Abstract
A viscous flow due to a rotating disk involving homogeneous as well as heterogeneous chemical reactions is considered. We simplify the diffusion equation using an asymptotic analysis and reduce this equation to a linear boundary value problem. We solve this problem by a second-order central finite difference scheme. Some numerical examples are carried out.
Authors
Babes-Bolyai University, Romania
Tiberiu Popoviciu Institute of Numerical Analysis
Original title (in Romanian)
Metode numerice la stabilirea profilului concentratiei pentru scurgeri cu reactii chimice peste un disc in rotatie
Keywords
boundary layer; diffusion; viscous incompressible fluid; chemical reaction; homogeneous; heterogeneous; bilocal problem; central finite difference scheme;
References
See the expanding block below.
Cite this paper as
I. Stan, C.I. Gheorghiu, Numerical methods in establishment of concentration profile for the flows with chemical reactions over rotating disk, Studia Univ. Babeş-Bolyai Math., XXII (1977) 73-77.
?
About this paper
Publisher Name
Babes-Bolyai University
Paper on journal website
Print ISSN
0252-1938
Online ISSN
2065-961x
MR
?
ZBL
?
Google Scholar
?
[2] I. Stan, Efectul barodifuziei în stratul-limită, Stud. și cercet. de mec. aplicată, 34. 4, 1975, 593.
[3] W. G. Sochran, The flow due to rotating disk, Proc. Cambr. Phyl. Soc., T. 30, 3, 1934, 354.
[4] I. Stan, Establishment of concentration profile for the flow near a rotating disk with chemical reactions, Studia Univ. Babes-Bolyai, ser. Physica, 1, 1972, 71.
[5] V. G. Levici, Fizico-himiceskaia gidrodinamica, Moskva, 1959.
[6] E. Isaacson, H. B. Keller, Analysis of numerical methods, John Wiley & Sons, New York, 1966.