Best approximation and unique extension of Lipschitz functions



Costica Mustata
Institutul de Calcul, Romania (ICTP)


Paper coordinates

C. Mustata, Best approximation and unique extension of Lipschitz functions,  J. Approx. Theory, 19, 222-230, 1977,
doi: 10.1016/0021-9045(77)90053-3



About this paper


Journal of Approximation Theory

Publisher Name

numele publisher-ului

Print ISSN


Online ISSN


Google Scholar Profile


[1] D.E BOOR, “On “Best” Interpolation,” Universky of Wisconsin, MRC 7% No. 1426, 1971.
[2] J. CZIPSER AND L. GEHER, Extension of function  satisfying a Eipschitz condition, hia Mut,k. ACM/. SC. Hungm. 6 (1955), 213-220.
[3] C. B. DUNHAM, Chebyshev approximation with a null space, Proc. Amer. Math. Sot. 41 (1973), 557-558.
[4] J. A. JOHNSON, Banach space of Lipschitz functions and vector-valued Lipschitz functions, Tuarzs. Amer. Math. Sot. 148 (1970), 147-169.
[5] C. MUSTATA, Asupra unor subspalii cebiseviene din spatiul normat al functiilor lipschitziene, Reo. Anal Mumer. Teoria Aproximatiei 2 (1973), 81-87.
[6] R. R. PHELPS, Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Amer. Math. Sot. 95 (1960), 238-255.
[7] A. K. ROY, Extreme points and linear isometries of Banach space of Lipschitz functions, Canad. J. IWZ~A. 20 (1968), 1150-1164.
[8] I. SINGER, Cea mai buna aproximare in spalii vectoriale normate prin elemente din subspalii vectoriale, Edit. Acad. R. S. Romania, Bucuresti, (1967).
[9] D. R. SHERBERT, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Sot. 111 (1964), 240-272.


Related Posts