v_{i}^{(n)} sont indépendants de la fonction ff. Ces coefficients sont linéaires, homogènes en λi\lambda_{i} et sont complètement déterminés. Il est facile de les obtenir en tenant compte des formules (19), (21) et (22) et de la relation de récurrence (12). On a d’abord μi(n)=Δnii(g)\mu_{i}^{(n)}=\Delta_{n-i}^{i}(g) et, en exprimant Δi11(f),i>n\Delta_{i-1}^{1}(f),i>n, en fonction de Δn2(f),Δn2(f),,Δnin(f)\Delta_{n}^{2}(f),\Delta_{n}^{2}(f),\ldots,\Delta_{n}^{i-n}(f) à l’aide de (12), on a les coefficients vi(n)v_{i}^{(n)}.

Une autre manière d’obtenir les coefficients μi(n),vi(n)\mu_{i}^{(n)},v_{i}^{(n)} est de particulariser convenablement la fonction ff.

Avec les notations (17), nous avons

μi(n)=F[φ1,i1]=j=imλj(xjx1)(xjx2)(xjxi1)i=1,2,,n\begin{gathered}\mu_{i}^{(n)}=F\left[\varphi_{1,i-1}\right]=\sum_{j=i}^{m}\lambda_{j}\left(x_{j}-x_{1}\right)\left(x_{j}-x_{2}\right)\cdots\left(x_{j}-x_{i-1}\right)\\ i=1,2,\ldots,n\end{gathered}

Pour calculer les coefficients vi(n)v_{i}^{(n)} nous introduisons les fonctions
(24) fn,l=fn,i(x)={0, pour x=xr,1𝒓n+i1 (ou 1𝒓i),φi+1,n1(x), pour x=xr,𝝅+i𝒓m (ou i<𝒓m ), \quad f_{n,l}^{*}=f_{n,i}^{*}(x)=\left\{\begin{array}[]{l}\left.0,\text{ pour }x=x_{r},1\leqq\boldsymbol{r}\leqq n+i-1\text{ (ou }1\leqq\boldsymbol{r}\leqq i\right),\\ \varphi_{i+1,n-1}(x),\text{ pour }x=x_{r},\boldsymbol{\pi}+i\leqq\boldsymbol{r}\leqq m\text{ (ou }i<\boldsymbol{r}\leqq m\text{ ), }\end{array}\right.

i=1,2,,mni=1,2,\ldots,m-n

Nous avons alors

Δj11(fn,i)=0,j=1,2,,n\displaystyle\Delta_{j-1}^{1}\left(f_{n,i}^{*}\right)=0,j=2,\ldots,n
Δnj(fn,i)=0,j=1,2,,i1,i+1,,mn\displaystyle\Delta_{n}^{j}\left(f_{n,i}^{*}\right)=0,j=2,\ldots,i-1,i+1,\ldots,m-n

Compte tenant de (18) et des relations de récurrence

φi,j+1=(xxi+j)φi,j=(xxi)φi+1,j,\varphi_{i,j+1}=\left(x-x_{i+j}\right)\varphi_{i,j}=\left(x-x_{i}\right)\varphi_{i+1,j},

nous trouvons

Δni(fn,l)=φi+1,n1(xi+n)φi,n+1(xi+n)=1xi+nxi\Delta_{n}^{i}\left(f_{n,l}^{*}\right)=\frac{\varphi_{i+1,n-1}\left(x_{i+n}\right)}{\varphi_{i,n+1}^{\prime}\left(x_{i+n}\right)}=\frac{1}{x_{i+n}-x_{i}}

et nous en déduisons donc

vi(n)=(xi+nxj)F[fn,]=(xi+nxi)j=i+nmλj(xjxi+1)(xjxi+2)(xjxi+nj)i=1,2,,mn.\begin{gathered}v_{i}^{(n)}=\left(x_{i+n}-x_{j}\right)F\left[f_{n,}^{*}\right]=\left(x_{i+n}-x_{i}\right)\sum_{j=i+n}^{m}\lambda_{j}\left(x_{j}-x_{i+1}\right)\left(x_{j}-x_{i+2}\right)\cdots\left(x_{j}-x_{i+n-j}\right)\\ i=1,2,\ldots,m-n.\end{gathered}

La formule (23) devient

F[f]=i=1nF[φ1,i1]Δi11(f)+i=1mn(xi+nxi)F[fn,i]Δni(f).F[f]=\sum_{i=1}^{n}F\left[\varphi_{1,i-1}\right]\Delta_{i-1}^{1}(f)+\sum_{i=1}^{m-n}\left(x_{i+n}-x_{i}\right)F\left[f_{n,i}^{*}\right]\Delta_{n}^{i}(f). (25)

C’est la formule fondamentale de transformation des différences divisées.

Pour n=1n=1 cette formule devient la formule, bien connue, d’Abel.

Pour n=m1n=m-1 ce n’est qu’une autre forme de la formule de Leibniz.

Lorsque la fonctionnelle lineaire F[f]F[f] est nulle pour tout polynome de degré r(<n)r(<n), nous avons

μ1(n)=μ2(n)==μr+1(n)=0.\mu_{1}^{(n)}=\mu_{2}^{(n)}=\cdots=\mu_{r+1}^{(n)}=0.

Si F[f]F[f] est nulle pour tout polynome de degré n1n-1, tous les coefficients μi(n)\mu_{i}^{(n)} sont nuls et la formule fondamentale (25) devient

F[f]=i=1mn(xi+nxi)F[fn,i]Δni(f).F[f]=\sum_{i=1}^{m-n}\left(x_{i+n}-x_{i}\right)F\left[f_{n,i}^{*}\right]\Delta_{n}^{i}(f). (26)

En particulier, considérons la différence divisée

[xi,,xi,,,xin+1;f],\left[x_{i,},x_{i,},\ldots,x_{i_{n+1}};f\right],

sur n+1n+1 points xijj=1,2,,n+1x_{ij}j=1,2,\ldots,n+1 extraits de la suite (9). La formule (26) nous donne alors
(27) [xi1,xi2,,xin+1;f]=i=1mi(xi+nxi)[xi1,xi2,,xin+1;fn,j]Δni(f)\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{n+1}};f\right]=\sum_{i=1}^{m-i}\left(x_{i+n}-x_{i}\right)\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{n+1}};f_{n,j}^{*}\right]\Delta_{n}^{i}(f).
5.-Supposons maintenant que la suite (9) soit ordonnée, done que

x1<x2<<xmx_{1}<x_{2}<\cdots<x_{m^{*}}

Alors les coefficients des Δni(f)\Delta_{n}^{i}(f) dans la formule (27) sont tous non-négatifs et nous obtenons le

Théorème 1. Si la suite (9) est ordonnée, toute différence divisée [xi,,xi2,,xil+1;f]\left[x_{i,},x_{i_{2}},\ldots,x_{i_{l+1}};f\right], prise sur n+1n+1 de ces points, est une moyenne arithmétique (généralisée) des différences divisées Δn1(f),Δn2(f),,Δnmn(f)\Delta_{n}^{1}(f),\Delta_{n}^{2}(f),\ldots,\Delta_{n}^{m-n}(f).

Nous avons donc

[xi1,xi1,,xin+1;f]=i=1mnAiΔni|f|,\displaystyle{\left[x_{i_{1}},x_{i_{1}},\ldots,x_{i_{n+1}};f\right]=\sum_{i=1}^{m-n}A_{i}\Delta_{n}^{i}|f|,} (28)
Ai0,i=1,2,,mn,i=1mnAi=1,\displaystyle A_{i}\geqq 0,i=1,2,\ldots,m-n,\sum_{i=1}^{m-n}A_{i}=1,

où les AiA_{i} sont indépendants de la fonction ff.
C’est le théorème de la moyenne des différences divisées. Nous avons, d’ailleurs,
(29) Ai=(xi+nxi)[xi1,xi2,,xin+1;fn,i],i=1,2,,mnA_{i}=\left(x_{i+n}-x_{i}\right)\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{n+1}};f_{n,i}{}^{*}\right],i=1,2,\ldots,m-n.

On peut démontrer cette propriété par induction, en partant de l’identité

(xn+2x1)[x1,x2,,xi1,xi+1,,xn+2;f]==(xix1)[x1,x2,,xn+1;f]+(xn+2xi)[x3,x3,,xn+2;f].\begin{gathered}\left(x_{n+2}-x_{1}\right)\left[x_{1},x_{2},\ldots,x_{i-1},x_{i+1},\ldots,x_{n+2};f\right]=\\ =\left(x_{i}-x_{1}\right)\left[x_{1},x_{2},\ldots,x_{n+1};f\right]+\left(x_{n+2}-x_{i}\right)\left[x_{3},x_{3},\ldots,x_{n+2};f\right].\end{gathered}

Dans le § suivant nous démontrerons directement la nonnégativité des différences divisées d’ordre nn des fonctions fn,if_{n,i}^{*}, ce qui fournira une autre démonstration du théorème de la moyenne.

Il en résultera, d’ailleurs, de plus, que, si nous prenons i1<i2<<in+1i_{1}<i_{2}<\cdots<i_{n+1}, nous avons

Ai=0,i=1,2,,i11,in+1n+1,in,1n+2,,mn,A_{i}=0,i=1,2,\ldots,i_{1}-1,i_{n+1}-n+1,i_{n,1}-n+2,\ldots,m-n_{,}

(30)

Ai>0,i=i1,i1+1,,in+1n.A_{i}>0,i=i_{1},i_{1}+1,\ldots,i_{n+1}-n.

Du théorème 1 il résulte immédiatement la propriété suivante

Théurème 2. - Si la suite (9) est ordonnée, nous avons mini=1,2,,nn{Δni(f)}[xi1,xi2,,xin+1;f]i=1,,mn{Δni(f)}\min_{i=1,2,\ldots,n-n}\left\{\Delta_{n}^{i}(f)\right\}\leq\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{n+1}};f\right]\leq_{i=1,\ldots,m-n}\left\{\Delta_{n}^{i}(f)\right\} quelle que soit la suite partielle xi1,xi2,,xin+1x_{i_{1}},x_{i_{2}},\ldots,x_{i_{n+1}} de n+1n+1 iermes de (9).
6. - Rappelons maintenant la définition des fonctions d’ordre nn.

Definition. - La fonction f(x)f(x), définie sur l’ensemble linéate EE, est convexe, non-concave, polynomiale, non-convexe resp. concave d’ordre nn sur EE si

[x1,x2,,xn+2;f]>,,=, resp. <0,\left[x_{1},x_{2},\ldots,x_{n+2};f\right]>,\geq,=,\leq\text{ resp. }<0,

quels que soient les n+2n+2 points x1,x2,,xn+2x_{1},x_{2},\ldots,x_{n+2} de EE.
Toutes ces fonctions sont des fonctions d’ordre n.
Une fonction d’ordre nn sur E est donc une fonction dont la différence divisée d’ordre n+1n+1 ne change pas de signe sur E. La convexité et la polynomialité d’ordre nn sont des cas particuliers de la non-concavité d’ordre nn. Si ff est convexe non-concave, polynomiale, non-convexe resp. concave d’ordre, nn sur EE, la fonction f-f est concave, non-convexe, polynomiale, non-concave resp. convexe d’ordre nn sur EE et réciproquement. On peut prendre comme type de fonction d’ordre nn la fonction non-concave d’ordre nn. Une fonction polynomiale d’ordre nn se réduit aux valeurs sur EE d’un polynome de degré nn.

La définition précédente est valable pour tout entier
n1n\geqq-1. Les fonctions d’ordre -1 sont les fonctions de signe 1 invariable et les fonctions d’ordre 0 les fonctions monotones.

Le théorème 1 nous montre que nous avons le
Théorème 3 - Pour que la fonction ff, définie sur la suite ordonnée (9) de m(n+2)m(\geqq n+2) points, soit convexe, non-concave, polynomiale, non-convexe resp, concave d’ordre nn sur ces points, il faut et il suffit que l’on ait

Δn+1i|f|>,,= resp. <0,i=1,2,,mn1\Delta_{n+1}^{i}|f|>,\geq,=\text{ resp. }<0,i=1,2,\ldots,m-n-1

Les formules (4), (5) nous montrent aussi que
Théoreme 4,-Si CC est une constante positive et si les fonctions ff et gg, définies sur l’ensemble linéaire EE jouissent d’une même propriété de convexité sur EE, les fonctions CfCf et f+gf+g jouissent aussi de la même propriété de convexité sur EE.

Si la fonction est définie dans un intervalle et si elle a une dérivée d’ordre n+1n+1, la non-négativité de cette dérivée est nécessaire et suffisante pour que la fonction soit non-concave d’ordre nn.
7. - Disons maintenant quelques mots sur le polynome de Lagrange. Reprenons la fonction ff, définie sur les points (1). Nous avous la propriété, bien connue, exprimée par le

Théorème 5.-Il existe un polynome et un seul de degré effectif minimum qui prend les valeurs f(xi)f\left(x_{i}\right) aux points xi,i=1x_{i},i=1, 2,,n+12,\ldots,n+1. Ce polynome est de degré nn.

Le polynome unique ainsi déterminé est le polynome (d’ūnterpolation) de Lagrange de la fonction ff sur les points (1). Nous le désignons par

L(x1,x2,,xn+1;fx)L\left(x_{1},x_{2},\ldots,x_{n+1};f\mid x\right) (31)

On voit immédiatement que c’est aussi l’unique polynome de degré nn prenant les valeurs f(xi)f\left(x_{i}\right) aux points xix_{i}. D’ailleurs, la forme générale des polynomes prenant les valeurs f(xi)f\left(x_{i}\right) aux points xix_{i} est

L(x1,x2,,xn+1;fx)+φ(x)Q(x),L\left(x_{1},x_{2},\ldots,x_{n+1};f\mid x\right)+\varphi(x)Q(x),

φ\varphi est le polynome (10) et QQ un polynome quelconque.
Les points xix_{i} sont les noeuds du polynome (31).
Si l’on donne à xx une valeur fixe, le polynome (31) devient une fonctionnelle linéaire de ff. Le polynome (31) est,
d’ailleurs, évidemment symétrique par rapport aux points xi1x_{i}{}^{1} ).
On trouve facilement la formule
(32) L(x1,x2,,xn+1;fx)=φ(x)[x1,x2,,xn+1,x;fg]L\left(x_{1},x_{2},\ldots,x_{n+1};f\mid x\right)=-\varphi(x)\left[x_{1},x_{2},\ldots,x_{n+1},x;fg\right], ou

g(xi)={1,i=1,2,,n+10,xi=xg\left(x_{i}\right)=\left\{\begin{array}[]{l}1,i=1,2,\ldots,n+1\\ 0,x_{i}=x\end{array}\right.

On en déduit diverses expressions, bien connues, du polynome (31) et, en particulier, la formule
(33) L(x1,x2,,xn+1;fx)f(x)=φ(x)[x1,x2,,xn+1,x;f]L\left(x_{1},x_{2},\ldots,x_{n+1};f\mid x\right)-f(x)=-\varphi(x)\left[x_{1},x_{2},\ldots,x_{n+1},x;f\right].

On voit aussi que

L(x1,x2,,xn+1;fx)=L(x1,x2,,xn;fx)+\displaystyle L\left(x_{1},x_{2},\ldots,x_{n+1};f\mid x\right)=L\left(x_{1},x_{2},\ldots,x_{n};f\mid x\right)+
+(xx1)(xx2)(xxn)[x1,x2,,xn+1;f].\displaystyle\quad+\left(x-x_{1}\right)\left(x-x_{2}\right)\ldots\left(x-x_{n}\right)\left[x_{1},x_{2},\ldots,x_{n+1};f\right]. (34)

Le premier coefficient du polynome (31) est donc précisément la différence divisée de la fonction ff sur les points(1).

Remarquons aussi que si ff est un polynome de degré nn, nous avons

L(x1,x2,,xn+1;fx)=f(x)L\left(x_{1},x_{2},\ldots,x_{n+1};f\mid x\right)=f(x)

Soit maintenant ff une fonction définie sur l’ensemble linéaire EE. A tout groupe de n+1n+1 points de EE correspond, pour la fonction, un polynome de Lagrange ayant ces points comme noeuds. Dans la suite nous convenons qu’un polynome de Lagrange est de degré nn s’il a n+1n+1knots. Two Lagrange polynomials are considered different if they do not have the same knots, but two different Lagrange polynomials can be identical onANDE. In this case, it is clear that the function reduces to this polynomial on all the nodes of the polynomials considered.

§ 2.

New properties of divided differences of functions defined on a finite set.

  1. 8.
    • We will first resume the study of functions:fn,if_{n,i}^{*}, given by formula (24). These functions are defined

00footnotetext: 1. A. Cauchy deduces the symmetry of the divided difference. This amounts to noting that the Lagrange polynomial is unique, independent of the order of the nodes and that its first coefficient is the divided difference taken on the nodes. See: "On interpolar functions". CR Acad. Sci, Paris, 11, 775-789 (1840).

on the ordered sequence (9), where we can assume, of course,mn+1m\geq n+1. We will always assume that any partial sequencexi1,xi2,,xin+1x_{i_{1}},x_{i_{2}},\ldots,x_{i_{n+1}}extracted from (9) is also ordered, so that1i1<i2<<in+1m1\leq i_{1}<i_{2}<\ldots<i_{n+1}\leqq m.

We have seen that the mean value theorem results in non-concavity of ordern1n-1functionsfn,if_{n,i}^{*}. But, there is interest in demonstrating this non-concavity directly. In this way the mean value theorem will be a consequence of this non-concavity. It should be noted that we cannot apply Theorem 3 here without committing a vicious circle. We will demonstrate directly that all the divided differences of ordernnof the functionfn,if_{n,i}^{*}are non-negative, so the following property

Theorem 6.-Divided differences of ordernnonn+1n+1points of the ordered sequence (9] and relating to the functionsfn,if_{n,i}^{*}, given by formula (24), are all positive or zero 1 ).

The demonstration is done by induction on the numbernn.
Forn=1n=1, we immediately check that
(35)[xi1,xi2;f1,i]={0,i=1,2,,i11,i2,i2+1,,m1,1xi2xi1>0,i1=i1,i1+1,,i21.\left[x_{i_{1}},x_{i_{2}};f_{1,i}^{*}\right]=\left\{\begin{array}[]{c}0,\quad i=1,2,\ldots,i_{1}-1,i_{2},i_{2}+1,\ldots,m-1,\\ \frac{1}{x_{i_{2}}-x_{i_{1}}}>0,i_{1}=i_{1},i_{1}+1,\ldots,i_{2}-1.\end{array}\right.

Now suppose that the property is true for functionsfn1,if_{n-1,i}^{*}and demonstrate it for functionsfn,i{n>1}f_{n,i}^{*}\{n>1\}. Let us first note that, following the definition of the functionsfn,if_{n,i}^{*}, In

[xi1,xiq,,xin+1;fn,i]0,\left[x_{i_{1}},x_{i_{q}},\ldots,x_{i_{n+1}};f_{n,i}^{*}\right]\geqq 0, (36)

the sign==is valid for

00footnotetext: 1. We assume n1n\geq 1. The property remains true also forn=0n=0, the functionsf0,if_{0,i}^{*}being defined by the formula f0,i(xr)={0,r=1,2,,i1,i+1,,m1,r=ii=1,2,mf_{0,i}^{*}\left(x_{r}\right)=\left\{\begin{aligned} &0,r=1,2,\ldots,i-1,i+1,\ldots,m\\ &1,r=i\\ &i=1,2\ldots,m\end{aligned}\right. Theorem 7 is also true forn=0n=0.
i=1,2,,i11,in+1n+1,in+1n+2,,mn.i=1,2,\ldots,i_{1}-1,i_{n+1}-n+1,i_{n+1}-n+2,\ldots,m-n.

So we just need to look at the values ​​ofiifor which

i1iin+1n.i_{1}\leq i\leq i_{n+1}-n. (37)

Considering the recurrence formula

fn,i=(xxi+n1)fn1,if_{n,i}^{*}=\left(x-x_{i+n-1}\right)f_{n-1,i}^{*}

and applying formula (15), we have
(38)

[xi1,xi2,,xin+1;fn,i]=[xi1,xi2,,xin+1;fn1,i](xin+1xi+n1)++[xii,xi2,,xin;fn1,i]\begin{gathered}{\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{n+1}};f_{n,i}^{*}\right]=\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{n+1}};f_{n-1,i}^{*}\right]\left(x_{i_{n+1}}-x_{i+n-1}\right)+}\\ +\left[x_{i_{i}},x_{i_{2}},\ldots,x_{i_{n}};f_{n-1,i}^{*}\right]\end{gathered}

But, the recurrence formula (12) allows us to write

[xi1,xis,,xin+1;fn,1,i]=[xis,xis,,xin+1;fn1,i]]xi1,xi2,,xin;fn1,i]xin+1xi1\left[x_{i_{1}},x_{i_{s}},\ldots,x_{i_{n+1}};f_{n,-1,i}^{*}\right]=\frac{\left.\left.\left[x_{i_{s}},x_{i_{s}},\ldots,x_{i_{n+1}};f_{n-1,i}^{*}\right]-\right]_{x_{i_{1}}},x_{i_{2}},\ldots,x_{i_{n}};f_{n-1,i}^{*}\right]}{x_{i_{n+1}}-x_{i_{1}}}

and we deduce the formula

[xi1,xi2,,xin+1;fn,i]=\displaystyle{\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{n+1}};f_{n,i}^{*}\right]=} (39)
=(xin+1xi+i+1)[xi2,xi9,,xin+1;fn1,i]+(xi+n1xi1)[xi1,,xin;tn1,i]xin+1xi1\displaystyle=\frac{\left(x_{i_{n+1}}-x_{i+i+1}\right)\left[x_{i_{2}},x_{i_{9}},\ldots,x_{i_{n+1}};f_{n-1,i}^{*}\right]+\left(x_{i+n-1}-x_{i_{1}}\right)\left[x_{i_{1}},\ldots,x_{i_{n}};t_{n-1,i}^{*}\right]}{x_{i_{n+1}}-x_{i_{1}}}

from which the property results, taking into account the fact that (37) gives us

i1<i1+n1i+n1in+11<in+1.i_{1}<i_{1}+n-1\leqq i+n-1\leqq i_{n+1}-1<i_{n+1}.

We can also notice that the sign>>is valid in (36) fori=i1,i1+1,,in+1ni=i_{1},i_{1}+1,\ldots,i_{n+1}-n. Indeed, this results from (35) forn=1n=1. Formula (39) shows us that if the property is true forn1n-1it will be true also fornn.
9. - Functionsfn,if_{n,i}^{*}enjoy more complete properties. We have the

Theorem 7.-Functionsfn,if_{n,i}^{*}are non-concave of orders1,0,1,,n1-1,0,1,\ldots,n-1on the ordered sequence (9).

So we have

[xi1,xiq,,xik+1;fn,i]0,\left[x_{i_{1}},x_{i_{q}},\ldots,x_{i_{k+1}};f_{n,i}^{*}\right]\geq 0, ({40}\{40\})

whatever solenti=1,2,,mn,k=0,1,,ni=1,2,\ldots,m-n,k=0,1,\ldots,n.
The demonstration can be done by induction, as for Theorem 6. Forn=1n=1ownership is easily verified. Forn>1n>1we have the recurrence formula

 41) [xi1,xi2,,xik+1;fn,i]==[xi1,xi2,,xik+1;fn1,](xik+1xi+n1)+[xi1,xi2,,xik;fn1,i]\begin{gathered}\text{ 41) }\\ {\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{k+1}};f_{n,i}^{*}\right]=}\\ =\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{k+1}};f_{n-1,}^{*}\right]\left(x_{i_{k+1}}-x_{i+n-1}\right)+\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{k}};f_{n-1,i}^{*}\right]\end{gathered}

generalization of (38) and which gives us the demonstration.
But, it is possible here to simplify the demonstration fork<nk<n. Indeed, theorem 6 being demonstrated, we can apply theorem 3. It is therefore sufficient to demonstrate the inequalities

Dkj(fn,i)0,j=1,2,,mk.\Delta_{k}^{j}\left(f_{n,i}^{*}\right)\geq 0,j=1,2,\ldots,m-k. (42)

Formula (41) gives us, in particular,

Dkj(fn,i)=(xi+kxi+n1)Dkj(fn1,i)+Dk1i(fn1,i).\Delta_{k}^{j}\left(f_{n,i}^{*}\right)=\left(x_{i+k}-x_{i+n-1}\right)\Delta_{k}^{j}\left(f_{n-1,i}^{*}\right)+\Delta_{k-1}^{i}\left(f_{n-1,i}^{*}\right). (43)

The proof of Theorem 7 is then immediate.
From the recurrence formula (43) we also deduce that

Dtn,i(fn){=0,j=1,2,,i+nk1,>0,j=i+nk,i+nk+1,,mk.\Delta t_{n,i}^{\prime}\left(f_{n}^{*}\right)\begin{cases}=0,&j=1,2,\ldots,i+n-k-1,\\ >0,&j=i+n-k,i+n-k+1,\ldots,m-k.\end{cases}

So, taking into account formulas (28) and (30), we see that in (40) the sign==is valid fori>ik+1ni>i_{k+1}-nand the sign>>is valid foriin+1n(k<n)i\leqq i_{n+1}-n(k<n).
10. - We will now say a few words about the polynomial (17). The function

fi+1,n1fn,i\varphi_{i+1,n-1}-f_{n,i}^{*} (44)

is analogous tofn,if_{n,i}^{*}with respect to the sequence (9) whose points are taken in the opposite direction. More precisely, the convexity properties of the function (44) are deduced from those offn,if_{n,i}^{*}by changing the variablexxinx-xand functionffin(1)n1f(-1)^{n-1}f. Now, these changes have the effect of preserving
any convexity property whose order is of the same parity withnnand to change the direction of any convexity whose order is of different parity withnn. We deduce the

Theorem 8.- Functionsfi+1,n1fn,i\varphi_{i+1,n-1}-f_{n,i}^{*}are non-concave of ordersn2,n4,,n2[n+12]n-2,n-4,\ldots,n-2\left[\frac{n+1}{2}\right]) and non-convex of ordersn1,n3,;n2[n2]1n-1,n-3,\ldots;n-2\left[\frac{n}{2}\right]-1on the ordered sequence (9).

If we notice that

ψi+1,n1=(ψi+1,n1fn,i)+fn,i\psi_{i+1,n-1}=\left(\psi_{i+1,n-1}-f_{n,i}^{*}\right)+f_{n,i}^{*}

and if we take into account theorems 4 and 8, we deduce the

Theorem 9. - Polynomialsfi+1,n1\varphi_{i+1,n-1}are non-concave of ordersn2,n4,,n2[n+12]n-2,n-4,\ldots,n-2\left[\frac{n+1}{2}\right]on the ordered sequence (9). Moreover, the polynomialfi+1,n1\varphi_{i+1,n-1}is non-convex of ordersn1,n3,n-1,n-3,\ldots. n2[n2]1n-2\left[\begin{array}[]{c}n\\ 2\end{array}\right]-1on the pointsx1,x2,,xi+n1x_{1},x_{2},\ldots,x_{i+n-1}and is non-concave in ordersn1,n3,,n2[n2]1n-1,n-3,\ldots,n-2\left[\frac{n}{2}\right]-1on the pointsxi+1,xi+2,x_{i+1},x_{i+2},\ldots, xm,2x_{m}{}^{,2}).
11. - Now consider a functionffdefined on the ordered sequence (9) ofmn+1m\geq n+1 points, nnbeing a natural number.

Let's consider the difference

ψr,n1=ψr,n1(x)=L(xr,xr+1,,xr+n1;f(x)f(x)\psi_{r,n-1}=\psi_{r,n-1}(x)=L\left(x_{r},x_{r+1},\ldots,x_{r+n-1};f(x)-f(x)\right. (45)

between the Lagrange polynomial having as nodes the a consecutive pointsxr,xr+1,,xr+n1x_{r},x_{r+1},\ldots,x_{r+n-1}and between the functionff.

We propose to study the divided differences

Dkj(ψr,n1)=[xj,xj+1,,xj+k;ψr,n1]\Delta_{k}^{j}\left(\psi_{r,n-1}\right)=\left[x_{j,}x_{j+1},\ldots,x_{j+k};\psi_{r,n-1}\right] (46)

functions (45). From (45), it is clear that ifknk\geq n on a

Dkj(ψr,n1)=Dkl(f),\Delta_{k}^{j}\left(\psi_{r,n-1}\right)=-\Delta_{k}^{l}(f),
00footnotetext: 1. [x][x]denotes the largest integera\leq a, 2. The polynomial is also obviously of order n1n-1on (9).

but we want to examine, especially the casek<nk<n.
We see that (46) is a linear functional offf, in which, moreover, only the values ​​offfto the pointsxj,xj+1x_{j},x_{j+1},,xj+krxr,xr+1,,xr+n1\ldots,x_{j+k^{r}}x_{r},x_{r+1},\ldots,x_{r+n-1}intervene. Note that this linear functional is zero for any polynomial of degree<n<nso formula (26) is applicable to it.

Let us therefore write formula (26), now denoting byF[f]F[f]the divided difference (46).

Note that

L(xr,xr+1,,xr+n1;fn,ix)={0, and irfi+1,n1(x), and ir1.L\left(x_{r},x_{r+1},\ldots,x_{r+n-1};f_{n,i}^{*}\mid x\right)=\begin{cases}0,&\text{ si }i\geq r\\ \varphi_{i+1,n-1}(x),&\text{ si }i\leqq r-1.\end{cases}

We must now distinguish two cases.
I.jr+nk1j\leq r+n-k-1. We then have

F[fn,i]=0,l=r,r÷1,,mnF\left[f_{n,i}^{*}\right]=0,\quad l=r,r\div 1,\ldots,m-n

and, for the functionf=fn,if=f_{n,i}^{*},

ψr,n1=fi+1,n1fn,i, and ir1.\psi_{r,n-1}=\varphi_{i+1,n-1}-f_{n,i}^{*},\text{ si }i\leq r-1.

Taking into account Theorem 8, we see that

F[fn,i]{0, For k=n1,n3,,n+12[n+12]0, For k=n2,n4,,n2[n2]i=1,2,,r1F\left[f_{n,i}^{*}\right]\left\{\begin{array}[]{l}\geq 0,\text{ pour }k=n-1,n-3,\ldots,n+1-2\left[\frac{n+1}{2}\right]\\ \leq 0,\text{ pour }k=n-2,n-4,\ldots,n-2\left[\frac{n}{2}\right]\\ i=1,2,\ldots,r-1\end{array}\right.

II. jrj\geq r. We then have

F[fn,i]=0,i=1,2,,r1F\left[f_{n,i}^{*}\right]=0,\quad i=1,2,\ldots,r-1

and, for the functionf=fn,if=f_{n,i}^{*} ;

ψr,n1=fn,i, and ir.\psi_{r,n-1}=-f_{n,i}^{*},\text{ si }i\geq r.

Taking into account Theorem 7, we deduce that

F[fn,i]0, For k=0,1,,n1,i=r,r+1,,n1.\begin{gathered}F\left[f_{n,i}^{*}\right]\leq 0,\text{ pour }k=0,1,\ldots,n-1,\\ i=r,r+1,\ldots,n-1.\end{gathered}

In summary, we will retain the following result from the previous analysis.

Théoreme 10. - Si la suite (9) est ordonnée, la différence divisée (46), d’ordre knk\leqq n, de la fonction (45), peut s’exprimer sous la forme

Δki(ψr,n1)=i=1mnBiΔni(f),\Delta_{k}^{i}\left(\psi_{r,n-1}\right)=\sum_{i=1}^{m-n}B_{i}\Delta_{n}^{i}(f), (47)

où les coefficients BiB_{i} sont indêpendants de la fonction ff et sont
101^{0} non-négatifs si jr+nk1j\leq r+n-k-1 et k=n1,n3,,n+12[n+12]k=n-1,n-3,\ldots,n+1-2\left[\frac{n+1}{2}\right]
202^{0} non-positifs si jr+nk1j\leq r+n-k-1 et k=n,n2,n4,,n2[n2]k=n,n-2,n-4,\ldots,n-2\left[\frac{n}{2}\right] et si jrj\geq r et k=0,1,,nk=0,1,\ldots,n.
12. - Du théorème précédent nous allons déduire un résultat intéressant. Prenons toujours une foncticn ff définie sur la suite ordonnée (9). Considérons la fonction

ψr,n(x)=L(xr,xr+1,,xr+n;fx)f(x).\psi_{r,n}(x)=L\left(x_{r},x_{r+1},\ldots,x_{r+n};f\mid x\right)-f(x).

La formule (34) permet d’écrire

ψr,n(x)=ψr,n1(x)+φr,n(x)Δnr(f).\psi_{r,n}(x)=\psi_{r,n-1}(x)+\varphi_{r,n}(x)\Delta_{n}^{r}(f).

Compte tenant de la formule (47), nous pouvons écrire

Δkj(ψr,n)=Δkj(ψr,n1)÷Δkj(ξr,n)Δnr(f)=i=1mnBiΔni(f)+Δkj(φr,n)Δnr(f).\Delta_{k}^{j}\left(\psi_{r,n}\right)=\Delta_{k}^{j}\left(\psi_{r,n-1}\right)\div\Delta_{k}^{j}\left(\xi_{r,n}\right)\Delta_{n}^{r}(f)=\sum_{i=1}^{m-n}B_{i}\Delta_{n}^{i}(f)+\Delta_{k}^{j}\left(\varphi_{r,n}\right)\Delta_{n}^{r}(f).

Mais, si nous prenons f=xnf=x^{n}, le premier membre se réduit à 0 , donc

i=1mnBi+Δkj(φr,n)=0\sum_{i=1}^{m-n}B_{i}+\Delta_{k}^{j}\left(\varphi_{r,n}\right)=0

et finalement nous avons

Δki(ψr,n)=i=1mnBi{Δni(f)Δnr(f)}.\Delta_{k}^{i}\left(\psi_{r,n}\right)=\sum_{i=1}^{m-n}B_{i}\left\{\Delta_{n}^{i}(f)-\Delta_{n}^{r}(f)\right\}.

Déterminons maintenant l’indice rr tel que

Δnr(f)=maxt=1,2,,mn{Δni(f)}\Delta_{n}^{r}(f)=\max_{t=1,2,\ldots,m-n}\left\{\Delta_{n}^{i}(f)\right\}

Compte tenant alors des théorèmes 3 et 10 , nous obtenons le

Théorème 11. - Etant donnée une fonction ff, définie sur la suite ordonnée (9), on peut toujours trouver un polynome de Lagrange de degré nn, ayant comme noeuds n+1n+1 points consécutifs xr,xr+1,,xr+nx_{r},x_{r+1},\ldots,x_{r+n}, tel que la différence

ψr,n(x)=L(xr,xr+1,,xr+n;fx)f(x)\psi_{r,n}(x)=L\left(x_{r},x_{r+1},\ldots,x_{r+n};f\mid x\right)-f(x)

soit une fonction non-concave d’ordres n1,n3,,n2n21n-1,n-3,\ldots,n-2\left\lceil\frac{n}{2}\right\rceil-1.
On voit facilement qu’on peut aussi déterminer le nombre rr de manière que ψr,n(x)\psi_{r,n}(x) soit non-convexe d’ordres n1n3,,n2[n2]1n-1n-3,\ldots,n-2\left[\frac{n}{2}\right]-1 sur (9).

§ 3.

Les polynomes de Lagrange majorants et minorants.

  1. 13.
    • Nous dirons qu’un polynome P(x)P(x) est majorant resp. minorant pour la fonction ff définie sur un ensemble linéaire EE si nous avons

P(x)f(x),xE,P(x)\geq f(x),x\in E,

resp.

P(x)f(x),xE.P(x)\leqq f(x),x\in E.

Dans ce § nous nous proposons d’examiner les polynomes de Lagrange d’un degré donné nn de la fonction ff qui sont majorants ou minorants pour cette fonction. Il est clair qu’il suffit d’étudier seulement les polynomes majorants. Les propriétés correspondantes des polynomes minorants en résulteront par symétrie.

Nous supposerons toujours que la fonction ff soit définie sur la suite ordonnée (9), Toute suite partielle telle que xi1x_{i_{1}}. xi2,,xin+1x_{i_{2}},\ldots,x_{i_{n+1}} sera supposée ordonnée, donc i1<i2<<in+1i_{1}<i_{2}<\cdots<i_{n+1}.

Pour que le polynome de Lagrange de degré nn,

L(xi1,xi2,,xin+1;fx),L\left(x_{i_{1}},x_{i_{2}},\ldots,x_{i_{n+1}};f\mid x\right)_{,} (48)

soit majorant pour la fonction ff, il faut et il suffit, d’après la formule (33), que l’on ait

(xixi1)(xixi2)(xixin+1)[xi1,xi2,,xin+1,xi;f]0\displaystyle\left(x_{i}-x_{i_{1}}\right)\left(x_{i}-x_{i_{2}}\right)\ldots\left(x_{i}-x_{i_{n+1}}\right)\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{n+1}},x_{i};f\right]\leqq 0 (49)
i=1,2,,m1\displaystyle i=1,2,\ldots,m_{1}

en convenant de remplacer par 0 tout symbole de différence divisée prise sur des points non tous distincts.
14. - Tout polynome de degré nn qui prend les mêmes valeurs que la fonction ff aux nn points xi1,xi2,,xinx_{i_{1}},x_{i_{2}},\ldots,x_{i_{n}} est de la forme
50) L(xi1,xi2,,xin;tx)+A(xxi1)(xxi3)(xxin)L\left(x_{i_{1}},x_{i_{2}},\ldots,x_{i_{n}};t\mid x\right)+A\left(x-x_{i_{1}}\right)\left(x-x_{i_{3}}\right)\cdots\left(x-x_{i_{n}}\right),

A étant une constante.
Si, en particulier,

A=[xi1,xi2,,xin+1;f],A=\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{n+1}};f\right],

le polynome (50) coîncide avec le polynome de Lagrange (48)
Pour que le polynome (50) soit majorant pour la fonction ff, il faut et il suffit que l’on ait
(51) (xixi1)(xixi2)(xixin){A[xi1,xi3,,xin,xi;f]}0\left(x_{i}-x_{i_{1}}\right)\left(x_{i}-x_{i_{2}}\right)\cdots\left(x_{i}-x_{i_{n}}\right)\left\{A-\left[x_{i_{1}},x_{i_{3}},\ldots,x_{i_{n}},x_{i};f\right]\right\}\geq 0,

i=1,2,,mi=1,2,\ldots,m

Ce système est équivalent au suivant
(52)

(1)nj{A[xi1,xi2,,xin,xi;f]}0,ij<i<ij+1,j=0,1,,n,\begin{gathered}(-1)^{n-j}\left\{A-\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{n}},x_{i};f\right]\right\}\geq 0,\\ i_{j}<i<i_{j+1},j=0,1,\ldots,n,\end{gathered}

en convenant de poser i0=0,in+1=m+1i_{0}=0,i_{n+1}=m+1. Nous supposons qu’on n’écrit que les formules pour les valeurs de jj telles que ij+1ij>1i_{j+1}-i_{j}>1, autrement, en effet, il n’existe pas de valeurs admissibles pour ii. Dans (52) nous avons donc au plus n+1n+1 groupes d’inégalités, les inégalités de chaque groupe étant précédées toutes d’un même signe + ou-.

Proposons-nous de chercher les polynomes majorants (48) ayant les nn noeuds xi1,xi2,,xinx_{i_{1}},x_{i_{2}},\ldots,x_{i_{n}} donnés. On peut voir facilement que

Theorem 12. - The compatibility of the system (52) is necessary and sufficient for there to exist at least one upper bound Lagrange polynomial of degree n and having the given n nodesxi1,xi2,,xinx_{i_{1}},x_{i_{2}},\ldots,x_{i_{n}}.
15. - Let us seek, in particular, the condition for a
majorant Lagrange polynomial of degreennand havingnnknotsxi1,xi2,,xinx_{i_{1}},x_{i_{2}},\ldots,x_{i_{n}}data exists for any functionffdefined on points (9).

For this we note that the divided differences

[xi1,xi2,,xin,xi;f]\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{n}},x_{i};f\right]

Ori1,i2,,ini_{1},i_{2},\ldots,i_{n}are given andi=1,2,,m,ii1,i2,,ini=1,2,\ldots,m,i\neq i_{1},i_{2},\ldots,i_{n}, can be taken arbitrarily. It follows that the necessary and sufficient condition sought is that in (52) we only have inequalities all preceded by the same sign. We can easily see that for this it is necessary and sufficient that we have either

i1i0=i3i2==i2p+1i2p=1,p=[n2]i_{1}-i_{0}=i_{3}-i_{2}=\cdots=i_{2p+1}-i_{2p}=1,p=\left[\frac{n}{2}\right] (53)

or else

i2i1=i1i3==i2pi2p1=1,p=n+12i_{2}-i_{1}=i_{1}-i_{3}=\cdots=i_{2p}-i_{2p-1}=1,p=\left\lceil\frac{n+1}{2}\right\rceil (54)

always posingi0=0,in+1=m+1i_{0}=0,i_{n+1}=m+11).
Finally, therefore,
Theorem 13.-For any functionff, defined on them(n+1)m(\geq n+1)ordered points (9), has at least one upper bound Lagrange polynomial of degreennand havingnngiven nodesxi1x_{i_{1}}, xi2,,xinx_{i_{2}},\ldots,x_{i_{n}}, it is necessary and sufficient that we have either (53) or (54).

The conditions are, in particular, verified if

i1=1,i2=2,,in=ni_{1}=1,i_{2}=2,\ldots,i_{n}=n

and also if

i1=mn+1,i2=mn+2,,in=mi_{1}=m-n+1,i_{2}=m-n+2,\ldots,i_{n}=m

We therefore deduce
Theorem 14. - For any functionff, defined on them(n+1)m(\geq n+1)ordered points (9), there exists at least one upper bound Lagrange polynomial of degree n (>0) 2 ). In particular, at least one of the polynomials

  1. 1.

    This condition can also be written in the following form. The numbersiji_{j}completely determine an indexkksuch that we havenk0n\geq k\geq 0Andik=k,ik+1>k+1i_{k}=k,i_{k+1}>k+1. The condition is then: It is necessary and sufficient that one has, or elsek=nk=n, or else

ik+2pik+2p1=1,p=1,2,,[nk+12],(k<n).i_{k+2p}-i_{k+2p-1}=1,p=1,2,\ldots,\left[\frac{n-k+1}{2}\right],(k<n).
  1. 2.

    Forn=0n=0, see further Theorem 19,

L(x1,x2,,xn,xn+i;fx),i=1,2,,mn,L\left(x_{1},x_{2},\ldots,x_{n},x_{n+i};f\mid x\right),i=1,2,\ldots,m-n,

and also at least one of the polynomials

L(xmn+1,xmn+2,,xm,xi;fx),i=1,2,,mn,L\left(x_{m-n+1},x_{m-n+2},\ldots,x_{m},x_{i};f\mid x\right),i=1,2,\ldots,m-n,

is majorant for the functionff.
16. - The existence of at least one upper bound Lagrange polynomial of given degreenncan also be demonstrated by induction on the numbermmpoints of the sequence (9). It is sufficient, in fact, to demonstrate the second part of theorem 14, hence the

Theorem 15. - At least one of the polynomials

L(x1,x2,,xn,xn+i;fx),i=1,2,mnL\left(x_{1},x_{2},\ldots,x_{n},x_{n+i};f\mid x\right),i=1,2\ldots,m-n

is majorant for the functionff.
The property is obvious tom=n+1m=n+1. Suppose it is true form1m-1points and demonstrate it formm points ( m>n+1m>n+1). Either

L(x1,x2,,xn,xn+k;fx),(0<k<mn),L\left(x_{1},x_{2},\ldots,x_{n},x_{n+k};f\mid x\right),(0<k<m-n), (55)

an upper bound polynomial for the functionffon them1m-1 premiers points x1,x2,,xm1x_{1},x_{2},\ldots,x_{m-1}. Two cases can arise.

  1. 1.

    The polynomial (55) is majorant on themmpoints (9) and then the property is demonstrated.

II, The polynomial (55) is not majorant on the points (9). We then have

L(x1,x2,,xn,xn+i;fxn)<f(xm).L\left(x_{1},x_{2},\ldots,x_{n},x_{n+i};f\mid x_{n}\right)<f\left(x_{m}\right).

Formula (33) shows us that

[x1,x2,,xn,xn+kxm;f]>0.\left[x_{1},x_{2},\ldots,x_{n},x_{n+k^{\prime}}x_{m};f\right]>0.

I say that, in this case, the polynomial

L(x1,x2,,xn,xm;fx)L\left(x_{1},x_{2},\ldots,x_{n},x_{m};fx\right)

is majorant on (9). Indeed, it suffices to demonstrate that it is majorant on them1m-1first points (9). Taking into account (12) and (34), it is easy to obtain the formula

L(x1,x2,,xn,xm;f|x|f(x)==L(x1,x2,,xn,xn+k;fx)f(x)++(xmxn+k)(xx1)(xx2)(xxn)[x1,x2,,xn,xn+kxm;f]\begin{gathered}L\left(x_{1},x_{2},\ldots,x_{n},x_{m};f|x|-f(x)=\right.\\ =L\left(x_{1},x_{2},\ldots,x_{n},x_{n+k};f\mid x\right)-f(x)+\\ +\left(x_{m}-x_{n+k}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\ldots\left(x-x_{n}\right)\left[x_{1},x_{2},\ldots,x_{n},x_{n+k}x_{m};f\right]\end{gathered}

which demonstrates the property.
17. - Let us complete Theorem 14. We first demonstrate, as above, the

Throrfme. 15. - For any function f, defined on the points (9), wheremn+1>2m\geq n+1>2and for everythingk=1,2,,n1,linnk=1,2,\ldots,n-1,l^{\prime}unat least polynomials

L(x1,x2,xk,xk+i,xmn+k+1,xmn+k+2,,xm1,xm;fx)i=1,2,,mn\begin{gathered}L\left(x_{1},x_{2},\ldots x_{k},x_{k+i},x_{m-n+k+1},x_{m-n+k+2},\ldots,x_{m-1},x_{m};f\mid x\right)\\ i=1,2,\ldots,m-n\end{gathered}

is majorant.
Supposem>n+1m>n+1And

i1=r,i2=r+1,,in=r+n1,1<r<mn+1.i_{1}=r,i_{2}=r+1,\ldots,i_{n}=r+n-1,1<r<m-n+1.

In this case, ifnnis even. condition (54) is verified. On the contrary, ifnn est impair, aucune des conditions (53), (54) n’est vérifiée. Nous avons donc le

Théorime 17. - Pour toute fonction ff, définie sur les m (>n+1)(>n+1) points (9)(9), il existe toujours au moins un polynome de Lagrange majorant de degre pair n(>0)n(>0) et ayant nn points consécutifs quelconques de la suite x2,xn,,xm1x_{2},x_{n},\ldots,x_{m-1} comme noeuds. La propriété n’est pas vraie pour n impair.

Prenons encore nn impair >1,m>n+1>1,m>n+1 et

i1=1,i2=r,i3=r+1,,in=r+n2,2<r<mn+1.i_{1}=1,i_{2}=r,i_{3}=r+1,\ldots,i_{n}=r+n-2,2<r<m-n+1.

La condition (53) est alors vérifiée et, compte tenant des résultats précédents, nous pouvons énoncer le

Théortime 18. - Pour toute fonction ff, définie sur les m|>n+1|m|>n+1| points (9)(9), il existe au moins un polynome de Lagrange majorant de degré n>1n>1 et ayant n1n-1 noeuds consécutifs xr,xr+1,,xr+nyx_{r},x_{r+1},\ldots,x_{r+n-y} donnés quelconques. La propriété est vraie pour tout entier rr si on convient de poser xi=xjx_{i}=x_{j} pour i=j(modm)i=j(\bmod m).
18.-Proposons-nous de chercher la condition pour que le polynome de Lagrange

L(xr,xr+1,,xr+n;fx),1rmnsL\left(x_{r},x_{r+1},\ldots,x_{r+n};f\mid x\right),\quad 1\leq r\leq m-n_{s} (56)

ayant comme noeuds n+1n+1 points consécutifs de la suite (9), soit majorant pour la fonction ff. D’après ( 49 ), pour cela il faut et il suffit que l’on ait

Ces coaditions peuvent encore s’ecrire, comple tenant de la formule de récurrence (12) et en faisant usage des notations (16),

(1)n+1{Δnr(f)[xr+1,xr+2,,xr+n,xi;f]}0,i=1,2,,r1,[xr+1,xr+2,,xr+n,xi;f]Δnr(f)0,i=r+1,r+2,,m.\begin{gathered}(-1)^{n+1}\left\{\Delta_{n}^{r}(f)-\left[x_{r+1},x_{r+2},\ldots,x_{r+n},x_{i};f\right]\right\}\leq 0,\quad i=1,2,\ldots,r-1,\\ {\left[x_{r+1},x_{r+2},\ldots,x_{r+n},x_{i};f\right]-\Delta_{n}^{r}(f)\leqq 0,\quad i=r+1,r+2,\ldots,m.}\end{gathered}

Si nous supposons maintenant nn pair 0\geq 0, et si nous détérminons rr de manière que

Δnν(f)\displaystyle\Delta_{n}^{\nu}(f) =max{Δnif}.\displaystyle=\max\left\{\Delta_{n}^{i}f\right\}. (58)
=1,2,,mn\displaystyle=1,2,\ldots,m-n

nous voyons que les inégalités (57) sont toujours vérifiées. Nous avons donc le

D’ailleurs, ca n’est qu’une partie du théorème 11.
19. - Cherchons maintenant la condition pour que tous les polynomes (56) soient majorants. Les inégalités (57) nous montrent que pour qu’il en soit ainsi, il faut que l’on ait, en particulier,
101^{0}. Si nn est pair,

Δn+1r1(f)0,\displaystyle-\Delta_{n+1}^{r-1}(f)\leq 0, r=2,3,,mn\displaystyle r=3,\ldots,m-n
Δn+1r(f)0,\displaystyle\Delta_{n+1}^{r}(f)\leq 0, r=1,2,,mn1\displaystyle r=2,\ldots,m-n-1

donc la fonction doit être polynomiale d’ordre nn.
202^{0}. Si nn est impair,

Δn+1r(f)0,r=1,2,,mn1\Delta_{n+1}^{r}(f)\leq 0,\quad r=1,2,\ldots,m-n-1

et la fonction doit être non-convexe d’ordre nn.

Il est facile de voir que ces conditions sont aussi suffisantes et nous pouvons donc énoncer le

Théorème 20. - Pour que les polynomes de Lagrange (56) soient tous majorants pour la fonction ff, il faut et il suffit que. cette fonction soit
1101^{10}. Polynomiale d’ordre nn pour nn pair.
202^{0}. Non-convexe d’ordre nn pour nn impair.
Réciproquement d’ailleurs, la propriété de majoration de tous les polynomes (56) est, sous une autre forme, la définitlon même de la non-convexité d’ordre nn si nn est impair et une forme de la définition de la non-concavité et de la nonconvexité simultanées, donc de la polynomialité d’ordre nn si nn est pair. Ceci résulte de l’interprétation à l’aide des poly.. nomes de Lagrange de la définition des fonctions d’ordre nn et du théorème 3.

On peut maintenant compléter le théorème 17, pour nn impair, de la manière suivante

Théortme 21. - Si nn est impair, pour qu’il existe des polynomes de Lagrange majorants de degré n et ayant comme noeuds nn points donnés consécutifs quelconques de la suite (9), il faut et il suffit que la fonclion tt soit non-convexe d’ordre n sur les points (9).

La condition est suffísante d’après le théorème 20. Pour voir qu’elle est aussi nécessaire, nous devons écrire les conditions de compatibilité des systèmes (52) correspondants. Ces conditions sont.

maxi=r+n,r+n+1,,m{[xr,xr+1,,xr+n1,xi;f]}mini=1,2,,r1{[xr,xr+1,,xr+n1,xi;f]}r=2,3,mn\begin{gathered}\max_{i=r+n,r+n+1,\ldots,m}\left\{\left[x_{r},x_{r+1},\ldots,x_{r+n-1},x_{i};f\right]\right\}\leq\\ \leq\min_{i=1,2,\ldots,r-1}\left\{\left[x_{r},x_{r+1},\ldots,x_{r+n-1},x_{i};f\right]\right\}\\ r=2,3\ldots,m-n\end{gathered}

En particulier, nous devons avoir

Δnr(f)Δnr1(f)=(xr+nxr1)Δn+1r1(f)0,r=2,3,,mn,\begin{gathered}\Delta_{n}^{r}(f)-\Delta_{n}^{r-1}(f)=\left(x_{r+n}-x_{r-1}\right)\Delta_{n+1}^{r-1}(f)\leq 0,\\ r=2,3,\ldots,m-n,\end{gathered}

which demonstrates the property.
20. - Finally, let us examine a little the upper bound Lagrange polynomials of degreennorder functionsnn.

Inequality (49) shows us that we have
Theorem 22. - For the polyomy (48) to be majorant, for any non-concave resp, non-convex function of order n (0\geq 0) on (9), it is necessary and sufficient that we have

insp+2in2p+1=1,p=0,1,,[n+12]i_{n-sp+2}-i_{n-2p+1}=1,\quad p=0,1,\ldots,\left[\frac{n+1}{2}\right] (59)

resp.

in2p+1in2p=1,p=0,1,,[n2]i_{n-2p+1}-i_{n-2p}=1,\quad p=0,1,\ldots,\left[\frac{n}{2}\right] (60)

assumingi0=0,iin+2=m+1i_{0}=0,i_{u+2}=m+1,
If the function is convex resp. concave of ordernnon (9) the polynomials thus determined are the only majorant Lagrange polynomials of degreenn.

Indeed, for a convex resp. concave function of orderp\piconditions (49) become

(ii1)(ii2)(iin+1)<0, resp. >0,ij<i<ij+1,j=0,1,,n+1\begin{gathered}\left(i-i_{1}\right)\left(i-i_{2}\right)\ldots\left(i-i_{n+1}\right)<0,\text{ resp. }>0,\\ i_{j}<i<i_{j+1},j=0,1,\ldots,n+1\end{gathered}

and we find (59) and (60) respectively.
The minimum number of upper bound Lagrange polynomials of degreennfor a non-concave or non-convex function of ordernnis equal to the number of solutions of the Diophantine system (59) or (60), under the hypothesis

0=i0<i1<<in+1<in+2=m+10=i_{0}<i_{1}<\ldots<i_{n+1}<i_{n+2}=m+1

These numbers are easily calculated. Let us denote them byNmn,NmnN_{m}^{n},N_{m}^{\prime n}respectively. We easily find the recurrence relations

Nm2p+1=Nmq2p1+Nms2p1++Np2p1,Nm1=m1.N_{m}^{\prime 2p+1}=N_{m-q}^{\prime 2p-1}+N_{m-s}^{\prime 2p-1}+\cdots+N_{p}^{\prime 2p-1},N_{m}^{\prime 1}=m-1.

from where

Nm′′m+1=(mp1p+1)N_{m}^{\prime\prime\mu+1}=\binom{m-p-1}{p+1}

We then have

Nmin0=1,Nmin=1,Nm2p=Nminp=Nm12p1,Nm2p+1=Nm22p1N_{m}^{v_{0}}=1,\quad N_{m}^{u}=1,\quad N_{m}^{2p}=N_{m}^{vp}=N_{m-1}^{2p-1},N_{m}^{2p+1}=N_{m-2}^{2p-1}

from this we deduce

Nmn={m[n+32][n2]],Nmn=[m[n+22][n+12]].N_{m}^{n}=\left\{\begin{array}[]{c}m-\left[\begin{array}[]{c}n+3\\ 2\end{array}\right]\\ {\left[\frac{n}{2}\right]}\end{array}\right],\quad N_{m}^{\prime n}=\left[\begin{array}[]{c}m-\left[\frac{n+2}{2}\right]\\ {\left[\frac{n+1}{2}\right]}\end{array}\right].

We can also ask ourselves the problem of determining the minimum number of upper bound Lagrange polynomials of degreennthat any function defined on themmpoints (9). This number isNmn\leqq N_{m}^{n}, according to Theorem 22. Forn=1n=1it is obviously equal to 1. Forn>1n>1it follows from the previous results that this number increases indefinitely withmm, but its exact value remains to be found. The same problem can be posed for the minimum number of Lagrange polynomials of given degreennwhich are majorants or minorants. From the above it follows that this number is equal to 3 forn=1n=1Andm>2m>2.
21. - The geometric interpretation of the properties studied is very simple forn=0n=0, and forn=1n=1.

Let us figure out the representative pointsMi(x1,f(xi))M_{i}\left(x_{1},f\left(x_{i}\right)\right)relative to the coordinate axes.

Andn=0n=0, any Lagrange polynomial of degreennis a constant, therefore represented by a parallel to the axisTHExOx, not* passing through one of the pointsMiM_{i}. The existence of an upper bound Lagrange polynomial simply means that the function reaches its maximum on (9). There is, in general, only one upper bound Lagrange polynomial of degree 0. Theorem 20 applies, but becomes a trivial property.

It is also almost obvious that, fornnany, if all Lagrange polynomials of degreennare majorants, the function is polynomial of ordernn. Indeed, there surely exists a lower bounding Lagrange polynomial. This polynomial must also be upper bounding and the function therefore coincides with it on (9).

Andn=1n=1, a Lagrange polynomial of degreennis represented by the line joining two pointsMiM_{i}. Existence Theorem 14 means that the point systemM8M_{8}has at least one support line passing through two points and leaving all other points non-aboveMiM_{i}. More precisely, there exists at least one such support line passing throughM1M_{1}and at least one passing throughMmM_{m}. It is easy to see that all sides of the smallest convex polygon containing the pointsMiM_{i}represent Lagrange polynomials of degree 1 which are upper or lower bounds for the functionff. Theorem 20 also has a simple interpretation, It means that the polygonM1M2MmM_{1}M_{2}\ldots M_{m}must be convex, the pointsMiM_{i}being not-above-rightM1MmM_{1}M_{m}{}^{*}

§4\S 4.

On the Lagrange polynomials of n-order functions

22.-From the results of the previous § we deduce the following property

THEOREM 23. - Every non-negative function on the sequence (9) has at least one Lagrange polynomial of degree n which is also non-negative on the sequence (9).

It is sufficient, in fact, to take an upper bound polynomial. We see that the property remains true if instead of a non-negative function we take a positive function and we require the existence of a positive Lagrange polynomial.

We now propose to generalize this property and to seek whether, given a functionffnonconcave orderkkon the ordered sequence (9) ofm(n+1)m(\geq n+1)points, we can find a Lagrange polynomial of degreennwhich is also non-concave in orderkkon (9).

Theorem 23 shows us precisely that fork=1k=-1the answer is always affirmative. We will see, on the contrary, that fork0k\geq 0it is not so.

We will mainly examine conditions under which we can assert that for any non-concave function of order k there exists at least one Lagrange polynomial of degreennwhich is also non-concave in orderkkon (9).
23. - Let doneffa non-concave function of orderk0k\geq 0on themm points (9).

It is clear that ifnk+1n\leq k+1, any Lagrange polynomial of degreennis non-concave (even polynomial ifnkn\leqq k) of orderkkon (9). We also see that it is useless to examine the casem=n+1m=n+1since then there is only one Lagrange polynomial of degreenn, which coincides on (9) with the functionffand which is therefore, obviously, non-concave in orderkkon (9).

So let's suppose thatn>k+1,m>n+1n>k+1,m>n+1.
Theorem 11 allows us to state the following property
Theorem 24. - Ifnnis an integer>k+1>k+1and of different parity withkkand if the functionffis non-concave of orderkkon them>n+1m>n+1points (9), there exists at least one Lagrange polynomial of degree n which is also non-concave of orderkkon points (9).

Indeed, ifrris determined by condition (58), the function

ψr,n=L(xr,xr+1,,xr+n;f(x)f(x)\psi_{r,n}=L\left(x_{r},x_{r+1},\ldots,x_{r+n};f(x)-f(x)\right.

is non-concave of orderkkon (9). Applying Theorem 4 we see that

ψr,n+f=L(xr,xr+1,,xr+n;fx)\psi_{r,n}+f=L\left(x_{r},x_{r+1},\ldots,x_{r+n};f\mid x\right)

is also non-concave of orderkkon points (9).
The existence of at least one Lagrange polynomial of degreennand non-concave of orderkkis therefore demonstrated forn=k+3,k+5,n=k+3,k+5,\ldots
24. - We will now construct an example which will demonstrate to us that forn=k+2,k+4,,(k0)n=k+2,k+4,\ldots,(k\geq 0)there do not always exist Lagrange polynomials of degree n and non-concave of order k on the points (9).

So we will assumenk+2,nn\geqq k+2,nof the same parity withkkAndmn+2m\geq n+2.

As a continuation (9) we will choose the following

x1=1,xt=(i2)l,i=2,3,,n+1,\displaystyle x_{1}=-1,x_{t}=(i-2)\lambda,i=2,3,\ldots,n+1, (61)
xn+1<xn+2<<xm=(n1)l+1,\displaystyle x_{n+1}<x_{n+2}<\cdots<x_{m}=(n-1)\lambda+1,

Orl\lambdais a positive number. Points of the formxix_{i}within+1i\geq n+1are writtenxi=(n1)l+iix_{i}=(n-1)\lambda+\theta_{i}, THEii\theta_{i}being independent ofl\lambda. We have done0=in+1<in+2<<im=10=\theta_{n+1}<\theta_{n+2}<\cdots<\theta_{m}=1.

Consider the polynomial of degreen,P(x)n,P(x), which is zero at pointsx3,x1,,xn+1x_{3},x_{1},\ldots,x_{n+1} et qui prend la valeur (1)k+1(-1)^{k+1} au point x1x_{1} et la valeur positive bb au point xmx_{m}. Nous avons
(62) P(x)=(xλ)(x2λ)(xn¯1λ){[b(n¯1λ+1)1]x+(1+b)(n¯1λ+1)}(λ+1)(2λ+1)(n¯1λ+1)(n¯1λ+2)P(x)=\frac{(x-\lambda)(x-2\lambda)\cdots(x-\bar{n}-1\lambda)\{[b(\bar{n}-1\lambda+1)-1]x+(1+b)(\bar{n}-1\lambda+1)\}}{(\lambda+1)(2\lambda+1)\cdots(\bar{n}-1\lambda+1)(\bar{n}-1\lambda+2)}

Ce polynome prend la valeur

P(x2)=(1)k+1(n1)!λn1(1+b)(λ+1)(2λ+1)(n2λ+1)(n1λ+2)P\left(x_{2}\right)=\frac{(-1)^{k+1}(n-1)!\lambda^{n-1}(1+b)}{(\lambda+1)(2\lambda+1)\cdots(n-2\lambda+1)(n-1\lambda+2)}

au point x21x_{2}{}^{1} ) et nous avons

limx+P(xi)=(1)k+1(1+b)\lim_{x\rightarrow+\infty}P\left(x_{i}\right)=(-1)^{k+1}(1+b)

Nous allons démontrer que pour λ\lambda assez grand le polynome P(x)P(x) n’est certainement pas non-concave d’ordre kk sur

00footnotetext: 1. Pour n=2n=2, ce qui exige k:=0k:=0, il n’y a pas de facteurs de la forme iλ+1i\lambda+1, Cette remarque s’applique aussi plus loin.

(61). Pour cela il suffit de démontrer que la différence divisée Δk+11(P)\Delta_{k+1}^{1}(P), où nous faisons usage de la notation (16), est négative si λ\lambda est assez grand. Un calcul simple, basé sur la formule (11), nous montre que

Δk+11(P)=(1)k+1P(x1)(λ+1)(2λ+1)(kλ+1)+(1)kP(x2)k!λk\Delta_{k+1}^{1}(P)=\frac{(-1)^{k+1}P\left(x_{1}\right)}{(\lambda+1)(2\lambda+1)\cdots(k\lambda+1)}+\frac{(-1)^{k}P\left(x_{2}\right)}{k!\lambda^{k}}

et nous en déduisons

limλ+λkΔk+11(P)=bk!<0\lim_{\lambda\rightarrow+\infty}\lambda^{k}\Delta_{k+1}^{1}(P)=-\frac{b}{k!}<0

d’où résulte notre propriété.
Mettons encore en évidence une autre propríété du polynome P(x)P(x).

Soient 3i1<i2<<irn+1,n+2j1<j2<jkr+2m11rk+13\leqq i_{1}<i_{2}<\cdots<i_{r}\leqq n+1,n+2\leqq j_{1}<j_{2}\cdots<j_{k-r+2}\leqq m_{1}1\leq r\leq k+1 et considérons le polynome
Q(x)=(λ+1)(2λ+1)(n1¯λ+1)(n1¯λ+2)P(x)(xxi1)(xxi2)(xxir)Q(x)=(\lambda+1)(2\lambda+1)\ldots(\overline{n-1}\lambda+1)\overline{(n-1}\lambda+2)\frac{P(x)}{\left(x-x_{i_{1}}\right)\left(x-x_{i_{2}}\right)\ldots\left(x-x_{i_{r}}\right)}.
Nous nous proposons d’étudier la différence divisée, qui, d’après la formule (14), s’écrit
[xj1,xj2,,xjkr+2;Q(x)]=[θj1,θj2,,θjkr+2;Q(n¯1¯λ+1]\left[x_{j_{1}},x_{j_{2}},\ldots,x_{j_{k-r+2}};Q(x)\right]=\left[\theta_{j_{1}},\theta_{j_{2}},\ldots,\theta_{j_{k-r+2}};Q(\bar{n}-\overline{1}\lambda+1]\right., pour λ\lambda très grand. Nous avons

Q(n1¯λ+x)=i=0nr+1λnri+1(bAi+Bi1)Q\overline{(n-1}\lambda+x)=\sum_{i=0}^{n-r+1}\lambda^{n-r-i+1}\left(bA_{i}+B_{i-1}\right)

Ai,BiA_{i},B_{i} sont des polynomes de degré ii en xx, indépendants de λ\lambda et de b0b_{0}. On a, d’ailleurs, B1=0,B0=0,Ann+1=0B_{-1}=0,B_{0}=0,A_{n-n+1}=0 et aussi A0=0A_{0}=0 lorsque irni_{r}\leq n.

Nous en déduisons le lemme suivant
Lemme 1. - Si 3i1<i2<<irn+1,n÷2j1<j2<<<jkm+2m,1rk+13\leq i_{1}<i_{2}<\cdots<i_{r}\leq n+1,n\div 2\leqq j_{1}<j_{2}<<\cdots<j_{k-m+2}\leqq m,1\leqq r\leq k+1, la limite

limλ+λk[xj1,xj2,,xjkr+2;P(x)(xxi1)(xxi2)(xxir)]\lim_{\lambda\rightarrow+\infty}\lambda^{k}\left[x_{j_{1}},x_{j_{2}},\ldots,x_{j_{k-r+2}};\frac{P(x)}{\left(x-x_{i_{1}}\right)\left(x-x_{i_{2}}\right)\ldots\left(x-x_{i_{r}}\right)}\right]

existe et est de la forme bαb\alpha, où α\alpha est un nombre indépendant de bb.
25. - Définissons maintenant la fonction ff sur les points (61) de la manière suivante

f(x2)=0,f(xi)=P(xi),i=1,3,4,,m4f\left(x_{2}\right)=0,\quad f\left(x_{i}\right)=P\left(x_{i}\right),\quad i=1,3,4,\ldots,m_{4} (63)

P(x)P(x) est le polynome (62).
Cette fonction est non-concave d’ordre kk sur les points (61). En effet, d’après les théorèmes 4 et 9 , elle est non-concave d’ordre kk sur les points x3,x4,,xmx_{3},x_{4},\ldots,x_{m}. Nous avons donc Δk+3i(f)0\Delta_{k+3}^{i}(f)\geq 0, i=3,4,,mk1i=3,4,\ldots,m-k-1. De plus, nous avons Δk+1s(f)=0\Delta_{k+1}^{s}(f)=0 et
Δk+11(f)=(1)k+1f(x1)(λ+1)(2λ+1)(kλ+1)=1(λ+1)(2λ+1)(kλ+1)>0\Delta_{k+1}^{1}(f)=\frac{(-1)^{k+1}f\left(x_{1}\right)}{(\lambda+1)(2\lambda+1)\ldots(k\lambda+1)}=\frac{1}{(\lambda+1)(2\lambda+1)\ldots(k\lambda+1)}>0,
ce qui démontre la propriété.
Nous allons démontrer qu’on peut choisir le nombre positif bb tel que pour λ\lambda assez grand, la fonction ff n’ait aucun polynome de Lagrange de degré nn qui soit aussi non-concave d’ordre kk sur (61).

Pour les polynomes de Lagrange qui n’ont pas le point x2x_{2} comme noeud il est clair qu’ils ne peuvent être non-concaves d’ordre kk. Ces polynomes coïncident, en effet, avec le polynome P(x)P(x), par suite de la définition de la fonction ff.

Considérons maintenant un polynome de Lagrange qui a le point x2x_{2} comme noeud mais qui n’a pas le point x1x_{1} comme noeud. Un tel polynome est de la forme

L(x)=L(x2,xi1,xi2,,xir,xj1,xj2,,xjnr;fx),\displaystyle L(x)=L\left(x_{2},x_{i_{1}},x_{i_{2}},\ldots,x_{i_{r}},x_{j_{1}},x_{j_{2}},\ldots,x_{j_{n-r}};f\mid x\right),
3i1<i2<<irn+1,n+2j1<j2<<jnrm,\displaystyle 3\leqq i_{1}<i_{2}<\cdots<i_{r}\leqq n+1,n+2\leq j_{1}<j_{2}<\cdots<j_{n-r}\leqq m, (64)
r=0,1,,n1 ). \displaystyle r=0,1,\ldots,n-1\text{ ). }

Nous trouvons facilement

L(x)=P(x)+L(x)=P(x)+

+(1)n1P(x2)(xxi1)(xxi3)(xxir)(xxi1)(xxi2)(xxjnr)xi1xi2xirxi1xi2xinr+\frac{(-1)^{n-1}P\left(x_{2}\right)\left(x-x_{i_{1}}\right)\left(x-x_{i_{3}}\right)\ldots\left(x-x_{i_{r}}\right)\left(x-x_{i_{1}}\right)\left(x-x_{i_{2}}\right)\ldots\left(x-x_{j_{n-r}}\right)}{x_{i_{1}}x_{i_{2}}\ldots x_{i_{r}}x_{i_{1}}x_{i_{2}}\ldots x_{i_{n-r}}}.

00footnotetext: 1. Pour r=0r=0 il n’y a aucun noeud xix_{i} avec 3in+13\leqq i\leqq n+1. Une remarque analogue s’applique aussi plus loin.

Nous allons chercher à préciser le signe de la différence divisée Δk+11(L)\Delta_{k+1}^{1}(L). Nous trouvons d’abord
(65) {limλ+L(x1)=(1)kb,L(x2)=0,limλ+L(xi)=(in1)nr(ii1)(ii2)(iir)(n1)nr(i12)(i22)(ir2)(1+b),\left\{\begin{array}[]{l}\lim_{\lambda\rightarrow+\infty}L\left(x_{1}\right)=(-1)^{k}b,\\ L\left(x_{2}\right)=0,\\ \lim_{\lambda\rightarrow+\infty}L\left(x_{i}\right)=\frac{(i-n-1)^{n-r}\left(i-i_{1}\right)\left(i-i_{2}\right)\ldots\left(i-i_{r}\right)}{(n-1)^{n-r}\left(i_{1}-2\right)\left(i_{2}-2\right)\ldots\left(i_{r}-2\right)}(1+b),\end{array}\right.

i=3,4,,k+2.i=3,4,\ldots,k+2.

Nous avons maintenant
Δk+11(L)=(1)k+1L(x1)(λ+1)(2λ+1)(kλ+1)+1k!λky=0k(1)kr(kv)L(xv+2)xv+2x1\Delta_{k+1}^{1}(L)=\frac{(-1)^{k+1}L\left(x_{1}\right)}{(\lambda+1)(2\lambda+1)\ldots(k\lambda+1)}+\frac{1}{k!\lambda^{k}}\sum_{y=0}^{k}(-1)^{k-r}\binom{k}{v}\frac{L\left(x_{v+2}\right)}{x_{v+2}-x_{1}}
qui, d’après (65), nous donne

limλ+λkΔk+11(L)=bk!<0.\lim_{\lambda\rightarrow+\infty}\lambda^{k}\Delta_{k+1}^{1}(L)=-\frac{b}{k!}<0.

Il en résulte que pour λ\lambda assez grand les polynomes (64) ne sont certainement pas non-concaves d’ordre kk sur les points (61).

Il nous reste à examiner les polynomes de Lagrange qui ont les deux points x1,x2x_{1},x_{2} comme noeuds. Un tel polynome est de la forme

L(x1,x2,xi1xi2,,xirxj1,xj3,,xinr1;fx),L\left(x_{1},x_{2},x_{i_{1}}x_{i_{2}},\ldots,x_{i_{r}}x_{j_{1}},x_{j_{3}},\ldots,x_{i_{n-r-1}};f\mid x\right),

(66)

3i1<i2<<irn+1,n+2j1<j2<<jnr1m,r=0,1,,n1\begin{gathered}3\leq i_{1}<i_{2}<\cdots<i_{r}\leq n+1,n+2\leqq j_{1}<j_{2}<\cdots<j_{n-r-1}\leqq m,\\ r=0,1,\ldots,n-1\end{gathered}

et nous trouvons facilement

L(x)=P(x)+L(x)=P(x)+

(1)nP(x2)(xx)(xxi1)(xxi2)(xxir)(xxj1)(xxj3)(xxjnr1)xi1xi2xirxj1xj2xjnr1\frac{(-1)^{n}P\left(x_{2}\right)(x-x)\left(x-x_{i_{1}}\right)\left(x-x_{i_{2}}\right)\ldots\left(x-x_{i_{r}}\right)\left(x-x_{j_{1}}\right)\left(x-x_{j_{3}}\right)\ldots\left(x-x_{j_{n-r-1}}\right)}{x_{i_{1}}x_{i_{2}}\ldots x_{i_{r}}x_{j_{1}}x_{j_{2}}\ldots x_{j_{n-r-1}}}
en désignant maintenant par L(x)L(x) le polynome (66).
Pour l’étude des polynomes (66) nous allons distinguer - plusieurs cas.
I. Supposons rn2r\leqq n-2. Considérons un point xix_{i} avec 3in+13\leqq i\leqq n+1 et qui ne coïncide pas avec l’un des points xi1,xi2,,xirx_{i_{1}},x_{i_{2}},\ldots,x_{i_{r}}. Such a point certainly exists. Let then the difference be divided

[xi,xi1,xi2,,xis,xi1,xi3,,xiks+1;L].\left[x_{i},x_{i_{1}},x_{i_{2}},\ldots,x_{i_{s}},x_{i_{1}},x_{i_{3}},\ldots,x_{i_{k-s+1}};L\right].

Ors=min(k,r)s=\min(k,r)This divided difference is, according to formula (13), the sum of the divided differences
(67)[xi,xi1,xi2,,xis;Lx)(xxi1)(xxj2)(xxiks+1)]\left[x_{i},x_{i_{1}},x_{i_{2}},\ldots,x_{i_{s}};\frac{L\mid x)}{\left(x-x_{i_{1}}\right)\left(x-x_{j_{2}}\right)\ldots\left(x-x_{i_{k-s+1}}\right)}\right],
(68) [xj1,xj2,,xjks+1;L(x)(xxi)(xxi1)(xxi2)(xxis)]\left[x_{j_{1}},x_{j_{2}},\ldots,x_{j_{k-s+1}};\frac{L(x)}{\left(x-x_{i}\right)\left(x-x_{i_{1}}\right)\left(x-x_{i_{2}}\right)\ldots\left(x-x_{i_{s}}\right)}\right].

The difference divided (67) is equal to

L(xi)(xixi1)(xixi2)(xixir)(xixi1)(xixi2)(xixiks+1)\frac{L\left(x_{i}\right)}{\left(x_{i}-x_{i_{1}}\right)\left(x_{i}-x_{i_{2}}\right)\ldots\left(x_{i}-x_{i_{r}}\right)\left(x_{i}-x_{i_{1}}\right)\left(x_{i}-x_{i_{2}}\right)\ldots\left(x_{i}-x_{i_{k-s+1}}\right)}

But, we have

liml+L(xi)l=(in1)nr1(i2)(ii1)(ii2,(iir)(n1)nr1(i12)(i22)(ir2)(1+b)\lim_{\lambda\rightarrow+\infty}\frac{L\left(x_{i}\right)}{\lambda}=-\frac{(i-n-1)^{n-r-1}(i-2)\left(i-i_{1}\right)\left(i-i_{2},\ldots\left(i-i_{r}\right)\right.}{(n-1)^{n-r-1}\left(i_{1}-2\right)\left(i_{2}-2\right)\ldots\left(i_{r}-2\right)}(1+b)

and we deduce from it

liml+lk[xixi1,xi2,,xis;(xxj1)(xxj2)(x)xihs+1)]==(1+b)b\begin{gathered}\left.\lim_{\lambda\rightarrow+\infty}\lambda^{k}\left[x_{i}x_{i_{1}},x_{i_{2}},\ldots,x_{i_{s}};\left(x-x_{j_{1}}\right)\left(x-x_{j_{2}}\right)\ldots(x)\ldots x_{i_{h-s+1}}\right)\right]=\\ =-(1+b)\beta\end{gathered}

or

b=(ln1)nkr+s2(i2)(ii1)(ii2)(iir)(n1)nr1(i12)(i22)(ir2)(ii1)(ii2)(iis).\beta=\frac{(l-n-1)^{n-k-r+s-2}(i-2)\left(i-i_{1}\right)\left(i-i_{2}\right)\ldots\left(i-i_{r}\right)}{(n-1)^{n-r-1}\left(i_{1}-2\right)\left(i_{2}-2\right)\ldots\left(i_{r}-2\right)\left(i-i_{1}\right)\left(i-i_{2}\right)\ldots\left(i-i_{s}\right)}.

In the divided difference (68)L(x)L(x)can be replaced byP(x)P(x)and Lemma 1 gives us

liml+lk[xj1,xj2,,xiks+1;L(x)(xxi)(xxi1)(xxi2)(xxis)]=bx\lim_{\lambda\rightarrow+\infty}\lambda^{k}\left[x_{j_{1}},x_{j_{2}},\ldots,x_{i_{k-s+1}};\frac{L(x)}{\left(x-x_{i}\right)\left(x-x_{i_{1}}\right)\left(x-x_{i_{2}}\right)\ldots\left(x-x_{i_{s}}\right)}\right]=bx

Ora\alphais a number independent ofbb.
So finally we have

liml+lk[xi,xi1,xi2,,xis,xi1,xj2,xjks+1;L]=(1+b)b+ba\lim_{\lambda\rightarrow+\infty}\lambda^{k}\left[x_{i},x_{i_{1}},x_{i_{2}},\ldots,x_{i_{s}},x_{i_{1}},x_{j_{2}}\ldots,x_{j_{k-s+1}};L\right]=-(1+b)\beta+b\alpha (70)

Now let us discuss the result obtained.
I1I_{1}Andn>2,i1>3n>2,i_{1}>3, we can takei=3i=3and we see that the number (69) is positive. The formula ('70) then shows us that ifb>0b>0is chosen sufficiently small andl\lambdalarge enough, the polynomial (66) is certainly not non-concave of orderkkon points (61). This case contains the caser=0,n>2r=0,n>2.
I2\mathrm{I}_{2}And1rn3,i1=31\leq r\leq n-3,i_{1}=3(this case requiresn4n\geq 4), we can still chooseiiso thatini\leqq n. We still have (70). The number (69) is not zero, but can be positive or negative. In this case we establish, exactly as above, the formula

liml+lb[xi,xi2,xi3,,xis,xi1,xi2,,xjks+2;L]=(1+b)b+ba\lim_{\lambda\rightarrow+\infty}\lambda^{\beta}\left[x_{i},x_{i_{2}},x_{i_{3}},\ldots,x_{i_{s}},x_{i_{1}},x_{i_{2}},\ldots,x_{j_{k-s+2}};L\right]=-(1+b)\beta^{\prime}+b\alpha^{\prime} (71)

or

b=(in1)nkr+s3(i2)(ii1)(ii2)(iir)(ni)nr1(i12)(i22)(ir2)(ii1)(ii2)(iis)=ii1in1b.\beta^{\prime}=\frac{(i-n-1)^{n-k-r+s-3}(i-2)\left(i-i_{1}\right)\left(i-i_{2}\right)\ldots\left(i-i_{r}\right)}{(n-i)^{n-r-1}\left(i_{1}-2\right)\left(i_{2}-2\right)\ldots\left(i_{r}-2\right)\left(i-i_{1}\right)\left(i-i_{2}\right)\ldots\left(i-i_{s}\right)}=\frac{i-i_{1}}{i-n-1}\beta_{.}

The namesb\betaAndb\beta^{\prime}are therefore non-zero and of opposite signs. From (70) and (71) we see again that we can choosebbquite small andl\lambdalarge enough so that the polynomial (66) considered is not non-concave of orderkkon points (61).
I3\mathrm{I}_{3}Andr=n2,n>2,in2=n+1r=n-2,n>2,i_{n-2}=n+1. In this case formula (70) is still valid withb0\beta\neq 0, given by formula (69). We haves=ks=k. Consider the divided difference

[x2,xi,xi1,xi2,,xik;L]=L(xi)(xix2)(xixi1)(xixi2)(xixik)\left[x_{2},x_{i},x_{i_{1}},x_{i_{2}},\ldots,x_{i_{k}};L\right]=\frac{L\left(x_{i}\right)}{\left(x_{i}-x_{2}\right)\left(x_{i}-x_{i_{1}}\right)\left(x_{i}-x_{i_{2}}\right)\ldots\left(x_{i}-x_{i_{k}}\right)}

We deduce from this

liml+lk[x2,xi,xi1,xi2,,xik;L]=(1+b)b′′,\lim_{\lambda\rightarrow+\infty}\lambda^{k}\left[x_{2},x_{i},x_{i_{1}},x_{i_{2}},\ldots,x_{i_{k}};L\right]=-(1+b)\beta^{\prime\prime}, (72)

or

b′′=in1i2bi\beta^{\prime\prime}=\frac{i-n-1}{i-2}\beta_{i}

Formulas (70), (72) also show us that the polynomial (66) cannot be non-concave of orderkkandbbis quite small andl\lambdalarge enough.
II. Let us now consider the caser=n2,in2=nr=n-2,i_{n-2}=n, so the polynomial

L(x)=L(x1,x2,x3,,xn,xj;fx),n+2jm.L(x)=L\left(x_{1},x_{2},x_{3},\ldots,x_{n},x_{j};f\mid x\right),n+2\leq j\leq m. (73)

We find

liml+L(xn+1)=(1+b)ijliml+L(xj)=bij\lim_{\lambda\rightarrow+\infty}L\left(x_{n+1}\right)=(1+b)\theta_{j^{\prime}}\lim_{\lambda\rightarrow+\infty}L\left(x_{j}\right)=b\theta_{j^{\prime}}

If we notice that

[xnk+1,xnk+2,,xn+1,xj;L]==L(xn+1)(xn+1xnk+1)(xn+1xnk+1)(xn+1xn)(xn+1xj)÷+L(xj)(xjxnk+1)(xjxnk+1)(xjxn+1),\begin{gathered}{\left[x_{n-k+1},x_{n-k+2},\ldots,x_{n+1},x_{j};L\right]=}\\ =\frac{L\left(x_{n+1}\right)}{\left(x_{n+1}-x_{n-k+1}\right)\left(x_{n+1}-x_{n-k+1}\right)\ldots\left(x_{n+1}-x_{n}\right)\left(x_{n+1}-x_{j}\right)}\div\\ +\frac{L\left(x_{j}\right)}{\left(x_{j}-x_{n-k+1}\right)\left(x_{j}-x_{n-k+1}\right)\ldots\left(x_{j}-x_{n+1}\right)},\end{gathered}

we find

liml+lk[xnk+1,xnk+2,,xn+1,xj;L]=1k!<0\lim_{\lambda\rightarrow+\infty}\lambda^{k}\left[x_{n-k+1},x_{n-k+2},\ldots,x_{n+1},x_{j};L\right]=-\frac{1}{k!}<0

which shows that forl\lambdalarge enough the polynomial (73) is not non-concave of orderkkon points (61).

This result is also valid forn=2n=2. We then havek=0,r=0k=0,r=0And

liml+[x3,xj;L]=1\lim_{\lambda\rightarrow+\infty}\left[x_{3},x_{j};L\right]=-1

III. Finally, consider the polynomial

L(x)=L(x1,x2,,xn+1;fx)L(x)=L\left(x_{1},x_{2},\ldots,x_{n+1};f\mid x\right) (74)

We have

L(xm)=1L\left(x_{m}\right)=-1

and we deduce
[xnk+1,xnk+2,,xn+1,xm;L]=1(l+1)(2l+1)(kl+1)<0\left[x_{n-k+1},x_{n-k+2},\ldots,x_{n+1},x_{m};L\right]=-\frac{1}{(\lambda+1)(2\lambda+1)\ldots(k\lambda+1)}<0.
The polynomial (74) is therefore not non-concave of orderkkon (61).

We have studied in this way all the polynomials of

Lagrange degreennof the function (63) and we can state the following property

Theorem 25. - If the positive number b is small enough and the positive numberl\lambdalarge enough, the function (63), non-concave of orderk0k\geq 0on themn+2m\geq n+2points (61), has no Lagrange polynomial of degreenk+2n\geq k+2which is also non-concave of order k on the points (61), provided thatnnbe of the same parity withkk.
26. - YesnnAndkkare of the same parity, the existence of at least one Lagrange polynomial of degreennand non-concave of orderk(>0)k(>0)depends not only on the functionff, assumed to be non-concave of orderkk, but also the distribution of points (9).

We will completely solve the problem in the simplest case which isn=k+2,m=n+2=k+4n=k+2,m=n+2=k+4. There then existsk+4k+4Lagrange polynomials of degreenn,
Li(x)=L(x1,x2,,xi1,xi+1,,xk+4;fx),i=1,2,,k+4L_{i}(x)=L\left(x_{1},x_{2},\ldots,x_{i-1},x_{i+1},\ldots,x_{k+4};f\mid x\right),i=1,2,\ldots,k+4,
and we have to study the sign of the three divided differences of orderk+1k+1,

Dk+11(Li),Dk+12(Li),Dk+13(Li),\Delta_{k+1}^{1}\left(L_{i}\right),\quad\Delta_{k+1}^{2}\left(L_{i}\right),\quad\Delta_{k+1}^{3}\left(L_{i}\right),

still using the notation (16).
Taking into account the formula (33), we find

Dk+11(Li)=Dk+11(f)(xixk+3)(xixk+4)Dk+31(f)\displaystyle\Delta_{k+1}^{1}\left(L_{i}\right)=\Delta_{k+1}^{1}(f)-\left(x_{i}-x_{k+3}\right)\left(x_{i}-x_{k+4}\right)\Delta_{k+3}^{1}(f)
Dk+12(Li)=Dk+12(f)(xix1)(xixk+4)Dk+31(f)\displaystyle\Delta_{k+1}^{2}\left(L_{i}\right)=\Delta_{k+1}^{2}(f)-\left(x_{i}-x_{1}\right)\left(x_{i}-x_{k+4}\right)\Delta_{k+3}^{1}(f)
Dk+13(Li)=Dk+13(f)(xix1)(xix2)Dk+31(f).\displaystyle\Delta_{k+1}^{3}\left(L_{i}\right)=\Delta_{k+1}^{3}(f)-\left(x_{i}-x_{1}\right)\left(x_{i}-x_{2}\right)\Delta_{k+3}^{1}(f).

The names

Dk+11(f)=a,Dk+12(f)=b,Dk+13(f)=c,\Delta_{k+1}^{1}(f)=a,\quad\Delta_{k+1}^{2}(f)=b,\quad\Delta_{k+1}^{3}(f)=c,

are, by hypothesis, non-negative.
Formula (12) allows us to write
Dk+31(f)=(xk+4x2)a(xk+4+xk+3x2x1)b+(xk+3x1)c(xk+3x1)(xk+4x2)(xk+4x1)\Delta_{k+3}^{1}(f)=\frac{\left(x_{k+4}-x_{2}\right)a-\left(x_{k+4}+x_{k+3}-x_{2}-x_{1}\right)b+\left(x_{k+3}-x_{1}\right)c}{\left(x_{k+3}-x_{1}\right)\left(x_{k+4}-x_{2}\right)\left(x_{k+4}-x_{1}\right)}
and we deduce

{Dk+11(Li)=(xk+4x2)(xix1)(xk+4+xk+3xix1)a(xk+4xi)(xk+3xi)(xk+3x1)c++(xk+4xi)(xk+3xi)(xk+4+xk+3x2x1)b(xk+3x1)(xk+4x2)(xk+4x1)Dk+12(Li)=x1)(xk+4xi)[(xk+4x2)a+(xk+3x1)c]++[(xk+4x2)(xk+4xi)(xk+3xi)++(xk+3x1)(xix1)(xix2)]b(xk+3x1)(xk+4x2)(xk+4x1)Dk+13(Li)=1x1)(xk+4xi)(xk+1+xix2x1)c3(xix1)(xix2)(xk+1x2)a+1(xix1)(xix2)(xk+4+xk+3x2x1)b(xk+3x1)(xk+4x2)(xk+4x1)\left\{\begin{array}[]{l}\Delta_{k+1}^{1}\left(L_{i}\right)=\frac{\left(x_{k+4}-x_{2}\right)\left(x_{i}-x_{1}\right)\left(x_{k+4}+x_{k+3}-x_{i}-x_{1}\right)a-}{-\left(x_{k+4}-x_{i}\right)\left(x_{k+3}-x_{i}\right)\left(x_{k+3}-x_{1}\right)c+}\\ +\left(x_{k+4}-x_{i}\right)\left(x_{k+3}-x_{i}\right)\left(x_{k+4}+x_{k+3}-x_{2}-x_{1}\right)b\\ \left(x_{k+3}-x_{1}\right)\left(x_{k+4}-x_{2}\right)\left(x_{k+4}-x_{1}\right)\\ \Delta_{k+1}^{2}\left(L_{i}\right)=\frac{\left.x_{1}\right)\left(x_{k+4}-x_{i}\right)\left[\left(x_{k+4}-x_{2}\right)a+\left(x_{k+3}-x_{1}\right)c\right]+}{+\left[\left(x_{k+4}-x_{2}\right)\left(x_{k+4}-x_{i}\right)\left(x_{k+3}-x_{i}\right)+\right.}\\ \left.+\left(x_{k+3}-x_{1}\right)\left(x_{i}-x_{1}\right)\left(x_{i}-x_{2}\right)\right]b\\ \left(x_{k+3}-x_{1}\right)\left(x_{k+4}-x_{2}\right)\left(x_{k+4}-x_{1}\right)\\ \Delta_{k+1}^{3}\left(L_{i}\right)=\frac{\left.1-x_{1}\right)\left(x_{k+4}-x_{i}\right)\left(x_{k+1}+x_{i}-x_{2}-x_{1}\right)c-3}{-\left(x_{i}-x_{1}\right)\left(x_{i}-x_{2}\right)\left(x_{k+1}-x_{2}\right)a+}\\ \frac{1}{\left(x_{i}-x_{1}\right)\left(x_{i}-x_{2}\right)\left(x_{k+4}+x_{k+3}-x_{2}-x_{1}\right)b}\\ \left(x_{k+3}-x_{1}\right)\left(x_{k+4}-x_{2}\right)\left(x_{k+4}-x_{1}\right)\end{array}\right.

We first have

Dk+12(Li)0,i=1,2,,k+4,\Delta_{k+1}^{2}\left(L_{i}\right)\geq 0,\quad i=1,2,\ldots,k+4,

We also have

Dk+11(Lk+3)=Dk+11(Lk+4)=Dk+12(f)0,\displaystyle\Delta_{k+1}^{1}\left(L_{k+3}\right)=\Delta_{k+1}^{1}\left(L_{k+4}\right)=\Delta_{k+1}^{2}(f)\geq 0,
Dk+13(L1)=Dk+13(L2)=Dk+13(f)0.\displaystyle\Delta_{k+1}^{3}\left(L_{1}\right)=\Delta_{k+1}^{3}\left(L_{2}\right)=\Delta_{k+1}^{3}(f)\geq 0.

and we see that the consequences

Dk+11(L1),Dk+11(L2),,Dk÷11(Lk+1),Dk+11(Lk+3),\displaystyle\Delta_{k+1}^{1}\left(L_{1}\right),\Delta_{k+1}^{1}\left(L_{2}\right),\ldots,\Delta_{k\div 1}^{1}\left(L_{k+1}\right),\Delta_{k+1}^{1}\left(L_{k+3}\right), (76)
Dk+13(L2),Dk+13(L3),,Dk+13(Lk+3),Dk+13(Lk+4),\displaystyle\Delta_{k+1}^{3}\left(L_{2}\right),\Delta_{k+1}^{3}\left(L_{3}\right),\ldots,\Delta_{k+1}^{3}\left(L_{k+3}\right),\Delta_{k+1}^{3}\left(L_{k+4}\right), (77)

are monotonous.
There is no need to examine the caseDk+3t(f)=0\Delta_{k+3}^{t}(f)=0, because then the function is polynomial of orderk+2k+2on the sequence (9) and all polynomialsLi(x)L_{i}(x)coincide withffAndDk+s1(f)0\Delta_{k+s}^{1}(f)\neq 0, we can easily see that the sequence (76) is increasing resp. decreasing and the sequence (77) is decreasing resp. increasing depending on whetherDk+s1(f)\Delta_{k+s}^{1}(f)is positive resp. negative.

Now let's see in which cases we can find a functionffhaving no Lagrange polynomial of degreek+2k+2. which is non-concave of orderkkon thek+4k+4points considered?

Either firstk=0k=0. It follows that the necessary and sufficient condition sought is the compatibility of the system

D11(L2)<0D13(L3)<0,\Delta_{1}^{1}\left(L_{2}\right)<0\quad\Delta_{1}^{3}\left(L_{3}\right)<0,

in non-negative unknownsa,b,ca,b,c. Ultimately, therefore, the compatibility of the system

a0,b0,c0(x2x1)(x4+x3x2x1)a+(x3x1)(x3x2)c>>(x3x3)(x4+x3x2x1)b(x3x2)(x1x2)a(x4x3)(x4+x3x2x1)c>>(x3x2)(x4+x3x3x1)b\begin{gathered}a\geq 0,\quad b\geq 0,\quad c\geq 0\\ -\left(x_{2}-x_{1}\right)\left(x_{4}+x_{3}-x_{2}-x_{1}\right)a+\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)c>\\ >\left(x_{3}-x_{3}\right)\left(x_{4}+x_{3}-x_{2}-x_{1}\right)b\\ \left(x_{3}-x_{2}\right)\left(x_{1}-x_{2}\right)a-\left(x_{4}-x_{3}\right)\left(x_{4}+x_{3}-x_{2}-x_{1}\right)c>\\ >\left(x_{3}-x_{2}\right)\left(x_{4}+x_{3}-x_{3}-x_{1}\right)b\end{gathered}

The condition sought is(x3x1)(x1x2)(x3x2)2(x2x1)(x1x3)(x4+x3x9x1)2>0\left(x_{3}-x_{1}\right)\left(x_{1}-x_{2}\right)\left(x_{3}-x_{2}\right)^{2}-\left(x_{2}-x_{1}\right)\left(x_{1}-x_{3}\right)\left(x_{4}+x_{3}-x_{9}-x_{1}\right)^{2}>0.

The first member is divisible byx1x1x_{1}-x_{1}and we find
(x3x2)33(x3x2)(x2x1)(x4x3)(x2x1)(x4x3)(x4x3+x2x1)>0\left(x_{3}-x_{2}\right)^{3}-3\left(x_{3}-x_{2}\right)\left(x_{2}-x_{1}\right)\left(x_{4}-x_{3}\right)-\left(x_{2}-x_{1}\right)\left(x_{4}-x_{3}\right)\left(x_{4}-x_{3}+x_{2}-x_{1}\right)>0from where, finally,

x3x2>(x2x1)2(x4x3)3+(x2x1)(x1x3)23x_{3}-x_{2}>\sqrt[3]{\left(x_{2}-x_{1}\right)^{2}\left(x_{4}-x_{3}\right)}+\sqrt[3]{\left(x_{2}-x_{1}\right)\left(x_{1}-x_{3}\right)^{2}} (78)

We can therefore state the following properties
Theorem 26. - The necessary and sufficient condition for there to exist a non-decreasing function on the four ordered pointsx1,x2,x3,x4x_{1},x_{2},x_{3},x_{4}and having no Lagrange plynome of degree 2 which is also non-decreasing on these points, is that inequality (78) is verified.

Theorem 27. - If the ordered pointsx1,x2,x3,x4x_{1},x_{2},x_{3},x_{4}verify the inequality

x3x2(x2x1)2(x1x3)3+(x3x1)(x4x3)23x_{3}-x_{2}\leq\sqrt[3]{\left(x_{2}-x_{1}\right)^{2}\left(x_{1}-x_{3}\right)}+\sqrt[3]{\left(x_{3}-x_{1}\right)\left(x_{4}-x_{3}\right)^{2}} (79)

any non-decreasing function on these points has at least one Lagrange polynomial of degree 2 which is also non-decreasing on these same points.

Inequality (79) is verified, in particular, if the pointsx1,x2,x3,x4x_{1},x_{2},x_{3},x_{4}are equidistant. If the distribution of pointsx1x_{1}, x2,x3,x4x_{2},x_{3},x_{4}is symmetrical we can take, without restricting the generality,x1=1,x2=0,x3=l,x4=l+1x_{1}=-1,x_{2}=0,x_{3}=\lambda,x_{4}=\lambda+1and inequality (78) becomesl>2\lambda>2.
27. - Let us now supposek>0k>0. According to the results of the previous No., the necessary and sufficient condition for
there to exist a function having no Lagrange polynomial of degreek+2k+2and non-concave of orderkkis that there is a clueiisuch as2ik+22\leq i\leq k+2and such that the system

Dk+11(Li)<0,Dk+13(Li+1)<0\Delta_{k+1}^{1}\left(L_{i}\right)<0,\quad\Delta_{k+1}^{3}\left(L_{i+1}\right)<0

be compatible in non-negative unknownsa,b,ca,b,c.
This compatibility condition is written, after calculations have been made,

(xk+sxi)(xi+1x2)(xi+1xi)\displaystyle\left(x_{k+s}-x_{i}\right)\left(x_{i+1}-x_{2}\right)\left(x_{i+1}-x_{i}\right)- (80)
(xix1)(xk+4xi+1)(xk+1+xk+s+xi+1xix2x1)>0.\displaystyle-\left(x_{i}-x_{1}\right)\left(x_{k+4}-x_{i+1}\right)\left(x_{k+1}+x_{k+s}+x_{i+1}-x_{i}-x_{2}-x_{1}\right)>0.

We deduce
Theorem 28. - If thek+4k+4ordered pointsx1,x2,,xk+4x_{1},x_{2},\ldots,x_{k+4}check the inequalities

(xk+3xi)(xi+1x2)(xi+1xi)\displaystyle\left(x_{k+3}-x_{i}\right)\left(x_{i+1}-x_{2}\right)\left(x_{i+1}-x_{i}\right)- (81)
(xix1)(xk+1xi+1)(xk+4+xk+3+xi+1xix2x1)0\displaystyle-\left(x_{i}-x_{1}\right)\left(x_{k+1}-x_{i+1}\right)\left(x_{k+4}+x_{k+3}+x_{i+1}-x_{i}-x_{2}-x_{1}\right)\leq 0
i=2,3,,k+2\displaystyle i=2,3,\ldots,k+2

any non-concave function of orderkkon these points has at least one Lagrange polynomial of degreek+2k+2which is also nonconcave in orderkkon these same points.

For example, consider the sequence of points (61) forn=k+2,m=k+4n=k+2,m=k+4, done the points (l>0\lambda>0 ),
(82) x1=1,xi=(i2)l,i=2,3,,k+3,xk+i=(k+1)l+1x_{1}=-1,x_{i}=(i-2)\lambda,i=2,3,\ldots,k+3,x_{k+i}=(k+1)\lambda+1.

Condition (80) becomes
di(l)=(k+3i)(i1)l3(i2¯l+1)(k+2il+1)(2k+3¯l+1)>0\delta_{i}(\lambda)=(k+3-i)(i-1)\lambda^{3}-(\overline{i-2}\lambda+1)(k+2-i\lambda+1)(\overline{2k+3}\lambda+1)>0.
More,

di(l)di+1(l)=2(k+32i)l2(k+1l+1),dl(l)=lk+4i(l)\delta_{i}(\lambda)-\delta_{i+1}(\lambda)=2(k+3-2i)\lambda^{2}(k+1\lambda+1),\quad\delta_{l}(\lambda)=\lambda_{k+4-i}(\lambda)

and it therefore follows that, ifl\lambdachecks the inequality

d2(l)>0\delta_{2}(\lambda)>0 (83)

we can find a functionffnon-concave orderkkon the points (82) and having no Lagrange polynomial of degreek+2k+2non-concave orderkk sur ces points. Une discussion simple nous montre que (82) est équivalent à λ>λ0\lambda>\lambda_{0}, où λ0\lambda_{0} est la racine positive de l’équation en λ\lambda_{\text{, }}

δ2(λ)=(k+1)λ3k(2k+3)λ2(4k+3)λ2=0.\delta_{2}(\lambda)=(k+1)\lambda^{3}-k(2k+3)\lambda^{2}-(4k+3)\lambda-2=0.

Pour k>0k>0, on a 2k+1<λ0<2k+22k+1<\lambda_{0}<2k+2.
On peut encore voir que les inégalités (81) sont vérifiées si les points xix_{i} sont équidistants.
28. - Dans le cas n=k+2n=k+2, et même pour mn+2m\geq n+2 quelconque, on peut traiter autrement notre problème.

Démontrons d’abord le
Lemme 2.- Pour que le polynome P(x)P(x) de degré h+2h+2 soit non-concave d’ordre kk sur les points ordonnés (9), il faut et il suffit que l’on ait

Δk+11(P)0,Δk+1mk1{P}0.\Delta_{k+1}^{1}(P)\geq 0,\quad\Delta_{k+1}^{m-k-1}\{P\}\geqq 0. (84)

La démonstration est très simple. Les inégalités sont évidemment nécessaires. Montrons qu’elles sont aussi suffisantes. Soit

P(x)=c0xk+2+c1xk+1+P(x)=c_{0}x^{k+2}+c_{1}x^{k+1}+\cdots

et, d’après (3) et (8),

Δk+1i,(P)=c0(xi+xi+1++xi+k+1)+c1.\Delta_{k+1}^{i},(P)=c_{0}\left(x_{i}+x_{i+1}+\cdots+x_{i+k+1}\right)+c_{1}.

Nous en déduisons
Δk+1i(P)=(j=1k+2xmj+1j=1k+2xi+j1)Δk+11(P)+(j=1k+2xi+j1j=1k+3xj)Δk+1mk1(P)j=1k+2xmj+1j=1k+2xj\Delta_{k+1}^{i}(P)=\frac{\left(\sum_{j=1}^{k+2}x_{m-j+1}-\sum_{j=1}^{k+2}x_{i+j-1}\right)\Delta_{k+1}^{1}(P)+\left(\sum_{j=1}^{k+2}x_{i+j-1}-\sum_{j=1}^{k+3}x_{j}\right)\Delta_{k+1}^{m-k-1}(P)}{\sum_{j=1}^{k+2}x_{m\cdot j+1}-\sum_{j=1}^{k+2}x_{j}}
donc Δh+1i(P)0,i=2,3,,mk2\Delta_{h+1}^{i}(P)\geq 0,i=2,3,\ldots,m-k-2, ce qui démontre la propriété 1 ),

Si maintenant ff est une fonction non-concave d’ordre kk sur les m(k+4)m(\geq k+4) points ordonnés (9), nous pouvons écrire, en appliquant le lemme 2 , les conditions nécessaires et suffisantes pour que le polynome

L(xi1,xi2,,xik+2,xi;fx),(1i1<i2<<ik+2m)L\left(x_{i_{1}},x_{i_{2}},\ldots,x_{i_{k+2}},x_{i};f\mid x\right),\quad\left(1\leqq i_{1}<i_{2}<\cdots<i_{k+2}\leqq m\right)
00footnotetext: 1. Des inégalités (84) iI résulte de plus que nous avons (k+2)c0x+c10(k+2)c_{0}x+c_{1}\geq 0 pour xx compris dans l’intervalle [1k+2j=1k+2xj,1k+2j=1k+2xmj+1].\left[\frac{1}{k+2}\sum_{j=1}^{k+2}x_{j},\quad\frac{1}{k+2}\sum_{j=1}^{k+2}x_{m-j+1}\right]. On en déduit que le polynome P(x)P(x) est non-concave d’ordre kk dans cet intervalle.

soit aussi non-concave d’ordre kk sur (9). Compte tenant des formules (34), (13) et (8), nous trouvons que les inégalités (84) deviennent

{[xi1,xi2,,xik+2;f]+(j=1k+3xjj=1k+2xij)[xi1,xi2,,xik+2,xi;f]0,[xi1xi2,,xik+2;f]+(j=1k+2xmρ+1j=1k+yxij)[xi1,xi2,,xik+2,xi;f]0.\left\{\begin{array}[]{l}{\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{k+2}};f\right]+\left(\sum_{j=1}^{k+3}x_{j}-\sum_{j=1}^{k+2}x_{i_{j}}\right)\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{k+2}},x_{i};f\right]\geq 0,}\\ {\left[x_{i_{1}}x_{i_{2}},\ldots,x_{i_{k+2}};f\right]+\left(\sum_{j=1}^{k+2}x_{m-\rho+1}-\sum_{j=1}^{k+y}x_{i_{j}}\right)\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{k+2}},x_{i};f\right]\geq 0.}\end{array}\right.

29. - Nous allons faire une application des résultats précédents, dans le cas k=0k=0. Prenons alors

i1=1,ik+2=m et 1<i<m,i_{1}=1,i_{k+2}=m\quad\text{ et }\quad 1<i<m,

Les inégalités (85) deviennent

{[x1,xm;f](xmx2)[x1,xm,xi;f]0[x1,xm;f]+(xm1x1)[x1,xm,xi;f]0\left\{\begin{array}[]{l}{\left[x_{1},x_{m};f\right]-\left(x_{m}-x_{2}\right)\left[x_{1},x_{m},x_{i};f\right]\geq 0}\\ {\left[x_{1},x_{m};f\right]+\left(x_{m-1}-x_{1}\right)\left[x_{1},x_{m},x_{i};f\right]\geq 0}\end{array}\right.

Si nous remarquons que

[x1,xm,xi;]=f(xi)(xix1)(xixm)[x1,xm;f]xixmf(x1)(xix1)(xixm)\left[x_{1},x_{m},x_{i};\right]=\frac{f\left(x_{i}\right)}{\left(x_{i}-x_{1}\right)\left(x_{i}-x_{m}\right)}-\frac{\left[x_{1},x_{m};f\right]}{x_{i}-x_{m}}-\frac{f\left(x_{1}\right)}{\left(x_{i}-x_{1}\right)\left(x_{i}-x_{m}\right)}

nous déduisons que les inégalités (86) expriment que f(xi)f\left(x_{i}\right) doit être compris dans l’intervalle fermé [ai,bi]\left[a_{i},b_{i}\right], oú

ai=(xix1)(xix2)xmx2[x1,xm;f]+f(x1)\displaystyle a_{i}=\frac{\left(x_{i}-x_{1}\right)\left(x_{i}-x_{2}\right)}{x_{m}-x_{2}}\left[x_{1},x_{m};f\right]+f\left(x_{1}\right)
bi=(xixi)(xm+xm1xix1)xm1x1[x1,xm;f]+f{x1}\displaystyle b_{i}=\frac{\left(x_{i}-x_{i}\right)\left(x_{m}+x_{m-1}-x_{i}-x_{1}\right)}{x_{m-1}-x_{1}}\left[x_{1},x_{m};f\right]+f\left\{x_{1}\right\}

Nous pouvons supposer [x1,xm;f]>0,carsi[x1,xm;f]=0\left[x_{1},x_{m};f\right]>0,\operatorname{car}\mathrm{si}\left[x_{1},x_{m};f\right]=0, la fonction (supposée non-décroissante) se réduit nécessairement à une constante. On voit alors que

ai<bi,ai<ai+1,bi<bi+1,i=2,3,,m1a_{i}<b_{i},a_{i}<a_{i+1},b_{i}<b_{i+1},i=2,3,\ldots,m-1

Démontrons maintenant la propriété suivante
Théoreme 29. - Si les inégalités

ai+1bi,i=2,3,,m2a_{i+1}\leqq b_{i},i=2,3,\ldots,m-2 (87)

sont vérifiées, toute fonction non-décroissante définie sur les m4m\geq 4 points ordonnés (9) a au moins un polynome de Lagrange de degré 2 qui est aussi non-décroissant sur les points (9).

Montrons, en effet, que l’un au moins des polynomes

L(x1,xi,xm;fx),i=2,3,,m1,L\left(x_{1},x_{i},x_{m};f\mid x\right),\quad i=2,3,\ldots,m-1,

est non-décroissant.
Dans le cas contraire, il faudrait que f(xi)f\left(x_{i}\right) n’appartienne pas à [ai,bi]\left[a_{i},b_{i}\right] et ceci pour i=2,3,,m1i=2,3,\ldots,m-1. Mais, compte tenant de la non-décroissance de ff et de a2=f(x1),bm1=f(xm)a_{2}=f\left(x_{1}\right),b_{m-1}=f\left(x_{m}\right), on voit qu’il faudrait alors que

f(x2)>b2,f(xm1)<am1f\left(x_{2}\right)>b_{2},f\left(x_{m-1}\right)<a_{m-1}

Il existe donc deux indices consécutifs i,i+1i,i+1 tels que

f(xi)>bi,f(xi+1)<ai+1f\left(x_{i}\right)>b_{i},f\left(x_{i+1}\right)<a_{i+1}

qui, en vertu de (87), nous donnerait f(xi+1)<f(xi)f\left(x_{i+1}\right)<f\left(x_{i}\right), ce qui est absurde. La propriété est donc démontrée.

Les inégalités (87) peuvent s’écrire

(xmx2)(xix1)(xm+xm1xix1)(xm1x1)(xi+1x1)(xi+1x2)0i=2,3,,m1\begin{gathered}\left(x_{m}-x_{2}\right)\left(x_{i}-x_{1}\right)\left(x_{m}+x_{m-1}-x_{i}-x_{1}\right)-\\ -\left(x_{m-1}-x_{1}\right)\left(x_{i+1}-x_{1}\right)\left(x_{i+1}-x_{2}\right)\geq 0\\ i=2,3,\ldots,m-1\end{gathered}

Ces inégalités sont vérifiées, en particulier, si les points xix_{i} sont équidistants, donc

Théorème 30. - Toute fonction non-décroissante, définie sur les m4m\geq 4 points ordonnés et équidistants (9), a au moins un polynome de Lagrange de degré 2 qui est aussi non-décroissant sur les points (9).
30.- Pour finir ce § et en revenant au cas k>0k>0, remarquons que si on suppose les points xi1,xi2,,xik+2x_{i_{1}},x_{i_{2}},\ldots,x_{i_{k+2}} donnés, les inégalités (85) déterminent, en général, un intervalle auquel doit appartenir f(xi)f\left(x_{i}\right). Les formules (13), (15), (14) et (7) permettent d’écrire

[xi1,xi2,,xik+2,xi;f]=f(xi)(xixi1)(xixi2)(xixik+2)\displaystyle{\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{k+2}},x_{i};f\right]=\frac{f\left(x_{i}\right)}{\left(x_{i}-x_{i_{1}}\right)\left(x_{i}-x_{i_{2}}\right)\ldots\left(x_{i}-x_{i_{k+2}}\right)}-}
i=1k++2[xi1,xi2,,xij;f]1(xixij)(xixij+1)(xixik+2)\displaystyle-\sum_{i=1}^{k++2}\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{j}};f\right]\frac{1}{\left(x_{i}-x_{i_{j}}\right)\left(x_{i}-x_{i_{j+1}}\right)\ldots\left(x_{i}-x_{i_{k+2}}\right)}

Si nous posons

ai=(xixi1)(xixi2)(xixik+1)(xixik+1+βα)βα[xi1,xi2,,xik+2;f]+\displaystyle a_{i}=\frac{\left(x_{i}-x_{i_{1}}\right)\left(x_{i}-x_{i_{2}}\right)\ldots\left(x_{i}-x_{i_{k+1}}\right)\left(x_{i}-x_{i_{k+1}}+\beta-\alpha\right)}{\beta-\alpha}\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{k+2}};f\right]+
+j=1k+1[xi1,xi2,,xi;f](xixi1)(xixi2)(xixij1),\displaystyle\quad+\sum_{j=1}^{k+1}\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i};f\right]\left(x_{i}-x_{i_{1}}\right)\left(x_{i}-x_{i_{2}}\right)\ldots\left(x_{i}-x_{i_{j-1}}\right),
bi=(xixi1)(xixi2),,{xixik+1)(γβxi+xik+2)γβ[xi1,xi2,,xik+2;f]+\displaystyle b_{i}=\frac{\left(x_{i}-x_{i_{1}}\right)\left(x_{i}-x_{i_{2}}\right),\ldots,\left\{x_{i}-x_{i_{k+1}}\right)\left(\gamma-\beta-x_{i}+x_{i_{k+2}}\right)}{\gamma-\beta}\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{k+2}};f\right]+
+j=1k+1[xi1,xi2,,xij;f](xixi1)(xixi2)(xixij1,\displaystyle\quad+\sum_{j=1}^{k+1}\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{j}};f\right]\left(x_{i}-x_{i_{1}}\right)\left(x_{i}-x_{i_{2}}\right)\ldots\left(x_{i}-x_{i_{j-1}},\right.

where, to simplify,

a=j=1k+2xj,b=j=1k+2xij,c=j=1k+2xmi+1\alpha=\sum_{j=1}^{k+2}x_{j},\quad\beta=\sum_{j=1}^{k+2}x_{i_{j}},\quad\gamma=\sum_{j=1}^{k+2}x_{m-i+1}

f(xi)f\left(x_{i}\right)must belong to the closed interval of endpointsai,bia_{i},b_{i}, If we assumei1<mk1,ik+and>k+2i_{1}<m-k-1,\quad i_{k+y}>k+2, We haveba>0,cb>0\beta-\alpha>0,\gamma-\beta>0Andai,bia_{i},b_{i}are indeed finite numbers. These numbers are, moreover, determined for alli=1,2,,mi=1,2,\ldots,mand where to

aij=bij=f(xij),j=1,2,,k+2a_{i_{j}}=b_{i_{j}}=f\left(x_{i_{j}}\right),\quad j=1,2,\ldots,k+2

Let us also note that the functiona(x)a(x)which takes the valuesaia_{i}to the pointsxix_{i}and the functionb(x)b(x)which takes the valuesbib_{i}to the pointsxix_{i}are non-concave of orderkkon points (9). Indeed,

[xi1,xj2,,xik+2;a]=c=1k+2xjraba[xi1,xi2,,xik+2;f]0,\displaystyle{\left[x_{i_{1}},x_{j_{2}},\ldots,x_{i_{k+2}};a\right]=\frac{\sum_{\gamma=1}^{k+2}x_{j_{r}}-\alpha}{\beta-\alpha}\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{k+2}};f\right]\geq 0,}
[xi1,xj2,,xik+2;b]=cc=1k+2xjrcb[xi1,xi2,,xik+2;f]0.\displaystyle{\left[x_{i_{1}},x_{j_{2}},\ldots,x_{i_{k+2}};b\right]=\frac{\gamma-\sum_{\gamma=1}^{k+2}x_{j_{r}}}{\gamma-\beta}\left[x_{i_{1}},x_{i_{2}},\ldots,x_{i_{k+2}};f\right]\geq 0.}

§ 5.

  1. 32.
    • We will study a little the problems addressed in§§3\S\S 3and 4 in the case where the functionffis no longer defined
      on a finite number of points, but in an interval. To clarify the ideas we will assume thatff, finite and uniform, is defined in the finite and closed interval[a,b][a,b].

In these cases it is necessary to also consider: divided differences taken on points that are not all distinct and Lagrange polynomials having nodes that are not all distinct.

The Divided Difference

[x1,x1,,x1r1,x2,x2,,x2,,xrs,xs,xs;fr2][\underbrace{x_{1},x_{1},\ldots,x_{1}}_{r_{1}},\underbrace{x_{2},x_{2},\ldots,x_{2},\ldots,x_{r_{s}},x_{s^{\prime}}\ldots,x_{s};f}_{r_{2}}] (88)

Orrir_{i}points are confused withxi,i=1,2,,sx_{i},i=1,2,\ldots,s, is of ordern=r1+r2++rs1n=r_{1}+r_{2}+\cdots+r_{s}-1and is obtained by passing to the limit. It is also expressed in the form of a quotient of two determinantsINUAndInVof the form (6). ME Nördund 1 ) notes moreover that the divided difference (88) is equal to
1(r11)!(r21)!(rs1)!dr1+r2++rssdx1r11dx2r21dxsrs1[x1,x2,,xs;f]\frac{1}{\left(r_{1}-1\right)!\left(r_{2}-1\right)!\ldots\left(r_{s}-1\right)!}\frac{dr_{1}+r_{2}+\cdots+r_{s}-s}{dx_{1}^{r_{1}-1}dx_{2}^{r_{2}-1}\ldots dx_{s}^{r_{s}-1}}\left[x_{1},x_{2},\ldots,x_{s};f\right].
This definition therefore requires the existence forffof the order derivativeri1r_{i}-1to the pointxix_{i}.

In the same way we define the Lagrange polynomial 2 )

L(x1,x1,,x1r1,x2,x2,,x2r2,,xs,xs,,xsrs;f(x)L(\underbrace{x_{1},x_{1},\ldots,x_{1}}_{r_{1}},\underbrace{x_{2},x_{2},\ldots,x_{2}}_{r_{2}},\ldots,\underbrace{x_{s},x_{s},\ldots,x_{s}}_{r_{s}};f(x)

of degreen=r1+r2++rs1n=r_{1}+r_{2}+\cdots+r_{s}-1, having multiple nodes. The nodexix_{i}is in orderrir_{i}of multiplicity (double, triple, etc. ifr=2,3,r=2,3,\ldots, etc.).

The existence of a knotriinpinr_{i}^{upu}to the pointxix_{i}still requires that the function be (ri1r_{i}-1) times differentiable at this point.

It is demonstrated that all the formulas established for divided differences and Lagrange polynomials taken at distinct points extend to this more general case.

00footnotetext: 1. See loc. cit. above. 2. This is the Lagrange-Hermite polynomial. For more details on this polynomial see: N. E., Nörlund "Lectures on interpolation series". Paris 1926.

32. - Let us now examine the problem of upper bound Lagrange polynomials. In general, there are no such polynomials, but

Theorem 31.-Any upper semi-continuous function in the interval[a,b][a,b]has at least one upper bound Lagrange polynomial of degree 0.

This is a trivial property. It simply expresses the well-known fact that a semi-continuous function above a finite and closed interval reaches its maximum, which is necessarily finite.

Let us now show that the upper semicontinuity hypothesis is still sufficient to assert the existence of at least one upper bound Lagrange polynomial of degree 1, so let us prove the

Theorem 32. - Any upper semi-continuous function in the interval[a,b][a,b]has at least one upper bound Lagrange polynomial of degree 1.

Let us consider, in fact, the function

ax+bf(x),\alpha x+\beta-f(x),

Ora,b\alpha,\betaunder two constants. This function is semi-continuous below, so reaches its minimum which is finite. Letm(in,b)\mu(u,\beta)this minimum. Two cases are to be considered:
I. There are values ​​ofa,b\alpha,\betasuch asm(a,b)\mu(\alpha,\beta)be reached in two pointsx1,x2[a,b]x_{1},x_{2}\in[a,b], at least. So the polynomial

L(x1,x2;fx)=ax+bm(a,b)L\left(x_{1},x_{2};f\mid x\right)=\alpha x+\beta-\mu(\alpha,\beta)

is majorant.
II. The minimumm(a,b)\mu(\alpha,\beta)is always reached at a single point. We then know that the functionffmust be concave of order 1 in[a,b][a,b]). But, such a function is continuous in[a,b][a,b]and has a derivative in[a,b][a,b], except perhaps on a set that is at most countable. There therefore exists a pointx1[a,b]x_{1}\in[a,b]where the derivativef(x1)f^{\prime}\left(x_{1}\right)exists. The polynomial

L(x1,x1;fx)L\left(x_{1},x_{1};f\mid x\right)

is then majorant.

00footnotetext: 1. Tiberiu Popoviciu "Two remarks on convex functions", Bull. Sci. Acad, Roumaine, 20, 45-49 (1938).

33. - We do not know whether upper semi-continuity is sufficient for the generalization of Theorem 32 to the degreennany. We will demonstrate the following less general property

Theorem 33. - Any continuous function is once differentiable in the interval[a,b][a,b]has at least one upper bound Lagrange polynomial of degree n.

Indeed, eitherTn(x)T_{n}(x)the best-approximation Tchebycheff polynomial of degreennand corresponding to the functionffin the meantime[a,b].Tn[a,b].T_{n}is therefore the unique polynomial of degreennfor which the maximum

max[a,b]|f(x)P(x)|\max_{[a,b]}|f(x)-P(x)| (89)

is as small as possible,P(x)P(x)being a polynomial of degreenn. Let us designate bym\muthe minimum of (89).

We know that the differenceTnfT_{n}-falternately takes the values±m\pm\muin at leastn+2n+2consecutive points of the interval[a,b]1)\left.[a,b]^{1}\right). The polynomialTn+mT_{n}+\muis majorant for the functionff. It is a Lagrange polynomial offf. Indeed, the functionTn+mfT_{n}+\mu-freaches its minimum 0 in at least:[n+22]\left[\frac{n+2}{2}\right]points. Yesnnis even, at most one of these points coincides withaaorbbAndnnis odd it may be that two of these points coincide withaaorbbAndnnis odd it may be that two of these points coincide withaaorbbrespectively, but then the minimum is reached in at leastn+32\frac{n+3}{2}points. The desired property results if we notice that any interior point of[a,b][a,b]OrTn+mfT_{n}+\mu-fcancels out, can be taken as a double knot.
34. - Now letffa non-negative function in[a,b][a,b]. In the cases studied above, the existence of at least one Lagrange polynomial of degreennwhich is also non-negative is demonstrated. But it seems to us that we can obtain more complete results. We will limit ourselves here to demonstrating the

Theorem 34. - Any non-negative function in[a,b]a[a,b]\penalty 10000\ aat least one Lagrange polynomial of degree 2 which is also non-negative.

For the demonstration we will distinguish three cases:
I.f(a)>0,f(b)>0f(a)>0,f(b)>0. Let us then consider the polynomials

L(a,b;fx)+A(xa)(xb),L(a,b;f\mid x)+A(x-a)(x-b), (90)

There is a valueA0A_{0}such as forAA0A\leq A_{0}the polynomial (90) remains non-negative in[a,b][a,b]. ForA=A0A=A_{0}this polynomial (90) has a double zero which is an interior pointx0x_{0}of[a,b][a,b], If we determineAAso that (90) takes the valuef(x0)f\left(x_{0}\right)to the pointx0x_{0}, on a AA0A\leq A_{0}. It follows that the polynomialL(a,b,x0;fx)L\left(a,b,x_{0};f\mid x\right)is non-negative in[a,b][a,b].
II. f(a)=f(b)=0f(a)=f(b)=0. We can easily see that the polynomialL(a,b,x0;fx)L\left(a,b,x_{0};f\mid x\right)is non-negative whateverx0x_{0}inside[a,b][a,b].
III. f(a)=0,f(b)>0f(a)=0,f(b)>0. Let us then consider the polynomial

f(b)(ba)2(xa)2\frac{f(b)}{(b-a)^{2}}(x-a)^{2} (91)

If there is a pointx0x_{0}interior to[a,b][a,b]where the function takes a value greater than the 'polynomial (91), the polynomialL(a,b,x0;fx)L\left(a,b,x_{0};f\mid x\right)is non-negative in[a,b][a,b]. Si l'on a

f(x)f(b)(ba)2(xa)2,x[a,b]f(x)\leq\frac{f(b)}{(b-a)^{2}}(x-a)^{2},\quad x\in[a,b]

we immediately see that the derivativef(a)f^{\prime}(a)to the pointaaexists and is zero. In this case the polynomial (91) can be writtenL(a,a,b;fx)L(a,a,b;f\mid x)and is obviously non-negative in[a,b][a,b].

The conclusions are similar iff(a)>0,f(b)=0f(a)>0,f(b)=0.
Theorem 34 is true, obviously, for degree 0. For degree 1 we see that the polynomialL(a,b;fx)L(a,b;f\mid x)is non-negative in[a,b][a,b].
35. - Finally we will give a property of the Lagrange polynomials of non-concave functions of orderkkin a very particular case.

Let's supposeffnon-concave orderkkand admitting a continuous derivative of ordernnIn[a,b][a,b]. We assumen>k+2n>k+2
and of different parity withkk. Eitherx0x_{0}a point wheref(n)(x)f^{(n)}(x)reaches its maximum and then consider the Lagrange polynomial

L(x)=L(x0,x0,,x0n+1;fx)=i=0n(xx0)ii!f(i)(x0).L(x)=L(\underbrace{x_{0},x_{0},\ldots,x_{0}}_{n+1};f\mid x)=\sum_{i=0}^{n}\frac{\left(x-x_{0}\right)^{i}}{i!}f(i)\left(x_{0}\right).

I say that the polynomialL(x)L(x)is non-concave of orderkkIn[a,b][a,b]. It is sufficient to demonstrate that its derivative of orderk+1k+1is non-negative in[a,b][a,b]. We have

L(k+1)(x)=i=0nk1(xx0)ii!f(i+k+i)(x0)L^{(k+1)}(x)=\sum_{i=0}^{n-k-1}\frac{\left(x-x_{0}\right)^{i}}{i!}f^{(i+k+i)}\left(x_{0}\right)

But, Taylor's formula gives us

f(k+1)(x)=i=0nk2(xx0)ii!f(i+k+1)(x0)+(xx0)nk1(nk1)!f(n)(x)f^{(k+1)}(x)=\sum_{i=0}^{n-k-2}\frac{\left(x-x_{0}\right)^{i}}{i!}f^{(i+k+1)}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{n-k-1}}{(n-k-1)!}f^{(n)}(\xi)

5 was a number betweenxxAndx0x_{0}.
We have done

L(k+1)(x)=[L(k+1)(x)f(k+1)(x)]+f(k+1)(x)=\displaystyle L^{(k+1)}(x)=\left[L^{(k+1)}(x)-f^{(k+1)}(x)\right]+f^{(k+1)}(x)=
=(xx0)nk1(nk1)![f(n)(x0)f(n)(x)]+f(k+1)(x)\displaystyle=\frac{\left(x-x_{0}\right)^{n-k-1}}{(n-k-1)!}\left[f^{(n)}\left(x_{0}\right)-f^{(n)}(\xi)\right]+f^{(k+1)}(x)

from which results the property.
Finally therefore
Theorem 35. - Ifnnis of different parity withkk, any non-concave function of orderkkand admitting a derivativento do n^{\text{ime }}continues in[a,b][a,b], has at least one Lagrange polynomial of degree n which is also non-concave of orderkkIn[a,b][a,b].

Note, moreover, that for a function having a derivativento do n^{\text{ime }}continuous any, the differenceL(x)f(x)L(x)-f(x)is a non-concave function of orderkkIn[a,b][a,b]yes, of course,kkAndnnare of the same parity.

Mars 1943

1942

Related Posts