Sur un théorème de Laguerre

Abstrait

Traduction en anglais du titre

On a theorem of Laguerre

Auteur(s)

Mots-clés

PDF

Pour citer ce travail

T. Popoviciu, Sur un théorème de Laguerre, Mathematica, 10 (1935), pp. 128-131 (in French)

Sur ce travail

Journal

Mathematica

Publié par
DOI

Non disponible.

Print ISSN

Non disponible.

Online ISSN

Non disponible.

??

HTML forme du travail (preprint)

1935 k -Popoviciu- Mathematica - Sur un theoreme de Laguerre

SUR UN THEORÉME DE LAGUERRE

par

Tiberiu Popoviciu
Ancien élève de l'École Normale Superieure

Reçue le 31 janvier 1934.

    • Considérons un polynome f ( x ) f ( x ) f(x)f(x)f(x) dont le degré est au moins: égal à n 1 n 1 n-1n-1n1.
Soit U ( x 1 , x 2 , , x n ; f ( x ) ) U x 1 , x 2 , , x n ; f ( x ) U(x_(1),x_(2),dots,x_(n);f(x))\mathrm{U}\left(x_{1}, x_{2}, \ldots, x_{n} ; f(x)\right)U(x1,x2,,xn;f(x)) le déterminant dont la ligne générale est
1 x i x i 2 x i n 2 f ( x i ) 1 x i x i 2 x i n 2 f x i 1x_(i)x_(i)^(2)dotsx_(i)^(n-2)f(x_(i))1 x_{i} x_{i}^{2} \ldots x_{i}^{n-2} f\left(x_{i}\right)1xixi2xin2f(xi)
et posons V ( x 1 , x 2 , , x n ) = U ( x 1 , x 2 , , x n ; x n 1 ) V x 1 , x 2 , , x n = U x 1 , x 2 , , x n ; x n 1 V(x_(1),x_(2),dots,x_(n))=U(x_(1),x_(2),dots,x_(n);x^(n-1))\mathrm{V}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\mathrm{U}\left(x_{1}, x_{2}, \ldots, x_{n} ; x^{n-1}\right)V(x1,x2,,xn)=U(x1,x2,,xn;xn1) qui ost le déterminant de Van der Monde des quantités x 1 , x 2 , , x n x 1 , x 2 , , x n x_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}x1,x2,,xn.
Nous avons l'identité
(1) U ( x 1 , x 2 , , x n ; f ( x ) ) = i = 1 i = n ( 1 ) n i V ( x 1 , x 2 , , x i 1 , x i + 1 , , x n ) f ( x i ) U x 1 , x 2 , , x n ; f ( x ) = i = 1 i = n ( 1 ) n i V x 1 , x 2 , , x i 1 , x i + 1 , , x n f x i U(x_(1),x_(2),dots,x_(n);f(x))=sum_(i=1)^(i=n)(-1)^(n-i)V(x_(1),x_(2),dots,x_(i-1),x_(i+1),dots,x_(n))f(x_(i))\mathrm{U}\left(x_{1}, x_{2}, \ldots, x_{n} ; f(x)\right)=\sum_{i=1}^{i=n}(-1)^{n-i} V\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) f\left(x_{i}\right)U(x1,x2,,xn;f(x))=i=1i=n(1)niV(x1,x2,,xi1,xi+1,,xn)f(xi) dont nous aurons besoin plus loin.
Considérons le quotient
[ x 1 , x 2 , , x n ; f ( x ) ] = U ( x 1 , x 2 , , x n ; f ( x ) ) . x 1 , x 2 , , x n ; f ( x ) = U x 1 , x 2 , , x n ; f ( x ) . [x_(1),x_(2),dots,x_(n);f(x)]=(U)/((x_(1),x_(2),dots,x_(n);f(x))).\left[x_{1}, x_{2}, \ldots, x_{n} ; f(x)\right]=\frac{\mathrm{U}}{\left(x_{1}, x_{2}, \ldots, x_{n} ; f(x)\right)} .[x1,x2,,xn;f(x)]=U(x1,x2,,xn;f(x)).
Rappelons-nous maintenant qu'on dit que le polynome f ( x ) f ( x ) f(x)f(x)f(x) est convexe d'ordre ( n 2 n 2 n-2n-2n2 ) ( 1 1 ^(1){ }^{1}1 ) dans l'intervalle ( a , b a , b a,ba, ba,b ) si pour tout groupe de: n n nnn points distincts x 1 , x 2 , , x n x 1 , x 2 , , x n x_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}x1,x2,,xn de cet intervalle on a l'inégalité
(2) [ x 1 , x 2 , , x n ; f ( x ) ] > 0 (2) x 1 , x 2 , , x n ; f ( x ) > 0 {:(2)[x_(1),x_(2),dots,x_(n);f(x)] > 0:}\begin{equation*} \left[x_{1}, x_{2}, \ldots, x_{n} ; f(x)\right]>0 \tag{2} \end{equation*}(2)[x1,x2,,xn;f(x)]>0
Pour que le polynome f ( x ) f ( x ) f(x)f(x)f(x) soit convexe d'ordre ( n 2 n 2 n-2n-2n2 ) dans ( a , b a , b a,ba, ba,b ) il faut et il suffit que f ( n 1 ) ( x ) 0 f ( n 1 ) ( x ) 0 f^((n-1))(x) >= 0f^{(n-1)}(x) \geq 0f(n1)(x)0 dans cet intervalle. L'inégalité (2). aura lieu pour tout système de n n nnn point non tous confondus.
2. - Soit maintenant P ( x ) = ( 1 x 1 x ) ( 1 x 2 x ) , ( 1 x n x ) P ( x ) = 1 x 1 x 1 x 2 x , 1 x n x P(x)=(1-x_(1)x)(1-x_(2)x)dots,(1-x_(n)x)\mathrm{P}(x)=\left(1-x_{1} x\right)\left(1-x_{2} x\right) \ldots,\left(1-x_{n} x\right)P(x)=(1x1x)(1x2x),(1xnx) un polynome ayant tous ses zéros réels et considérons le développement
(3)
On sait que
1 P ( x ) = S 0 + S 1 x + S 2 x 2 + 1 P ( x ) = S 0 + S 1 x + S 2 x 2 + (1)/(P(x))=S_(0)+S_(1)x+S_(2)x^(2)+cdots\frac{1}{\mathrm{P}(x)}=\mathrm{S}_{0}+\mathrm{S}_{1} x+\mathrm{S}_{2} x^{2}+\cdots1P(x)=S0+S1x+S2x2+
S m = x 1 i 1 x 2 i 2 x n i n S m = x 1 i 1 x 2 i 2 x n i n S_(m)=sumx_(1)^(i_(1))x_(2)^(i_(2))dotsx_(n)^(i_(n))\mathrm{S}_{m}=\sum x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{n}^{i_{n}}Sm=x1i1x2i2xnin
où la sommation est étendue pour toutes les valeurs entières nonnégatives de i 1 , i 2 , , i n i 1 , i 2 , , i n i_(1),i_(2),dots,i_(n)i_{1}, i_{2}, \ldots, i_{n}i1,i2,,in telles que i 1 + i 2 + + i n = m i 1 + i 2 + + i n = m i_(1)+i_(2)+cdots+i_(n)=mi_{1}+i_{2}+\cdots+i_{n}=mi1+i2++in=m.
En particulier si x 1 = x 2 = = x n = 1 x 1 = x 2 = = x n = 1 x_(1)=x_(2)=dots=x_(n)=1x_{1}=x_{2}=\ldots=x_{n}=1x1=x2==xn=1 on a
S m = ( n + n 1 m ) = ( m + n 1 n 1 ) S m = ( n + n 1 m ) = ( m + n 1 n 1 ) S_(m)=((n+n-1)/(m))=((m+n-1)/(n-1))\mathrm{S}_{m}=\binom{n+n-1}{m}=\binom{m+n-1}{n-1}Sm=(n+n1m)=(m+n1n1)
Décomposant en fractions simples le premier membre de (3) on a
1 P ( x ) = i = 1 i = n ( 1 ) n i V ( x 1 , x 2 , , x i 1 , x i + 1 , , x n ) x i n 1 V ( x 1 , x 2 , , x n ) ( 1 x i x ) 1 P ( x ) = i = 1 i = n ( 1 ) n i V x 1 , x 2 , , x i 1 , x i + 1 , , x n x i n 1 V x 1 , x 2 , , x n 1 x i x (1)/(P(x))=-sum_(i=1)^(i=n)((-1)^(n-i)(V)(x_(1),x_(2),dots,x_(i-1),x_(i+1),dots,x_(n))x_(i)^(n-1))/((V)(x_(1),x_(2),dots,x_(n))(1-x_(i)x))\frac{1}{\mathrm{P}(x)}=-\sum_{i=1}^{i=n} \frac{(-1)^{n-i} \mathrm{~V}\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) x_{i}^{n-1}}{\mathrm{~V}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\left(1-x_{i} x\right)}1P(x)=i=1i=n(1)ni V(x1,x2,,xi1,xi+1,,xn)xin1 V(x1,x2,,xn)(1xix)
et tenant compte de (1) nous trouvons
(4)
S m = [ x 1 , x 2 , , x n ; x m + n 1 ] S m = x 1 , x 2 , , x n ; x m + n 1 S_(m)=[x_(1),x_(2),dots,x_(n);x^(m+n-1)]\mathrm{S}_{m}=\left[x_{1}, x_{2}, \ldots, x_{n} ; x^{m+n-1}\right]Sm=[x1,x2,,xn;xm+n1]
    • Considérons l'équation de degré 2 p 2 p 2p2 p2p
F ( z ) a 0 S k + a 1 S k + 1 z a 2 p S 2 p + k z 2 p = 0 , a 2 p > 0 F ( z ) a 0 S k + a 1 S k + 1 z a 2 p S 2 p + k z 2 p = 0 , a 2 p > 0 F(z)-=a_(0)S_(k)+a_(1)S_(k+1)z dotsa_(2p)S_(2p+k)z^(2p)=0,quada_(2p) > 0\mathrm{F}(z) \equiv a_{0} \mathrm{~S}_{k}+a_{1} \mathrm{~S}_{k+1} z \ldots a_{2 p} \mathrm{~S}_{2 p+k} z^{2 p}=0, \quad a_{2 p}>0F(z)a0 Sk+a1 Sk+1za2p S2p+kz2p=0,a2p>0
Si nous posons
φ ( x ) = x n + k 1 ( a 0 + a 1 x z + a 2 ( x z ) 2 + + a 2 p ( x z ) 2 p ) φ ( x ) = x n + k 1 a 0 + a 1 x z + a 2 ( x z ) 2 + + a 2 p ( x z ) 2 p varphi(x)=x^(n+k-1)(a_(0)+a_(1)xz+a_(2)(xz)^(2)+cdots+a_(2p)(xz)^(2p))\varphi(x)=x^{n+k-1}\left(a_{0}+a_{1} x z+a_{2}(x z)^{2}+\cdots+a_{2 p}(x z)^{2 p}\right)φ(x)=xn+k1(a0+a1xz+a2(xz)2++a2p(xz)2p)
nous avons d'après (4)
F ( z ) = [ x 1 , x 2 , , x n ; φ ( x ) ] F ( z ) = x 1 , x 2 , , x n ; φ ( x ) F(z)=[x_(1),x_(2),dots,x_(n);varphi(x)]\mathrm{F}(z)=\left[x_{1}, x_{2}, \ldots, x_{n} ; \varphi(x)\right]F(z)=[x1,x2,,xn;φ(x)]
Si nous remarquons que
φ ( n 1 ) ( x ) = ( n 1 ) ! x k [ ( k + n 1 n 1 ) a 0 + ( k + n n 1 ) a 1 x z + + ( k + n + 2 p 1 n 1 ) a 2 p ( x z ) 2 p ] φ ( n 1 ) ( x ) = ( n 1 ) ! x k ( k + n 1 n 1 ) a 0 + ( k + n n 1 ) a 1 x z + + ( k + n + 2 p 1 n 1 ) a 2 p ( x z ) 2 p varphi^((n-1))(x)=(n-1)!x^(k)[((k+n-1)/(n-1))a_(0)+((k+n)/(n-1))a_(1)xz+cdots+((k+n+2p-1)/(n-1))a_(2p)(xz)^(2p)]\varphi^{(n-1)}(x)=(n-1)!x^{k}\left[\binom{k+n-1}{n-1} a_{0}+\binom{k+n}{n-1} a_{1} x z+\cdots+\binom{k+n+2 p-1}{n-1} a_{2 p}(x z)^{2 p}\right]φ(n1)(x)=(n1)!xk[(k+n1n1)a0+(k+nn1)a1xz++(k+n+2p1n1)a2p(xz)2p]
nous pouvons énoncer les propriétés suivantes:
Si k k kkk est pair et si le polynome
(5) i = 0 i = 2 p ( k + n + i 1 n 1 ) a i z i (5) i = 0 i = 2 p ( k + n + i 1 n 1 ) a i z i {:(5)sum_(i=0)^(i=2p)((k+n+i-1)/(n-1))a_(i)z^(i):}\begin{equation*} \sum_{i=0}^{i=2 p}\binom{k+n+i-1}{n-1} a_{i} z^{i} \tag{5} \end{equation*}(5)i=0i=2p(k+n+i1n1)aizi
est non-négatif, le polynome
(6) i = 0 i = 2 p a i S k + i z i (6) i = 0 i = 2 p a i S k + i z i {:(6)sum_(i=0)^(i=2p)a_(i)S_(k+i)z^(i):}\begin{equation*} \sum_{i=0}^{i=2 p} a_{i} \mathrm{~S}_{k+i} z^{i} \tag{6} \end{equation*}(6)i=0i=2pai Sk+izi
est positif tant que les racines x 1 , x 2 , , x n x 1 , x 2 , , x n x_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}x1,x2,,xn ne sont pas toutes égales.
Si k k kkk est impair et si le polynome (5) est non-négatif le polynome (6) est positif tant que les racines x 1 , x 2 , , x n x 1 , x 2 , , x n x_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}x1,x2,,xn sont non-négatives et non toutes égales.
4. - Laguerre a démontré la proposition suivante:
Si l'équation P ( x ) = 0 P ( x ) = 0 P(x)=0\mathrm{P}(x)=0P(x)=0 a toutes ses racines réelles le polynome
i = 0 2 p S i z i i = 0 2 p S i z i sum_(i=0)^(2p)S_(i)z^(i)\sum_{i=0}^{2 p} \mathrm{~S}_{i} z^{i}i=02p Sizi
est positif.
Supposons toujours que le théorème de Laguerre soit vrai quand tous les zéros du polynome P ( x ) P ( x ) P(x)\mathrm{P}(x)P(x) sont égaux. En d'autres termes le polynome
Q a , 0 = i = 1 2 p ( α + i α ) z i Q a , 0 = i = 1 2 p ( α + i α ) z i Q_(a,0)=sum_(i=1)^(2p)((alpha+i)/(alpha))z^(i)Q_{a, 0}=\sum_{i=1}^{2 p}\binom{\alpha+i}{\alpha} z^{i}Qa,0=i=12p(α+iα)zi
est positif pour α α alpha\alphaα entier > 0 > 0 > 0>0>0.
Considérons le polynome plus général
Q a , β = i = 0 2 p ( α + 3 + i α ) z i , α , β entiers 0 . Q a , β = i = 0 2 p ( α + 3 + i α ) z i , α , β  entiers  0 . Q_(a,beta)=sum_(i=0)^(2p)((alpha+3+i)/(alpha))z^(i),quad alpha,beta" entiers " >= 0.Q_{a, \beta}=\sum_{i=0}^{2 p}\binom{\alpha+3+i}{\alpha} z^{i}, \quad \alpha, \beta \text { entiers } \geq 0 .Qa,β=i=02p(α+3+iα)zi,α,β entiers 0.
La rélation de récurrence
Q a , β = Q a , β 1 + Q a 1 , β Q a , β = Q a , β 1 + Q a 1 , β Q_(a,beta)=Q_(a,beta-1)+Q_(a-1,beta)Q_{a, \beta}=Q_{a, \beta-1}+Q_{a-1, \beta}Qa,β=Qa,β1+Qa1,β
et le fait que Q 0 , β Q 0 , β Q_(0,beta)Q_{0, \beta}Q0,β est indépendant de β ( Q 0 , β = 1 + z + z 2 + + z 2 p ) β Q 0 , β = 1 + z + z 2 + + z 2 p beta(Q_(0,beta)=1+z+z^(2)+cdots+z^(2p))\beta\left(Q_{0, \beta}=1+z+z^{2}+\cdots+z^{2 p}\right)β(Q0,β=1+z+z2++z2p) nous montrent que le polynome Q α , β Q α , β Q_(alpha,beta)Q_{\alpha, \beta}Qα,β est positif.
Faisant donc a 1 = a 2 = = a 2 p = 1 a 1 = a 2 = = a 2 p = 1 a_(1)=a_(2)=cdots=a_(2p)=1a_{1}=a_{2}=\cdots=a_{2 p}=1a1=a2==a2p=1 dans (5) nous déduisons les propriétés suivantes:
Si k k kkk est pair le polynome
(7)
i = 0 2 p S k + i z i i = 0 2 p S k + i z i sum_(i=0)^(2p)S_(k+i)z^(i)\sum_{i=0}^{2 p} \mathrm{~S}_{k+i} z^{i}i=02p Sk+izi
est certainement positif, tant que les racines x 1 , x 2 , , x n x 1 , x 2 , , x n x_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}x1,x2,,xn ne sont pas toutes égales.
Si k k kkk est impair, le polynome (7) est certainement positif tant que les racines x i x i x_(i)x_{i}xi sont non-négatives et non toutes égales.
5. - Posons
σ m = S m ( m + n 1 n 1 ) , M m = σ m m σ m = S m ( m + n 1 n 1 ) , M m = σ m m sigma_(m)=(S^(m))/(((m+n-1)/(n-1))),quadM_(m)=root(m)(sigma_(m))\sigma_{m}=\frac{\mathrm{S}^{m}}{\binom{m+n-1}{n-1}}, \quad \mathrm{M}_{m}=\sqrt[m]{\sigma_{m}}σm=Sm(m+n1n1),Mm=σmm
(1) Voir Lagumrre „Oeuvres" t. J. pag. 111.
M m M m M_(m)\mathrm{M}_{m}Mm est donc une valeur moyenne.
Si
p = 1 , a i = ( 2 i ) ( k + n + i 1 n 1 ) , 1 = 0 , 1 , 2 p = 1 , a i = ( 2 i ) ( k + n + i 1 n 1 ) , 1 = 0 , 1 , 2 p=1,quada_(i)=(((2)/(i)))/(((k+n+i-1)/(n-1))),quad1=0,1,2p=1, \quad a_{i}=\frac{\binom{2}{i}}{\binom{k+n+i-1}{n-1}}, \quad 1=0,1,2p=1,ai=(2i)(k+n+i1n1),1=0,1,2
Me polynome (5) est non-négatif, donc en supposant les x l x l x_(l)x_{l}xl non-négatifs mous avons aussi
σ k + 2 σ k + 1 x + σ k + 2 x 2 0 σ k + 2 σ k + 1 x + σ k + 2 x 2 0 sigma_(k)+2sigma_(k+1)x+sigma_(k+2)x^(2) >= 0\sigma_{k}+2 \sigma_{k+1} x+\sigma_{k+2} x^{2} \geq 0σk+2σk+1x+σk+2x20
"quel que soit k k kkk et l'égalité n'étant possible que si tous les x i x i x_(i)x_{i}xi sont identiques.
Nous avens donc
σ k + 1 2 σ k , σ k + 2 σ 0 = 1 , k = 0 , 1 , 2 , σ k + 1 2 σ k , σ k + 2 σ 0 = 1 , k = 0 , 1 , 2 , {:[sigma_(k+1)^(2) <= sigma_(k)","sigma_(k+2)],[sigma_(0)=1","k=0","1","2","dots]:}\begin{gathered} \sigma_{k+1}^{2} \leq \sigma_{k}, \sigma_{k+2} \\ \sigma_{0}=1, k=0,1,2, \ldots \end{gathered}σk+12σk,σk+2σ0=1,k=0,1,2,
aet on peut alors énoncer la propriété suivante:
Si les x l x l x_(l)x_{l}xl sont non-négatifs on a la suite d'inégalités
M 1 M 2 M m M 1 M 2 M m M_(1) <= M_(2) <= dots <= M_(m) <= dotsM_{1} \leq M_{2} \leq \ldots \leq M_{m} \leq \ldotsM1M2Mm
d’égalité entre deux termes consécutifs ne pouvant avoir lieu que si les x 1 x 1 x_(1)x_{1}x1 sont tous identiques.

  1. ( 1 ) ( 1 ) ^((1)){ }^{(1)}(1) Voir: T. Popoviciu „Sur quelques propriétés des fonctions d'une ou de: deux variables réelles" Thèse Paris 1933.
1935

Related Posts