Convergence results for contact problems with memory term

Abstract

In this paper, we consider two quasistatic contact problems. The materialโ€™s behavior is modelled with an elastic constitutive law for the first problem and a viscoplastic constitutive law for the second problem. The novelty arises in the fact that the contact is frictionless and is modelled with a condition which involves normal compliance and memory term. Moreover, for the second problem we consider a condition with unilateral constraint. For each problem we derive a variational formulation of the model and prove its unique solvability. Also, we analyze the dependence of the solution with respect to the data.

Authors

Flavius Patrulescu
(Tiberiu Popoviciu Institute of Numerical Analysis,
Romanian Academy)

Ahmad Ramadan
(Laboratoire de Mathรฉmatiques et Physique, Universitรฉ de Perpignan)

Keywords

convergence result; memory term; history-dependent variational inequality; weak solution; Frรฉchet space; Gronwall inequality

Cite this paper as

F. Pฤƒtrulescu, A. Ramadan, Convergence results for contact problems with memory term, Math. Rep., vol. 17 (67), no. 1 (2015), pp. 24-41

PDF

About this paper

Publisher Name

Publishing House of the Romanian Academy (Editura Academiei Romรขne), Bucharest

Print ISSN

1582-3067

Online ISSN

2285-3898/e

MR

3342143

ZBL

1374.74100

Google Scholar

[1] C. Corduneanu, Problemes globaux dans la theorie des equations Integrales de Volterra, Ann. Math. Pure Appl., 67 (1965), 349-363.
[2] M. Barboteu, A. Matei, Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance, Quart. J. of Mech. and Appl. Math., 65 (2012), 555-579.
[3] M. Barboteu, F. Patrulescu, A. Ramadan,M. Sofonea, History-dependent contact models for viscoplastic materials, IMA J. Appl. Math., 79, no. 6 (2014), 1180-1200.
[4] W. Han, M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics, 30, American Mathematical Societyโ€“International Press, Sommerville, MA (2002).
[5] J.J. Massera, J.J. Schaffer, Linear Differential Equations and Function Spaces, Academic Press, New York-London (1966).
[6] M. Sofonea, A. Matei. History-dependent quasivariational inequalities arising in Contact Mechanics, Eur. J. Appl. Math., 22 (2011), 471-491.
[7] M. Sofonea, A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, 398, Cambridge University Press, Cambridge (2012).
[8] M. Sofonea, F. Patrulescu, Analysis of a history-dependent frictionless contact problem, Math. and Mech. of Solids,18 (2013), 409-430.

Paper (preprint) in HTML form

CONVERGENCE RESULTS FOR CONTACT PROBLEMS WITH MEMORY TERM

FLAVIUS Pฤ‚TRULESCU 1,2 and AHMAD RAMADAN 3

In this paper we consider two quasistatic contact problems. The materialโ€™s behavior is modelled with an elastic constitutive law for the first problem and a viscoplastic constitutive law for the second problem. The novelty arises in the fact that the contact is frictionless and is modelled with a condition which involves normal compliance and memory term. Moreover, for the second problem we consider a condition with unilateral constraint. For each problem we derive a variational formulation of the model and prove its unique solvability. Also, we analyze the dependence of the solution with respect to the data.

AMS 2010 Subject Classification: 74M15, 74G25, 74G30, 49J40.
Key words: convergence result, memory term, history-dependent variational inequality, weak solution, Frรฉchet space, Gronwall inequality.

1 INTRODUCTION

The first aim of this paper is to study a quasistatic frictionless contact problem for elastic materials, within the framework of the Mathematical Theory of Contact Mechanics. We model the behavior of the material with a constitutive law of the form

ฯƒ=โ„ฑฮต(๐’–),\sigma=\mathcal{F}\varepsilon(\boldsymbol{u}), (1.1)

where ๐’–\boldsymbol{u} denotes the displacement field, ๐ˆ\boldsymbol{\sigma} represents the stress field, ๐œบ(๐’–)\boldsymbol{\varepsilon}(\boldsymbol{u}) is the linearized strain tensor and โ„ฑ\mathcal{F} is a fourth order tensor which describes the elastic properties of the material. The contact is modelled with a condition which involves normal compliance, memory term and infinite penetration. We prove the unique solvability of this model by using new arguments on historydependent variational inequalities presented in [6]. Also, we state and prove the dependence of the solution with respect to the data.

The second aim is to study the continuous dependence of the solution of a quasistatic frictionless contact problem for rate-type viscoplastic materials. We model the behavior of the material with a constitutive law of the form

๐ˆห™=โ„ฑฮต(๐’–ห™)+๐’ข(๐ˆ,ฮต(๐’–))\dot{\boldsymbol{\sigma}}=\mathcal{F}\varepsilon(\dot{\boldsymbol{u}})+\mathcal{G}(\boldsymbol{\sigma},\varepsilon(\boldsymbol{u})) (1.2)

Here ๐’ข\mathcal{G} is a nonlinear constitutive function which describes the viscoplastic properties of the material. In (1.2) and everywhere in this paper the dot above a variable represents derivative with respect to the time variable tt. The second part represents a continuation of [3] where a contact problem for viscoplastic materials of the form (1.2) was considered. The process was assumed to be quasistatic and the contact was modelled by using the normal compliance condition, finite penetration and memory term. The unique solvability of the solution was obtained. Also, the convergence of the solution of the problem with infinite penetration to the solution of the problem with finite penetration as the stiffness coefficient converges to infinity was proved. In the present paper we analyse the dependence of the solution of the viscoplastic contact problem in 3 with respect to the data.

The rest of the paper is structured as follows. In Section 2 we provide the notation we shall use as well as some preliminary material. In Section 3 we present the classical formulation of the first problem, list the assumption on the data and derive the variational formulation. Then we state and prove the unique weak solvability of the problem, Theorem 3.1, and a convergence result, Theorem 3.2. In Section 4 we introduce the classical formulation of the second problem and resume the results on its unique weak solvability obtained in 3. Then we state and prove a convergence result, Theorem 4.3,

2 NOTATION AND PRELIMINARIES

Everywhere in this paper we use the notation โ„•โˆ—\mathbb{N}^{*} for the set of positive integers and โ„+\mathbb{R}_{+}will represent the set of nonnegative real numbers, i.e. โ„+=[0,+โˆž)\mathbb{R}_{+}=[0,+\infty). We denote by ๐•Šd\mathbb{S}^{d} the space of second order symmetric tensors on โ„d\mathbb{R}^{d}. The inner product and norm on โ„d\mathbb{R}^{d} and ๐•Šd\mathbb{S}^{d} are defined by

๐’–โ‹…๐’—=uivi,โ€–๐’—โ€–=(๐’—โ‹…๐’—)12โˆ€๐’–,๐’—โˆˆโ„d๐ˆโ‹…๐‰=ฯƒijฯ„ij,โ€–๐‰โ€–=(๐‰โ‹…๐‰)12โˆ€๐ˆ,๐‰โˆˆ๐•Šd\begin{array}[]{llr}\boldsymbol{u}\cdot\boldsymbol{v}=u_{i}v_{i},&\|\boldsymbol{v}\|=(\boldsymbol{v}\cdot\boldsymbol{v})^{\frac{1}{2}}&\forall\boldsymbol{u},\boldsymbol{v}\in\mathbb{R}^{d}\\ \boldsymbol{\sigma}\cdot\boldsymbol{\tau}=\sigma_{ij}\tau_{ij},&\|\boldsymbol{\tau}\|=(\boldsymbol{\tau}\cdot\boldsymbol{\tau})^{\frac{1}{2}}&\forall\boldsymbol{\sigma},\boldsymbol{\tau}\in\mathbb{S}^{d}\end{array}

Let ฮฉ\Omega be a bounded domain ฮฉโŠ‚โ„d(d=1,2,3)\Omega\subset\mathbb{R}^{d}(d=1,2,3) with a Lipschitz continuous boundary ฮ“\Gamma and let ฮ“1\Gamma_{1} be a measurable part of ฮ“\Gamma such that meas (ฮ“1)>0\left(\Gamma_{1}\right)>0. We use the notation ๐’™=(xi)\boldsymbol{x}=\left(x_{i}\right) for a typical point in ฮฉโˆชฮ“\Omega\cup\Gamma and we denote by ๐‚=(ฮฝi)\boldsymbol{\nu}=\left(\nu_{i}\right) the outward unit normal at ฮ“\Gamma. Here and below the indices i,j,k,li,j,k,l run between 1 and dd and, unless stated otherwise, the summation convention over repeated indices is used. An index that follows a comma represents the partial derivative with respect to the corresponding component of the spatial variable, e.g. ui,j=โˆ‚ui/โˆ‚xju_{i,j}=\partial u_{i}/\partial x_{j}. We consider the spaces

V={๐’—โˆˆH1(ฮฉ)d:๐’—=๐ŸŽ on ฮ“1},Q={๐‰=(ฯ„ij)โˆˆL2(ฮฉ)dร—d:ฯ„ij=ฯ„ji}V=\left\{\boldsymbol{v}\in H^{1}(\Omega)^{d}:\boldsymbol{v}=\mathbf{0}\text{ on }\Gamma_{1}\right\},\quad Q=\left\{\boldsymbol{\tau}=\left(\tau_{ij}\right)\in L^{2}(\Omega)^{d\times d}:\tau_{ij}=\tau_{ji}\right\}

These are real Hilbert spaces endowed with the inner products

(๐’–,๐’—)V=โˆซฮฉ๐œบ(๐’–)โ‹…๐œบ(๐’—)๐‘‘x,(๐ˆ,๐‰)Q=โˆซฮฉ๐ˆโ‹…๐‰๐‘‘x(\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{\varepsilon}(\boldsymbol{u})\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx,\quad(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q}=\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\tau}dx

and the associated norms โˆฅโ‹…โˆฅV\|\cdot\|_{V} and โˆฅโ‹…โˆฅQ\|\cdot\|_{Q}, respectively. Here ฮต\varepsilon represents the deformation operator given by

ฮต(๐’—)=(ฮตij(๐’—)),ฮตij(๐’—)=12(vi,j+vj,i)โˆ€๐’—โˆˆH1(ฮฉ)d\varepsilon(\boldsymbol{v})=\left(\varepsilon_{ij}(\boldsymbol{v})\right),\quad\varepsilon_{ij}(\boldsymbol{v})=\frac{1}{2}\left(v_{i,j}+v_{j,i}\right)\quad\forall\boldsymbol{v}\in H^{1}(\Omega)^{d}

Also, we define the space

Q1={๐‰โˆˆQ:Divโก๐‰โˆˆL2(ฮฉ)d}Q_{1}=\left\{\boldsymbol{\tau}\in Q:\operatorname{Div}\boldsymbol{\tau}\in L^{2}(\Omega)^{d}\right\} (2.1)

which is a Hilbert space endowed with the inner product

(๐ˆ,๐‰)Q1=(๐ˆ,๐‰)Q+(Divโก๐ˆ,Divโก๐‰)L2(ฮฉ)d(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q_{1}}=(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q}+(\operatorname{Div}\boldsymbol{\sigma},\operatorname{Div}\boldsymbol{\tau})_{L^{2}(\Omega)^{d}}

and the associated norm โˆฅโ‹…โˆฅQ1\|\cdot\|_{Q_{1}}. Here Div represents the divergence operator given by Divโก๐ˆ=(ฯƒij,j)\operatorname{Div}\boldsymbol{\sigma}=\left(\sigma_{ij,j}\right).

The assumption meas (ฮ“1)>0\left(\Gamma_{1}\right)>0 allows the use of Kornโ€™s inequality which involves the completeness of the space ( V,โˆฅโ‹…โˆฅVV,\|\cdot\|_{V} ). For an element ๐’—โˆˆV\boldsymbol{v}\in V we still write ๐’—\boldsymbol{v} for its trace and we denote by vฮฝv_{\nu} and ๐’—ฯ„\boldsymbol{v}_{\tau} the normal and tangential components of ๐’—\boldsymbol{v} on ฮ“\Gamma given by vฮฝ=๐’—โ‹…๐‚,๐’—ฯ„=๐’—โˆ’vฮฝ๐‚v_{\nu}=\boldsymbol{v}\cdot\boldsymbol{\nu},\boldsymbol{v}_{\tau}=\boldsymbol{v}-v_{\nu}\boldsymbol{\nu}. Let ฮ“3\Gamma_{3} be a measurable part of ฮ“\Gamma. Then, by the Sobolev trace theorem, there exists a positive constant c0c_{0} which depends on ฮฉ,ฮ“1\Omega,\Gamma_{1} and ฮ“3\Gamma_{3} such that

โ€–๐’—โ€–L2(ฮ“3)dโ‰คc0โ€–๐’—โ€–Vโˆ€๐’—โˆˆV.\|\boldsymbol{v}\|_{L^{2}\left(\Gamma_{3}\right)^{d}}\leq c_{0}\|\boldsymbol{v}\|_{V}\quad\forall\boldsymbol{v}\in V. (2.2)

Also, for a regular stress function ๐ˆ\boldsymbol{\sigma} we use the notation ฯƒฮฝ\sigma_{\nu} and ๐ˆฯ„\boldsymbol{\sigma}_{\tau} for the normal and the tangential components, i.e. ฯƒฮฝ=(๐ˆ๐‚)โ‹…๐‚\sigma_{\nu}=(\boldsymbol{\sigma}\boldsymbol{\nu})\cdot\boldsymbol{\nu} and ๐ˆฯ„=๐ˆ๐‚โˆ’ฯƒฮฝ๐‚\boldsymbol{\sigma}_{\tau}=\boldsymbol{\sigma}\boldsymbol{\nu}-\sigma_{\nu}\boldsymbol{\nu}. For the convenience of the reader we recall the following Greenโ€™s formula:

โˆซฮฉ๐ˆโ‹…๐œบ(๐’—)๐‘‘x+โˆซฮฉDivโก๐ˆโ‹…๐’—dx=โˆซฮ“๐ˆ๐‚โ‹…๐’—๐‘‘a\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx+\int_{\Omega}\operatorname{Div}\boldsymbol{\sigma}\cdot\boldsymbol{v}dx=\int_{\Gamma}\boldsymbol{\sigma}\boldsymbol{\nu}\cdot\boldsymbol{v}da (2.3)

We denote by ๐โˆž\mathbf{Q}_{\infty} the space of fourth order tensor fields given by

๐โˆž={โ„ฐ=(โ„ฐijkl):โ„ฐijkl=โ„ฐjikl=โ„ฐklijโˆˆLโˆž(ฮฉ),1โ‰คi,j,k,lโ‰คd}\mathbf{Q}_{\infty}=\left\{\mathcal{E}=\left(\mathcal{E}_{ijkl}\right):\mathcal{E}_{ijkl}=\mathcal{E}_{jikl}=\mathcal{E}_{klij}\in L^{\infty}(\Omega),\quad 1\leq i,j,k,l\leq d\right\}

and ๐โˆž\mathbf{Q}_{\infty} is a real Banach space with the norm โ€–โ„ฐโ€–๐โˆž=โˆ‘1โ‰คi,j,k,lโ‰คdโ€–โ„ฐijklโ€–Lโˆž(ฮฉ)\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}=\sum_{1\leq i,j,k,l\leq d}\left\|\mathcal{E}_{ijkl}\right\|_{L^{\infty}(\Omega)}. Moreover, a simple calculation shows that

โ€–โ„ฐ๐‰โ€–Qโ‰คdโ€–โ„ฐโ€–๐โˆžโ€–๐‰โ€–Qโˆ€โ„ฐโˆˆ๐โˆž,๐‰โˆˆQ.\|\mathcal{E}\boldsymbol{\tau}\|_{Q}\leq d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}\|\boldsymbol{\tau}\|_{Q}\quad\forall\mathcal{E}\in\mathbf{Q}_{\infty},\boldsymbol{\tau}\in Q. (2.4)

For each Banach space XX we use the notation C(โ„+;X)C\left(\mathbb{R}_{+};X\right) for the space of continuous functions defined on โ„+\mathbb{R}_{+}with values on XX. It is well known that C(โ„+;X)C\left(\mathbb{R}_{+};X\right) can be organized in a canonical way as a Frรฉchet space. Details can be found in (1) and 5, for instance. Here we restrict ourseleves to recall that the convergence of a sequence (xm)m\left(x_{m}\right)_{m} to the element xx, in the space C(โ„+;X)C\left(\mathbb{R}_{+};X\right), can be described as follows:

{xmโ†’x in C(โ„+;X) as mโ†’โˆž if and only if maxrโˆˆ[0,n]โกโ€–xm(r)โˆ’x(r)โ€–Xโ†’0 as mโ†’โˆž, for all nโˆˆโ„•โˆ—\left\{\begin{array}[]{l}x_{m}\rightarrow x\text{ in }C\left(\mathbb{R}_{+};X\right)\text{ as }m\rightarrow\infty\text{ if and only if }\\ \max_{r\in[0,n]}\left\|x_{m}(r)-x(r)\right\|_{X}\rightarrow 0\text{ as }m\rightarrow\infty,\text{ for all }n\in\mathbb{N}^{*}\end{array}\right.

Let XX be a real Hilbert space with inner product (โ‹…,โ‹…)X(\cdot,\cdot)_{X} and associated norm โˆฅโ‹…โˆฅX\|\cdot\|_{X}. Let KK be a subset of XX and consider the operators A:Kโ†’XA:K\rightarrow X, โ„›:C(โ„+;X)โ†’C(โ„+;X)\mathcal{R}:C\left(\mathbb{R}_{+};X\right)\rightarrow C\left(\mathbb{R}_{+};X\right) and function f:โ„+โ†’Xf:\mathbb{R}_{+}\rightarrow X. We are interested in the problem of finding a function uโˆˆC(โ„+;X)u\in C\left(\mathbb{R}_{+};X\right) such that u(t)โˆˆKu(t)\in K, for all tโˆˆโ„+t\in\mathbb{R}_{+}, and inequality below holds

(Au(t),v\displaystyle(Au(t),v โˆ’u(t))X+(โ„›u(t),v)Xโˆ’(โ„›u(t),u(t))X\displaystyle-u(t))_{X}+(\mathcal{R}u(t),v)_{X}-(\mathcal{R}u(t),u(t))_{X} (2.6)
โ‰ฅ(f(t),vโˆ’u(t))X,โˆ€vโˆˆK\displaystyle\geq(f(t),v-u(t))_{X},\forall v\in K

In the study of (2.6) we assume that
(2.7) KK is a nonempty, closed, convex subset of XX
and A:Kโ†’XA:K\rightarrow X is a strongly monotone Lipschitz continuous operator, i.e.
(2.8) { (a) There exists m>0 such that (Au1โˆ’Au2,u1โˆ’u2)Xโ‰ฅmโ€–u1โˆ’u2โ€–X2โˆ€u1,u2โˆˆK. (b) There exists M>0 such that โ€–Au1โˆ’Au2โ€–Xโ‰คMโ€–u1โˆ’u2โ€–Xโˆ€u1,u2โˆˆK.\left\{\begin{array}[]{l}\text{ (a) There exists }m>0\text{ such that }\\ \quad\left(Au_{1}-Au_{2},u_{1}-u_{2}\right)_{X}\geq m\left\|u_{1}-u_{2}\right\|_{X}^{2}\quad\forall u_{1},u_{2}\in K.\\ \text{ (b) There exists }M>0\text{ such that }\\ \left\|Au_{1}-Au_{2}\right\|_{X}\leq M\left\|u_{1}-u_{2}\right\|_{X}\quad\forall u_{1},u_{2}\in K.\end{array}\right.

The operator โ„›:C(โ„+;X)โ†’C(โ„+;X)\mathcal{R}:C\left(\mathbb{R}_{+};X\right)\rightarrow C\left(\mathbb{R}_{+};X\right) satisfies
(2.9) { For every nโˆˆโ„•โˆ— there exists rn>0 such that for all tโˆˆ[0,n]โ€–โ„›u1(t)โˆ’โ„›u2(t)โ€–Xโ‰คrnโˆซ0tโ€–u1(s)โˆ’u2(s)โ€–X๐‘‘s,\left\{\begin{array}[]{l}\text{ For every }n\in\mathbb{N}^{*}\text{ there exists }r_{n}>0\text{ such that for all }t\in[0,n]\\ \left\|\mathcal{R}u_{1}(t)-\mathcal{R}u_{2}(t)\right\|_{X}\leq r_{n}\int_{0}^{t}\left\|u_{1}(s)-u_{2}(s)\right\|_{X}ds,\end{array}\right.
for all u1,u2โˆˆC(โ„+;X)u_{1},u_{2}\in C\left(\mathbb{R}_{+};X\right), and, finally, we assume that
(2.10) fโˆˆC(โ„+;X)f\in C\left(\mathbb{R}_{+};X\right).

The next results, proved in [7], will be used in the rest of this paper.
THEOREM 2.1 Let XX be an Hilbert space and assume that (2.7)-(2.10) hold. Then, the inequality (2.6) has a unique solution uโˆˆC(โ„+;K)u\in C\left(\mathbb{R}_{+};K\right).

COROLLARY 2.2 Let XX be an Hilbert space and assume that (2.8)-(2.10) hold. Then there exists a unique function uโˆˆC(โ„+;X)u\in C\left(\mathbb{R}_{+};X\right) such that

(Au(t),v)X+(โ„›u(t),v)X=(f(t),v)Xโˆ€vโˆˆX,โˆ€tโˆˆโ„+.(Au(t),v)_{X}+(\mathcal{R}u(t),v)_{X}=(f(t),v)_{X}\quad\forall v\in X,\quad\forall t\in\mathbb{R}_{+}. (2.11)

To avoid any confusion, we note that here and below the notation Au(t)Au(t) and โ„›u(t)\mathcal{R}u(t) are short hand notation for A(u(t))A(u(t)) and (โ„›u)(t)(\mathcal{R}u)(t), for all tโˆˆโ„+t\in\mathbb{R}_{+}.
We end this section with a short description of the physical setting of the two contact problems.

An elastic body in the first problem and a viscoplastic body in the second problem occupies a bounded domain ฮฉโŠ‚โ„d(d=1,2,3)\Omega\subset\mathbb{R}^{d}(d=1,2,3) with a Lipschitz continuous boundary ฮ“\Gamma, divided into three measurable parts ฮ“1,ฮ“2\Gamma_{1},\Gamma_{2} and ฮ“3\Gamma_{3},
such that meas (ฮ“1)>0\left(\Gamma_{1}\right)>0. The body is subject to the action of body forces of density ๐’‡0\boldsymbol{f}_{0}. We also assume that it is fixed on ฮ“1\Gamma_{1} and surface tractions of density ๐’‡2\boldsymbol{f}_{2} act on ฮ“2\Gamma_{2}. On ฮ“3\Gamma_{3}, the body is in frictionless contact with a deformable obstacle, the so-called foundation. We assume that process is quasistatic and is studied in the interval of time โ„+\mathbb{R}_{+}.

3 ANALYSIS OF AN ELASTIC CONTACT PROBLEM

The classical formulation of the first contact problem is the following.
Problem ๐’ซ1\mathcal{P}_{1}. Find a displacement field ๐’–:ฮฉร—โ„+โ†’โ„d\boldsymbol{u}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d} and a stress field ๐ˆ:ฮฉร—โ„+โ†’๐•Šd\boldsymbol{\sigma}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d} such that, for each tโˆˆโ„+t\in\mathbb{R}_{+},

๐ˆ(t)=โ„ฑ๐œบ(๐’–(t)) in ฮฉ,Divโก๐ˆ(t)+๐’‡0(t)=๐ŸŽ in ฮฉ,๐’–(t)=๐ŸŽ on ฮ“1,๐ˆ(t)๐‚=๐’‡2(t) on ฮ“2,ฯƒฮฝ(t)+p(uฮฝ(t))+โˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s=0 on ฮ“3,๐ˆฯ„(t)=๐ŸŽ on ฮ“3.\begin{array}[]{rcc}\boldsymbol{\sigma}(t)=\mathcal{F}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))&\text{ in }\quad\Omega,\\ \operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}&\text{ in }\quad\Omega,\\ \boldsymbol{u}(t)=\mathbf{0}&\text{ on }\quad\Gamma_{1},\\ \boldsymbol{\sigma}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t)&\text{ on }\quad\Gamma_{2},\\ \sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds=0&\text{ on }\quad\Gamma_{3},\\ \boldsymbol{\sigma}_{\tau}(t)=\mathbf{0}&\text{ on }\quad\Gamma_{3}.\end{array}

Here and below, in order to simplify the notation, we do not indicate explicitly the dependence of various functions on the variables ๐’™\boldsymbol{x} or tt. Equation (3.1) represents the elastic constitutive law of the material. Equation (3.2) is the equation of equilibrium, conditions (3.3), (3.4) represent the displacement and traction boundary conditions, respectively, and condition (3.5) shows that the contact follows a normal compliance condition with memory term. At the moment tt, the reaction of the foundation depends both on the current value of the penetration (represented by the term p(uฮฝ(t)))\left.p\left(u_{\nu}(t)\right)\right) as well as on the history of the penetration (represented by the integral term). Finally, (3.6) is the frictionless condition.

We assume that the body forces and surface tractions have the regularity

๐’‡0โˆˆC(โ„+;L2(ฮฉ)d),๐’‡2โˆˆC(โ„+;L2(ฮ“2)d)\boldsymbol{f}_{0}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right),\quad\boldsymbol{f}_{2}\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{2}\right)^{d}\right) (3.7)

Also, we assume that the normal compliance function pp verifies

{ (a) p:ฮ“3ร—โ„โ†’โ„+(b) There exists Lp>0 such that |p(๐’™,r1)โˆ’p(๐’™,r2)|โ‰คLp|r1โˆ’r2|โˆ€r1,r2โˆˆโ„, a.e. ๐’™โˆˆฮ“3 (c) (p(๐’™,r1)โˆ’p(๐’™,r2))(r1โˆ’r2)โ‰ฅ0โˆ€r1,r2โˆˆโ„, a.e. ๐’™โˆˆฮ“3 (d) The mapping ๐’™โ†ฆp(๐’™,r) is measurable on ฮ“3,โˆ€rโˆˆโ„ (e) p(๐’™,r)=0 for all rโ‰ค0, a.e. ๐’™โˆˆฮ“3\left\{\begin{array}[]{l}\text{ (a) }p:\Gamma_{3}\times\mathbb{R}\rightarrow\mathbb{R}_{+}\\ \text{(b) There exists }L_{p}>0\text{ such that }\\ \quad\left|p\left(\boldsymbol{x},r_{1}\right)-p\left(\boldsymbol{x},r_{2}\right)\right|\leq L_{p}\left|r_{1}-r_{2}\right|\\ \quad\forall r_{1},r_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}\\ \text{ (c) }\left(p\left(\boldsymbol{x},r_{1}\right)-p\left(\boldsymbol{x},r_{2}\right)\right)\left(r_{1}-r_{2}\right)\geq 0\\ \quad\forall r_{1},r_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto p(\boldsymbol{x},r)\text{ is measurable on }\Gamma_{3},\forall r\in\mathbb{R}\\ \text{ (e) }p(\boldsymbol{x},r)=0\text{ for all }r\leq 0,\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}\end{array}\right.

and the surface memory function satisfies

(3.9)bโˆˆC(โ„+;Lโˆž(ฮ“3))(3.9)b\in C\left(\mathbb{R}_{+};L^{\infty}\left(\Gamma_{3}\right)\right)\text{. }

Further details on the contact condition (3.5), normal compliance function pp and surface memory function bb can be found in 4 or 8 .

We turn now to the variational formulation of Problem ๐’ซ1\mathcal{P}_{1}. To this end, we assume in what follows that ( ๐’–,๐ˆ\boldsymbol{u},\boldsymbol{\sigma} ) are sufficiently regular functions which satisfy (3.1)-(3.6). Let ๐’—โˆˆV\boldsymbol{v}\in V and tโˆˆโ„+t\in\mathbb{R}_{+}be given. We use Greenโ€™s formula (2.3), equation of equilibrium (3.2), we split the boundary integral over ฮ“1,ฮ“2\Gamma_{1},\Gamma_{2} and ฮ“3\Gamma_{3} and, since ๐’—=๐ŸŽ\boldsymbol{v}=\mathbf{0} on ฮ“1ร—โ„+\Gamma_{1}\times\mathbb{R}_{+}and ๐ˆ(t)๐‚=๐’‡2(t)\boldsymbol{\sigma}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t) on ฮ“2ร—โ„+\Gamma_{2}\times\mathbb{R}_{+}, it follows that

โˆซฮฉ๐ˆ(t)โ‹…๐œบ(๐’—)๐‘‘x=โˆซฮฉ๐’‡0(t)โ‹…๐’—๐‘‘x+โˆซฮ“2๐’‡2(t)โ‹…๐’—๐‘‘a+โˆซฮ“3๐ˆ(t)๐‚โ‹…๐’—๐‘‘a\int_{\Omega}\boldsymbol{\sigma}(t)\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot\boldsymbol{v}dx+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot\boldsymbol{v}da+\int_{\Gamma_{3}}\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot\boldsymbol{v}da (3.10)

Moreover, since ๐ˆ(t)๐‚โ‹…๐’—=ฯƒฮฝ(t)vฮฝ+๐ˆฯ„(t)โ‹…๐’—ฯ„\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot\boldsymbol{v}=\sigma_{\nu}(t)v_{\nu}+\boldsymbol{\sigma}_{\tau}(t)\cdot\boldsymbol{v}_{\tau} on ฮ“3\Gamma_{3}, condition (3.6) implies that โˆซฮ“3๐ˆ(t)๐‚โ‹…๐’—๐‘‘a=โˆซฮ“3ฯƒฮฝ(t)vฮฝ๐‘‘a\int_{\Gamma_{3}}\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot\boldsymbol{v}da=\int_{\Gamma_{3}}\sigma_{\nu}(t)v_{\nu}da. We use the contact condition (3.5) to see that

ฯƒฮฝ(t)vฮฝ=โˆ’(p(uฮฝ(t))+โˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s)vฮฝ on ฮ“3\sigma_{\nu}(t)v_{\nu}=-\left(p\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\right)v_{\nu}\quad\text{ on }\quad\Gamma_{3}

We combine the above relations to deduce that

(๐ˆ(t),๐œบ(๐’—))Q+(p(uฮฝ(t)),vฮฝ)L2(ฮ“3)+(โˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s,vฮฝ)L2(ฮ“3)\displaystyle(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\left(p\left(u_{\nu}(t)\right),v_{\nu}\right)_{L^{2}\left(\Gamma_{3}\right)}+\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,v_{\nu}\right)_{L^{2}\left(\Gamma_{3}\right)} (3.11)
=(๐’‡0(t),๐’—)L2(ฮฉ)d+(๐’‡2(t),๐’—)L2(ฮ“2)d\displaystyle\quad=\left(\boldsymbol{f}_{0}(t),\boldsymbol{v}\right)_{L^{2}(\Omega)^{d}}+\left(\boldsymbol{f}_{2}(t),\boldsymbol{v}\right)_{L^{2}\left(\Gamma_{2}\right)^{d}}

We use now (3.1) and (3.11) to derive the following variational formulation of the frictionless contact problem (3.1)-(3.6).

Problem ๐’ซ1V\mathcal{P}_{1}^{V}. Find a displacement field ๐’–:โ„+โ†’V\boldsymbol{u}:\mathbb{R}_{+}\rightarrow V such that ๐’–(t)โˆˆV\boldsymbol{u}(t)\in V, for all tโˆˆโ„+t\in\mathbb{R}_{+}, and the equality below holds

(โ„ฑ๐œบ(๐’–(t)),๐œบ(๐’—))Q+(p(uฮฝ(t)),vฮฝ)L2(ฮ“3)+(โˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s,vฮฝ)L2(ฮ“3)\displaystyle\quad(\mathcal{F}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\left(p\left(u_{\nu}(t)\right),v_{\nu}\right)_{L^{2}\left(\Gamma_{3}\right)}+\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,v_{\nu}\right)_{L^{2}\left(\Gamma_{3}\right)}
(3.12)=(๐’‡0(t),๐’—)L2(ฮฉ)d+(๐’‡2(t),๐’—)L2(ฮ“2)dโˆ€๐’—โˆˆV\displaystyle(3.12)\quad=\left(\boldsymbol{f}_{0}(t),\boldsymbol{v}\right)_{L^{2}(\Omega)^{d}}+\left(\boldsymbol{f}_{2}(t),\boldsymbol{v}\right)_{L^{2}\left(\Gamma_{2}\right)^{d}}\quad\forall\boldsymbol{v}\in V (3.12)

Next, we prove the unique weak solvability of the variational problem ๐’ซ1V\mathcal{P}_{1}^{V}. To this end we assume that the elasticity tensor โ„ฑ\mathcal{F} satisfies the following conditions.

{ (a) โ„ฑ:ฮฉร—๐•Šdโ†’๐•Šd (b) There exists Lโ„ฑ>0 such that โ€–โ„ฑ(๐’™,๐œบ1)โˆ’โ„ฑ(๐’™,๐œบ2)โ€–โ‰คLโ„ฑโ€–๐œบ1โˆ’๐œบ2โ€–โˆ€๐œบ1,๐œบ2โˆˆ๐•Šd, a.e. ๐’™โˆˆฮฉ (c) There exists mโ„ฑ>0 such that (โ„ฑ(๐’™,๐œบ1)โˆ’โ„ฑ(๐’™,๐œบ2))โ‹…(๐œบ1โˆ’๐œบ2)โ‰ฅmโ„ฑโ€–๐œบ1โˆ’๐œบ2โ€–2โˆ€๐œบ1,๐œบ2โˆˆ๐•Šd, a.e. ๐’™โˆˆฮฉ (d) The mapping ๐’™โ†ฆโ„ฑ(๐’™,๐œบ) is measurable on ฮฉ,โˆ€๐œบโˆˆ๐•Šd (e) The mapping ๐’™โ†ฆโ„ฑ(๐’™,๐ŸŽ๐•Šd) belongs to Q\left\{\begin{array}[]{l}\text{ (a) }\mathcal{F}:\Omega\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}\text{. }\\ \text{ (b) There exists }L_{\mathcal{F}}>0\text{ such that }\\ \quad\left\|\mathcal{F}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{1}\right)-\mathcal{F}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{2}\right)\right\|\leq L_{\mathcal{F}}\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|\\ \quad\forall\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\text{ a.e. }\boldsymbol{x}\in\Omega\text{. }\\ \text{ (c) There exists }m_{\mathcal{F}}>0\text{ such that }\\ \quad\left(\mathcal{F}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{1}\right)-\mathcal{F}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{2}\right)\right)\cdot\left(\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right)\geq m_{\mathcal{F}}\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|^{2}\\ \quad\forall\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\text{ a.e. }\boldsymbol{x}\in\Omega\text{. }\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto\mathcal{F}(\boldsymbol{x},\boldsymbol{\varepsilon})\text{ is measurable on }\Omega,\forall\boldsymbol{\varepsilon}\in\mathbb{S}^{d}\text{. }\\ \text{ (e) The mapping }\boldsymbol{x}\mapsto\mathcal{F}\left(\boldsymbol{x},\mathbf{0}_{\mathbb{S}^{d}}\right)\text{ belongs to }Q\text{. }\end{array}\right.

We have the following existence and uniqueness result.
THEOREM 3.1 Assume that (3.13), (3.7)-(3.9) hold. Then, Problem ๐’ซ1V\mathcal{P}_{1}^{V} has a unique solution which satisfies ๐’–โˆˆC(โ„+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right).

Proof. We start with by providing an equivalent form to Problem ๐’ซ1V\mathcal{P}_{1}^{V}. To this end, we use the Riesz representation Theorem to define the operators P:Vโ†’V,โ„ฌ:C(โ„+;V)โ†’C(โ„+;V)P:V\rightarrow V,\mathcal{B}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};V\right) and the function ๐’‡:โ„+โ†’V\boldsymbol{f}:\mathbb{R}_{+}\rightarrow V by equalities

(P๐’–,๐’—)V=โˆซฮ“3p(uฮฝ)vฮฝ๐‘‘aโˆ€๐’–,๐’—โˆˆV\displaystyle(P\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Gamma_{3}}p\left(u_{\nu}\right)v_{\nu}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (3.14)
(โ„ฌ๐’–(t),๐’—)V=(โˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s,vฮฝ)L2(ฮ“3)โˆ€๐’–โˆˆC(โ„+;V),๐’—โˆˆV\displaystyle(\mathcal{B}\boldsymbol{u}(t),\boldsymbol{v})_{V}=\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,v_{\nu}\right)_{L^{2}\left(\Gamma_{3}\right)}\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\boldsymbol{v}\in V (3.15)
(๐’‡(t),๐’—)V=โˆซฮฉ๐’‡0(t)โ‹…๐’—๐‘‘x+โˆซฮ“2๐’‡2(t)โ‹…๐’—๐‘‘aโˆ€๐’—โˆˆV,tโˆˆโ„+\displaystyle(\boldsymbol{f}(t),\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot\boldsymbol{v}dx+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot\boldsymbol{v}da\quad\forall\boldsymbol{v}\in V,\quad t\in\mathbb{R}_{+} (3.16)

Then, it is easy to see that Problem ๐’ซ1V\mathcal{P}_{1}^{V} is equivalent to the problem of finding a function ๐’–:โ„+โ†’V\boldsymbol{u}:\mathbb{R}_{+}\rightarrow V such that for all tโˆˆโ„+t\in\mathbb{R}_{+}and ๐’—โˆˆV\boldsymbol{v}\in V the equality below holds

๐’–(t)โˆˆV,(โ„ฑ๐œบ(๐’–(t)),๐œบ(๐’—))Q+(P๐’–(t),๐’—)V+(โ„ฌ๐’–(t),๐’—)V=(๐’‡(t),๐’—)V.\boldsymbol{u}(t)\in V,\quad(\mathcal{F}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+(P\boldsymbol{u}(t),\boldsymbol{v})_{V}+(\mathcal{B}\boldsymbol{u}(t),\boldsymbol{v})_{V}=(\boldsymbol{f}(t),\boldsymbol{v})_{V}. (3.17)

To solve the variational equation (3.17) we use Corollary 2.2 with X=VX=V. To this end, we consider the operator A:Vโ†’VA:V\rightarrow V defined by

(A๐’–,๐’—)V=(โ„ฑฮต(๐’–),ฮต(๐’—))Q+(P๐’–,๐’—)Vโˆ€๐’–,๐’—โˆˆV.(A\boldsymbol{u},\boldsymbol{v})_{V}=(\mathcal{F}\varepsilon(\boldsymbol{u}),\varepsilon(\boldsymbol{v}))_{Q}+(P\boldsymbol{u},\boldsymbol{v})_{V}\quad\forall\boldsymbol{u},\boldsymbol{v}\in V. (3.18)

Then, for all tโˆˆโ„+t\in\mathbb{R}_{+}the equality (3.17) can be written as

๐’–(t)โˆˆV,(A๐’–(t),๐’—)V+(โ„ฌ๐’–(t),๐’—)V=(๐’‡(t),๐’—)Vโˆ€๐’—โˆˆV.\boldsymbol{u}(t)\in V,\quad(A\boldsymbol{u}(t),\boldsymbol{v})_{V}+(\mathcal{B}\boldsymbol{u}(t),\boldsymbol{v})_{V}=(\boldsymbol{f}(t),\boldsymbol{v})_{V}\quad\forall\boldsymbol{v}\in V.

Using (3.13), (3.8) and the definition of the operator PP we deduce that the operator AA is strongly monotone and Lipschitz continuous, i.e. it verifies (2.8).

Let nโˆˆโ„•โˆ—n\in\mathbb{N}^{*}. Then, a simple calculation based on assumption (3.9) and inequality (2.2) shows that โˆ€๐’–1,๐’–2โˆˆC(โ„+;V),โˆ€tโˆˆ[0,n]\forall\boldsymbol{u}_{1},\boldsymbol{u}_{2}\in C\left(\mathbb{R}_{+};V\right),\forall t\in[0,n] the following inequality holds:

โ€–โ„ฌ๐’–1(t)โˆ’โ„ฌ๐’–2(t)โ€–Vโ‰คc02maxrโˆˆ[0,n]โกโ€–b(r)โ€–Lโˆž(ฮ“3)โˆซ0tโ€–๐’–1(s)โˆ’๐’–2(s)โ€–V๐‘‘s\left\|\mathcal{B}\boldsymbol{u}_{1}(t)-\mathcal{B}\boldsymbol{u}_{2}(t)\right\|_{V}\leq c_{0}^{2}\max_{r\in[0,n]}\|b(r)\|_{L^{\infty}\left(\Gamma_{3}\right)}\int_{0}^{t}\left\|\boldsymbol{u}_{1}(s)-\boldsymbol{u}_{2}(s)\right\|_{V}ds (3.19)

This inequality implies that the operator โ„ฌ\mathcal{B} given by (3.15) satisfies (2.9) with

rn=c02maxrโˆˆ[0,n]โกโ€–b(r)โ€–Lโˆž(ฮ“3)r_{n}=c_{0}^{2}\max_{r\in[0,n]}\|b(r)\|_{L^{\infty}\left(\Gamma_{3}\right)} (3.20)

Finally, using (3.7) and (3.16) we deduce that ๐’‡โˆˆC(โ„+;V)\boldsymbol{f}\in C\left(\mathbb{R}_{+};V\right) and, therefore, (2.10) holds. It follows now from Corollary 2.2 that there exists a unique function ๐’–โˆˆC(โ„+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) which satisfies the equation

(A๐’–(t),๐’—)V+(โ„ฌ๐’–(t),๐’—)V=(๐’‡(t),๐’—)Vโˆ€๐’—โˆˆVtโˆˆโ„+.(A\boldsymbol{u}(t),\boldsymbol{v})_{V}+(\mathcal{B}\boldsymbol{u}(t),\boldsymbol{v})_{V}=(\boldsymbol{f}(t),\boldsymbol{v})_{V}\quad\forall\boldsymbol{v}\in V\quad t\in\mathbb{R}_{+}.

And, using (3.15), (3.16) and (3.18) we deduce that there exists a unique solution ๐’–โˆˆC(โ„+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) to the equality (3.12) for all tโˆˆโ„+t\in\mathbb{R}_{+}, which concludes the proof.

Let ฯƒ\sigma be the function defined by (3.1). Then, it follows from (3.13) that ๐ˆโˆˆC(โ„+;Q)\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q\right). Moreover, it is easy to see that (3.11) holds for all tโˆˆโ„+t\in\mathbb{R}_{+}and, using standard arguments, it results from here that

Divโก๐ˆ(t)+๐’‡0(t)=๐ŸŽโˆ€tโˆˆโ„+.\operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}\quad\forall t\in\mathbb{R}_{+}. (3.21)

Therefore, using the regularity ๐’‡0โˆˆC(โ„+;L2(ฮฉ)d)\boldsymbol{f}_{0}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right) in (3.7) we deduce that Divโก๐ˆโˆˆC(โ„+;L2(ฮฉ)d)\operatorname{Div}\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right) which implies that ๐ˆโˆˆC(โ„+;Q1)\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q_{1}\right). A couple of functions ( ๐’–,๐ˆ\boldsymbol{u},\boldsymbol{\sigma} ) which satisfies (3.1), (3.12) for all tโˆˆโ„+t\in\mathbb{R}_{+}is called a weak solution to the contact problem ๐’ซ1\mathcal{P}_{1}. We conclude that Theorem 3.1 provides the unique weak solvability of Problem ๐’ซ1\mathcal{P}_{1}. Moreover, the regularity of the weak solution is ๐’–โˆˆC(โ„+;V),๐ˆโˆˆC(โ„+;Q1)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q_{1}\right).

We study now the dependence of the solution of Problem ๐’ซ1V\mathcal{P}_{1}^{V} with respect to perturbations of the data. To this end, we assume in what follows that (3.13), (3.7)-(3.9) hold and we denote by ๐’–\boldsymbol{u} the solution of Problem ๐’ซ1V\mathcal{P}_{1}^{V} obtained in Theorem 3.1. For each ฯ>0\rho>0 let ๐’‡0ฯ,๐’‡2ฯ,pฯ\boldsymbol{f}_{0\rho},\boldsymbol{f}_{2\rho},p_{\rho} and bฯb_{\rho} be perturbations of ๐’‡0,๐’‡2,p\boldsymbol{f}_{0},\boldsymbol{f}_{2},p and bb which satisfy conditions (3.7)-(3.9). We consider the following variational problem.

Problem ๐’ซ1ฯV\mathcal{P}_{1\rho}^{V}. Find a displacement field ๐’–ฯ:โ„+โ†’V\boldsymbol{u}_{\rho}:\mathbb{R}_{+}\rightarrow V such that ๐’–ฯ(t)โˆˆV\boldsymbol{u}_{\rho}(t)\in V, for all tโˆˆโ„+t\in\mathbb{R}_{+}, and the equality below holds for all ๐’—โˆˆV\boldsymbol{v}\in V :

(โ„ฑ๐œบ(๐’–ฯ(t)),๐œบ(๐’—))Q+(pฯ(uฯฮฝ(t)),vฮฝ)L2(ฮ“3)\left(\mathcal{F}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q}+\left(p_{\rho}\left(u_{\rho\nu}(t)\right),v_{\nu}\right)_{L^{2}\left(\Gamma_{3}\right)} (3.22)
+(โˆซ0tbฯ(tโˆ’s)uฯฮฝ+(s)๐‘‘s,vฮฝ)L2(ฮ“3)=(๐’‡0ฯ(t),๐’—)L2(ฮฉ)d+(๐’‡2ฯ(t),๐’—)L2(ฮ“2)d+\left(\int_{0}^{t}b_{\rho}(t-s)u_{\rho\nu}^{+}(s)ds,v_{\nu}\right)_{L^{2}\left(\Gamma_{3}\right)}=\left(\boldsymbol{f}_{0\rho}(t),\boldsymbol{v}\right)_{L^{2}(\Omega)^{d}}+\left(\boldsymbol{f}_{2\rho}(t),\boldsymbol{v}\right)_{L^{2}\left(\Gamma_{2}\right)^{d}}

Note that, here and below, uฯฮฝu_{\rho\nu} represents the normal component of the function ๐’–ฯ\boldsymbol{u}_{\rho}.

It follows from Theorem 3.1 that, for each ฯ>0\rho>0 Problem ๐’ซ1ฯV\mathcal{P}_{1\rho}^{V} has a unique solution ๐’–ฯโˆˆC(โ„+;V)\boldsymbol{u}_{\rho}\in C\left(\mathbb{R}_{+};V\right). Consider now the following assumptions

bฯโ†’b in C(โ„+;Lโˆž(ฮ“3)) as ฯโ†’0๐’‡0ฯโ†’๐’‡0 in C(โ„+;L2(ฮฉ)d) as ฯโ†’0๐’‡2ฯโ†’๐’‡2 in C(โ„+;L2(ฮ“2)d) as ฯโ†’0\begin{array}[]{ll}b_{\rho}\rightarrow b&\text{ in }C\left(\mathbb{R}_{+};L^{\infty}\left(\Gamma_{3}\right)\right)\quad\text{ as }\quad\rho\rightarrow 0\\ \boldsymbol{f}_{0\rho}\rightarrow\boldsymbol{f}_{0}&\text{ in }C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right)\quad\text{ as }\quad\rho\rightarrow 0\\ \boldsymbol{f}_{2\rho}\rightarrow\boldsymbol{f}_{2}&\text{ in }C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{2}\right)^{d}\right)\quad\text{ as }\quad\rho\rightarrow 0\end{array}
{ There exists G:โ„+โ†’โ„+and ฮฒโˆˆโ„+such that  (a) |pฯ(๐’™,r)โˆ’p(๐’™,r)|โ‰คG(ฯ)(|r|+ฮฒ)โˆ€rโˆˆโ„, a.e. ๐’™โˆˆฮ“3, for each ฯ>0, (b) limฯโ†’0G(ฯ)=0.\left\{\begin{array}[]{l}\text{ There exists }G:\mathbb{R}_{+}\rightarrow\mathbb{R}_{+}\text{and }\beta\in\mathbb{R}_{+}\text{such that }\\ \text{ (a) }\left|p_{\rho}(\boldsymbol{x},r)-p(\boldsymbol{x},r)\right|\leq G(\rho)(|r|+\beta)\\ \quad\forall r\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3},\text{ for each }\rho>0,\\ \text{ (b) }\lim_{\rho\rightarrow 0}G(\rho)=0.\end{array}\right.

We have the following convergence result.
THEOREM 3.2 Under assumptions (3.23)-(3.26) the solution ๐’–ฯ\boldsymbol{u}_{\rho} of Problem ๐’ซ1ฯV\mathcal{P}_{1\rho}^{V} converges to the solution ๐’–\boldsymbol{u} of Problem ๐’ซ1V\mathcal{P}_{1}^{V}, i.e.
(3.27) ๐’–ฯโ†’๐’–\boldsymbol{u}_{\rho}\rightarrow\boldsymbol{u}\quad in C(โ„+;V)\quad C\left(\mathbb{R}_{+};V\right)\quad as ฯโ†’0\quad\rho\rightarrow 0.

Proof. Let ฯ>0\rho>0. We use the Riesz representation Theorem to define the operators Pฯ:Vโ†’V,โ„ฌฯ:C(โ„+;V)โ†’C(โ„+;V)P_{\rho}:V\rightarrow V,\mathcal{B}_{\rho}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};V\right) and the function ๐’‡ฯ:โ„+โ†’V\boldsymbol{f}_{\rho}:\mathbb{R}_{+}\rightarrow V by equalities
(3.28)(Pฯ๐’–,๐’—)V=โˆซฮ“3pฯ(uฮฝ)vฮฝ๐‘‘aโˆ€๐’–,๐’—โˆˆV(3.28)\left(P_{\rho}\boldsymbol{u},\boldsymbol{v}\right)_{V}=\int_{\Gamma_{3}}p_{\rho}\left(u_{\nu}\right)v_{\nu}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V,
(3.29)(โ„ฌฯ๐’–(t),๐’—)V=(โˆซ0tbฯ(tโˆ’s)uฮฝ+(s)๐‘‘s,vฮฝ)L2(ฮ“3)โˆ€๐’–โˆˆC(โ„+;V),๐’—โˆˆV(3.29)\left(\mathcal{B}_{\rho}\boldsymbol{u}(t),\boldsymbol{v}\right)_{V}=\left(\int_{0}^{t}b_{\rho}(t-s)u_{\nu}^{+}(s)ds,v_{\nu}\right)_{L^{2}\left(\Gamma_{3}\right)}\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\boldsymbol{v}\in V,
(3.30)(๐’‡ฯ(t),๐’—)V=โˆซฮฉ๐’‡0ฯ(t)โ‹…๐’—๐‘‘x+โˆซฮ“2๐’‡2ฯ(t)โ‹…๐’—๐‘‘aโˆ€๐’—โˆˆV,tโˆˆโ„+(3.30)\left(\boldsymbol{f}_{\rho}(t),\boldsymbol{v}\right)_{V}=\int_{\Omega}\boldsymbol{f}_{0\rho}(t)\cdot\boldsymbol{v}dx+\int_{\Gamma_{2}}\boldsymbol{f}_{2\rho}(t)\cdot\boldsymbol{v}da\quad\forall\boldsymbol{v}\in V,t\in\mathbb{R}_{+}.
It follows from the proof of Theorem 3.1 that ๐’–\boldsymbol{u} is a solution of Problem ๐’ซ1V\mathcal{P}_{1}^{V} iff ๐’–\boldsymbol{u} solves equality (3.17), for all tโˆˆโ„+t\in\mathbb{R}_{+}. In a similar way, ๐’–ฯ\boldsymbol{u}_{\rho} is a solution of Problem ๐’ซ1ฯV\mathcal{P}_{1\rho}^{V} iff ๐’–ฯ(t)โˆˆV\boldsymbol{u}_{\rho}(t)\in V, for all tโˆˆโ„+t\in\mathbb{R}_{+}and the following equality:

(โ„ฑ๐œบ(๐’–ฯ(t)),๐œบ(๐’—))Q+(Pฯ๐’–ฯ(t),๐’—)V+(โ„ฌฯ๐’–ฯ(t),๐’—)V=(๐’‡ฯ(t),๐’—)V,\left(\mathcal{F}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q}+\left(P_{\rho}\boldsymbol{u}_{\rho}(t),\boldsymbol{v}\right)_{V}+\left(\mathcal{B}_{\rho}\boldsymbol{u}_{\rho}(t),\boldsymbol{v}\right)_{V}=\left(\boldsymbol{f}_{\rho}(t),\boldsymbol{v}\right)_{V}, (3.31)

holds for all ๐’—โˆˆV\boldsymbol{v}\in V.
Let nโˆˆโ„•โˆ—n\in\mathbb{N}^{*} and let tโˆˆ[0,n]t\in[0,n]. We take ๐’—=๐’–ฯ(t)โˆ’๐’–(t)\boldsymbol{v}=\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t) in 3.31 and ๐’—=๐’–(t)โˆ’๐’–ฯ(t)\boldsymbol{v}=\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t) in (3.17) and add the resulting equalities to obtain

2)(โ„ฑ๐œบ(๐’–ฯ(t))โˆ’โ„ฑ๐œบ(๐’–(t)),๐œบ(๐’–ฯ(t))โˆ’๐œบ(๐’–(t)))Q\displaystyle 2)\left(\mathcal{F}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)-\mathcal{F}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)-\boldsymbol{\varepsilon}(\boldsymbol{u}(t))\right)_{Q} (3.32)
=(Pฯ๐’–ฯ(t)โˆ’P๐’–(t),๐’–(t)โˆ’๐’–ฯ(t))V+(โ„ฌฯ๐’–ฯ(t)โˆ’โ„ฌ๐’–(t),๐’–(t)โˆ’๐’–ฯ(t))V\displaystyle=\left(P_{\rho}\boldsymbol{u}_{\rho}(t)-P\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}+\left(\mathcal{B}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{B}\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}
+(๐’‡ฯ(t)โˆ’๐’‡(t),๐’–ฯ(t)โˆ’๐’–(t))V\displaystyle+\left(\boldsymbol{f}_{\rho}(t)-\boldsymbol{f}(t),\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right)_{V}

Next, we use the definitions (3.28) and (3.14), the monotonicity of the function pฯp_{\rho} and assumption (3.26) to see that

(Pฯ๐’–ฯ(t)โˆ’P๐’–(t),๐’–(t)โˆ’๐’–ฯ(t))Vโ‰คโˆซฮ“3G(ฯ)(|uฮฝ(t)|+ฮฒ)|uฮฝ(t)โˆ’uฯฮฝ(t)|๐‘‘a\left(P_{\rho}\boldsymbol{u}_{\rho}(t)-P\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}\leq\int_{\Gamma_{3}}G(\rho)\left(\left|u_{\nu}(t)\right|+\beta\right)\left|u_{\nu}(t)-u_{\rho\nu}(t)\right|da

Therefore, using the trace inequality (2.2), after some elementary calculus we find that

(Pฯ๐’–ฯ(t)โˆ’P๐’–(t),๐’–(t)โˆ’๐’–ฯ(t))V\displaystyle\left(P_{\rho}\boldsymbol{u}_{\rho}(t)-P\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V} (3.33)
โ‰คG(ฯ)(c02โˆฅ๐’–(t)โˆฅV+c0ฮฒmeas(ฮ“3)12)โˆฅ๐’–ฯ(t)โˆ’๐’–(t)โˆฅV\displaystyle\leq G(\rho)\left(c_{0}^{2}\|\boldsymbol{u}(t)\|_{V}+c_{0}\beta\operatorname{meas}\left(\Gamma_{3}\right)^{\frac{1}{2}}\right)\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}

On the other hand the operator โ„ฌฯ\mathcal{B}_{\rho} verifies (2.9), i.e.

โ€–โ„ฌฯ๐’–ฯ(t)โˆ’โ„ฌฯ๐’–(t)โ€–Vโ‰คc02maxrโˆˆ[0,n]โกโ€–bฯ(r)โ€–Lโˆž(ฮ“3)โˆซ0tโ€–๐’–ฯ(s)โˆ’๐’–(s)โ€–V๐‘‘s\left\|\mathcal{B}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{B}_{\rho}\boldsymbol{u}(t)\right\|_{V}\leq c_{0}^{2}\max_{r\in[0,n]}\left\|b_{\rho}(r)\right\|_{L^{\infty}\left(\Gamma_{3}\right)}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds (3.34)

Using trace inequality we obtain

โ€–โ„ฌฯ๐’–(t)โˆ’โ„ฌ๐’–(t)โ€–Vโ‰คc02maxrโˆˆ[0,n]โกโ€–bฯ(r)โˆ’b(r)โ€–Lโˆž(ฮ“3)โˆซ0tโ€–๐’–(s)โ€–V๐‘‘s\left\|\mathcal{B}_{\rho}\boldsymbol{u}(t)-\mathcal{B}\boldsymbol{u}(t)\right\|_{V}\leq c_{0}^{2}\max_{r\in[0,n]}\left\|b_{\rho}(r)-b(r)\right\|_{L^{\infty}\left(\Gamma_{3}\right)}\int_{0}^{t}\|\boldsymbol{u}(s)\|_{V}ds (3.35)

From (3.34) and (3.35) we conclude that

(โ„ฌฯ๐’–ฯ(t)โˆ’โ„ฌ๐’–(t),๐’–(t)โˆ’๐’–ฯ(t))Vโ‰คโ€–โ„ฌฯ๐’–ฯ(t)โˆ’โ„ฌ๐’–(t)โ€–Vโ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–V(3.36)โ‰ค(ฮธฯnโˆซ0tโ€–๐’–ฯ(s)โˆ’๐’–(s)โ€–V๐‘‘s+ฯ‰ฯnโˆซ0tโ€–๐’–(s)โ€–V๐‘‘s)โ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–V\begin{array}[]{r}\left(\mathcal{B}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{B}\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}\leq\left\|\mathcal{B}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{B}\boldsymbol{u}(t)\right\|_{V}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\\ (3.36)\leq\left(\theta_{\rho n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\omega_{\rho n}\int_{0}^{t}\|\boldsymbol{u}(s)\|_{V}ds\right)\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\end{array}

where

ฮธฯn=c02maxrโˆˆ[0,n]โกโ€–bฯ(r)โ€–Lโˆž(ฮ“3),ฯ‰ฯn=c02maxrโˆˆ[0,n]โกโ€–bฯ(r)โˆ’b(r)โ€–Lโˆž(ฮ“3)\theta_{\rho n}=c_{0}^{2}\max_{r\in[0,n]}\left\|b_{\rho}(r)\right\|_{L^{\infty}\left(\Gamma_{3}\right)},\quad\omega_{\rho n}=c_{0}^{2}\max_{r\in[0,n]}\left\|b_{\rho}(r)-b(r)\right\|_{L^{\infty}\left(\Gamma_{3}\right)} (3.37)

We also note that

(๐’‡ฯ(t)โˆ’๐’‡(t),๐’–ฯ(t)โˆ’๐’–(t))Vโ‰คฮดฯnโ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–V\left(\boldsymbol{f}_{\rho}(t)-\boldsymbol{f}(t),\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right)_{V}\leq\delta_{\rho n}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V} (3.38)

where

ฮดฯn=maxrโˆˆ[0,n]โกโ€–๐’‡ฯ(r)โˆ’๐’‡(r)โ€–V\delta_{\rho n}=\max_{r\in[0,n]}\left\|\boldsymbol{f}_{\rho}(r)-\boldsymbol{f}(r)\right\|_{V} (3.39)

Finally, using assumption (3.13) it follows that

(โ„ฑ๐œบ(๐’–ฯ(t))โˆ’โ„ฑ๐œบ(๐’–(t)),๐œบ(๐’–ฯ(t))โˆ’๐œบ(๐’–(t)))Qโ‰ฅmโ„ฑโ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–V2.\left(\mathcal{F}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)-\mathcal{F}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)-\boldsymbol{\varepsilon}(\boldsymbol{u}(t))\right)_{Q}\geq m_{\mathcal{F}}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}^{2}. (3.40)

We combine (3.32), (3.33), (3.36), (3.38) and (3.40) to deduce that

โ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–Vโ‰คG(ฯ)mโ„ฑ(c02โ€–๐’–(t)โ€–V+c0ฮฒ meas (ฮ“3)12)\displaystyle\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\frac{G(\rho)}{m_{\mathcal{F}}}\left(c_{0}^{2}\|\boldsymbol{u}(t)\|_{V}+c_{0}\beta\text{ meas }\left(\Gamma_{3}\right)^{\frac{1}{2}}\right) (3.41)
+ฮธฯnmโ„ฑโˆซ0tโ€–๐’–ฯ(s)โˆ’๐’–(s)โ€–V๐‘‘s+ฯ‰ฯnmโ„ฑโˆซ0tโ€–๐’–(s)โ€–V๐‘‘s+ฮดฯnmโ„ฑ\displaystyle\quad+\frac{\theta_{\rho n}}{m_{\mathcal{F}}}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\frac{\omega_{\rho n}}{m_{\mathcal{F}}}\int_{0}^{t}\|\boldsymbol{u}(s)\|_{V}ds+\frac{\delta_{\rho n}}{m_{\mathcal{F}}}

Denote ฮพn,u=max1mโ„ฑ{c02maxrโˆˆ[0,n]โˆฅ๐’–(r)โˆฅV+c0ฮฒ\xi_{n,u}=\max\frac{1}{m_{\mathcal{F}}}\left\{c_{0}^{2}\max_{r\in[0,n]}\|\boldsymbol{u}(r)\|_{V}+c_{0}\beta\right. meas (ฮ“3)12,โˆซ0tโˆฅ๐’–(s)โˆฅVds,1}\left.\left(\Gamma_{3}\right)^{\frac{1}{2}},\int_{0}^{t}\|\boldsymbol{u}(s)\|_{V}ds,1\right\}.
Then, (3.41) yields

โ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–Vโ‰ค(G(ฯ)+ฯ‰ฯn+ฮดฯn)ฮพn,u+ฮธฯnmโ„ฑโˆซ0tโ€–๐’–ฯ(s)โˆ’๐’–(s)โ€–V๐‘‘s\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left(G(\rho)+\omega_{\rho n}+\delta_{\rho n}\right)\xi_{n,u}+\frac{\theta_{\rho n}}{m_{\mathcal{F}}}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds (3.42)

and, using the Gronwall inequality we obtain that

โ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–Vโ‰ค(G(ฯ)+ฯ‰ฯn+ฮดฯn)ฮพn,ueฮธฯnmโ„ฑt\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left(G(\rho)+\omega_{\rho n}+\delta_{\rho n}\right)\xi_{n,u}e^{\frac{\theta_{\rho n}}{m_{\mathcal{F}}}t} (3.43)

We use assumption (3.23) to see that the sequence (ฮธฯn)ฯ\left(\theta_{\rho n}\right)_{\rho} defined by (3.37) is bounded. Therefore, there exists ฮถn>0\zeta_{n}>0 which depends on nn and is independent of ฯ\rho such that

0โ‰คฮธฯnโ‰คฮถn for all ฯ>00\leq\theta_{\rho n}\leq\zeta_{n}\quad\text{ for all }\quad\rho>0 (3.44)

We pas to the upper bound as tโˆˆ[0,n]t\in[0,n] in (3.43) and use (3.44) to obtain

maxtโˆˆ[0,n]โกโ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–Vโ‰ค(G(ฯ)+ฯ‰ฯn+ฮดฯn)ฮพn,ueฮถnmโ„ฑn for all ฯ>0\max_{t\in[0,n]}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left(G(\rho)+\omega_{\rho n}+\delta_{\rho n}\right)\xi_{n,u}e^{\frac{\zeta_{n}}{m_{\mathcal{F}}}n}\quad\text{ for all }\quad\rho>0 (3.45)

We use now assumptions (3.23)-(3.25) and definitions (3.37), (3.39) to see that

ฯ‰ฯnโ†’0 and ฮดฯnโ†’0 as ฯโ†’0.\omega_{\rho n}\rightarrow 0\quad\text{ and }\quad\delta_{\rho n}\rightarrow 0\quad\text{ as }\rho\rightarrow 0. (3.46)

We combine now (3.46) and (3.26) (b) with inequality (3.45) to obtain

maxtโˆˆ[0,n]โกโ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–Vโ†’0 as ฯโ†’0\max_{t\in[0,n]}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\rightarrow 0\quad\text{ as }\rho\rightarrow 0 (3.47)

The convergence (3.47) shows that (3.27) holds, which concludes the proof.

Note that the convergence result in Theorem 3.2 can be easily extended to the corresponding stress functions. Indeed, let ฯƒ\sigma be the function defined by (3.1) and, for all ฯ>0\rho>0, denote by ๐ˆฯ\boldsymbol{\sigma}_{\rho} the function given by

๐ˆฯ(t)=โ„ฑ๐œบ(๐’–ฯ(t))\boldsymbol{\sigma}_{\rho}(t)=\mathcal{F}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right) (3.48)

for all tโˆˆโ„+t\in\mathbb{R}_{+}. Then, it follows that ๐ˆฯโˆˆC(โ„+;Q1)\boldsymbol{\sigma}_{\rho}\in C\left(\mathbb{R}_{+};Q_{1}\right) and, moreover, (3.22) yields
(3.49) Divโก๐ˆฯ(t)+๐’‡0ฯ(t)=๐ŸŽโˆ€tโˆˆโ„+\operatorname{Div}\boldsymbol{\sigma}_{\rho}(t)+\boldsymbol{f}_{0\rho}(t)=\mathbf{0}\quad\forall t\in\mathbb{R}_{+}.

We combine now equalities (3.1), (3.21), (3.48) and (3.49), then we use the convergences (3.24) and (3.27) to see that

๐ˆฯโ†’๐ˆ in C(โ„+;Q1) as ฯโ†’0.\boldsymbol{\sigma}_{\rho}\rightarrow\boldsymbol{\sigma}\quad\text{ in }\quad C\left(\mathbb{R}_{+};Q_{1}\right)\quad\text{ as }\rho\rightarrow 0. (3.50)

4 A CONVERGENCE RESULT FOR A VISCOPLASTIC CONTACT PROBLEM

The classical formulation of the second contact problem is the following.
Problem ๐’ซ2\mathcal{P}_{2}. Find a displacement field ๐’–:ฮฉร—โ„+โ†’โ„d\boldsymbol{u}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d} and a stress field ๐ˆ:ฮฉร—โ„+โ†’๐•Šd\boldsymbol{\sigma}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d} such that for all tโˆˆโ„+t\in\mathbb{R}_{+}

 4.1) ๐ˆห™(t)=โ„ฑ๐œบ(๐’–ห™(t))+๐’ข(๐ˆ(t),๐œบ(๐’–(t))) in ฮฉ,4.2)Divโก๐ˆ(t)+๐’‡0(t)=๐ŸŽ in ฮฉ,4.3)๐’–(t)=๐ŸŽ on ฮ“1,4.4)๐ˆ(t)๐‚=๐’‡2(t) on ฮ“2,4.5){uฮฝ(t)โ‰คg,ฯƒฮฝ(t)+p(uฮฝ(t))+โˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘sโ‰ค0(uฮฝ(t)โˆ’g)(ฯƒฮฝ(t)+p(uฮฝ(t))+โˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s)=0 on ฮ“3,4.6)๐’–(0)=๐’–0,๐ˆ(0)=๐ˆ0 in ๐›€.\begin{array}[]{lrlc}\text{ 4.1) }&\dot{\boldsymbol{\sigma}}(t)=\mathcal{F}\boldsymbol{\varepsilon}(\dot{\boldsymbol{u}}(t))+\mathcal{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))&\text{ in }\quad\Omega,\\ 4.2)&\operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}&\text{ in }\quad\Omega,\\ 4.3)&\boldsymbol{u}(t)=\mathbf{0}&\text{ on }\quad\Gamma_{1},\\ 4.4)&\boldsymbol{\sigma}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t)&\text{ on }\quad\Gamma_{2},\\ 4.5)&\left\{\begin{array}[]{l}u_{\nu}(t)\leq g,\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\leq 0\\ \left(u_{\nu}(t)-g\right)\left(\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\right)=0\end{array}\right.&\text{ on }\quad\Gamma_{3},\\ 4.6)&\boldsymbol{u}(0)=\boldsymbol{u}_{0},\boldsymbol{\sigma}(0)=\boldsymbol{\sigma}_{0}&\text{ in }&\boldsymbol{\Omega}.\end{array}

The difference between problems ๐’ซ1\mathcal{P}_{1} and ๐’ซ2\mathcal{P}_{2} consists in the fact that equation (4.1) represents the viscoplastic constitutive law of the material and condition (4.5) shows that the contact follows a normal compliance condition with memory term and unilateral constraint. Finally, (4.7) represents the initial conditions in which ๐’–0\boldsymbol{u}_{0} and ๐ˆ0\boldsymbol{\sigma}_{0} denote the initial displacement and the initial stress field, respectively.

We assume that the elasticity tensor โ„ฑ\mathcal{F} and the nonlinear constitutive function ๐’ข\mathcal{G} satisfy the following conditions:

{ (a) โ„ฑ=(โ„ฑijkl):ฮฉร—๐•Šdโ†’๐•Šd. (b) โ„ฑijkl=โ„ฑklij=โ„ฑjiklโˆˆLโˆž(ฮฉ),1โ‰คi,j,k,lโ‰คd. (c) There exists mโ„ฑ>0 such that โ„ฑ๐‰โ‹…๐‰โ‰ฅmโ„ฑโ€–๐‰โ€–2โˆ€๐‰โˆˆ๐•Šd, a.e. in ฮฉ.\displaystyle\left\{\begin{array}[]{l}\text{ (a) }\mathcal{F}=\left(\mathcal{F}_{ijkl}\right):\Omega\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}.\\ \text{ (b) }\mathcal{F}_{ijkl}=\mathcal{F}_{klij}=\mathcal{F}_{jikl}\in L^{\infty}(\Omega),1\leq i,j,k,l\leq d.\\ \text{ (c) There exists }m_{\mathcal{F}}>0\text{ such that }\\ \mathcal{F}\boldsymbol{\tau}\cdot\boldsymbol{\tau}\geq m_{\mathcal{F}}\|\boldsymbol{\tau}\|^{2}\forall\boldsymbol{\tau}\in\mathbb{S}^{d},\text{ a.e. in }\Omega.\end{array}\right. (4.8)
{ (a) ๐’ข:ฮฉร—๐•Šdร—๐•Šdโ†’๐•Šd (b) There exists L๐’ข>0 such that โ€–๐’ข(๐’™,๐ˆ1,๐œบ1)โˆ’๐’ข(๐’™,๐ˆ2,๐œบ2)โ€–โ‰คL๐’ข(โ€–๐ˆ1โˆ’๐ˆ2โ€–+โ€–ฮต1โˆ’๐œบ2โ€–)โˆ€๐ˆ1,๐ˆ2,๐œบ1,๐œบ2โˆˆ๐•Šd, a.e. ๐’™โˆˆฮฉ (c) The mapping ๐’™โ†ฆ๐’ข(๐’™,๐ˆ,๐œบ) is measurable on ฮฉ for any ๐ˆ,๐œบโˆˆ๐•Šd. (d) The mapping ๐’™โ†ฆ๐’ข(๐’™,๐ŸŽ,๐ŸŽ) belongs to Q.\displaystyle\left\{\begin{array}[]{l}\text{ (a) }\mathcal{G}:\Omega\times\mathbb{S}^{d}\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}\text{. }\\ \text{ (b) There exists }L_{\mathcal{G}}>0\text{ such that }\\ \left\|\mathcal{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{1},\boldsymbol{\varepsilon}_{1}\right)-\mathcal{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{2}\right)\right\|\leq L_{\mathcal{G}}\left(\left\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\right\|+\left\|\varepsilon_{1}-\boldsymbol{\varepsilon}_{2}\right\|\right)\\ \forall\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\text{ a.e. }\boldsymbol{x}\in\Omega\text{. }\\ \text{ (c) The mapping }\boldsymbol{x}\mapsto\mathcal{G}(\boldsymbol{x},\boldsymbol{\sigma},\boldsymbol{\varepsilon})\text{ is measurable on }\Omega\\ \text{ for any }\boldsymbol{\sigma},\boldsymbol{\varepsilon}\in\mathbb{S}^{d}.\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto\mathcal{G}(\boldsymbol{x},\mathbf{0},\mathbf{0})\text{ belongs to }Q.\end{array}\right.

Also, as in the case of the first problem we assume that the normal compliance function pp verifies (3.8), the surface memory function satisfies (3.9), the body
forces and the surface tractions have the regularity (3.7) and, finally, we assume that the initial data verify
(4.10) ๐’–0โˆˆU,๐ˆ0โˆˆQ\boldsymbol{u}_{0}\in U,\quad\boldsymbol{\sigma}_{0}\in Q,
where UU denotes the set of admissible displacements defined by
(4.11) U={๐’—โˆˆV:vฮฝโ‰คgU=\left\{\boldsymbol{v}\in V:v_{\nu}\leq g\right. a.e. ฮ“3}\left.\Gamma_{3}\right\}.

The following existence and uniqueness result is proved in 2 .
LEMMA 4.1 Assume that (4.8), (4.9) and (4.10) hold. Then, for each function ๐’–โˆˆC(โ„+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) there exists a unique function ๐’ฎ1๐’–โˆˆC(โ„+;Q)\mathcal{S}_{1}\boldsymbol{u}\in C\left(\mathbb{R}_{+};Q\right) such that

๐’ฎ1๐’–(t)=โˆซ0t๐’ข(๐’ฎ1๐’–(s)+โ„ฑ๐œบ(๐’–(s)),๐œบ(๐’–(s)))๐‘‘s+๐ˆ0โˆ’โ„ฑ๐œบ(๐’–0)\mathcal{S}_{1}\boldsymbol{u}(t)=\int_{0}^{t}\mathcal{G}\left(\mathcal{S}_{1}\boldsymbol{u}(s)+\mathcal{F}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s))\right)ds+\boldsymbol{\sigma}_{0}-\mathcal{F}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0}\right) (4.12)

for all tโˆˆโ„+t\in\mathbb{R}_{+}. Moreover, the operator ๐’ฎ1:C(โ„+;V)โ†’C(โ„+;Q)\mathcal{S}_{1}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};Q\right) satisfies the following property: for every nโˆˆโ„•โˆ—n\in\mathbb{N}^{*} there exists kn>0k_{n}>0 such that โˆ€๐’–,๐’—โˆˆC(โ„+;V)\forall\boldsymbol{u},\boldsymbol{v}\in C\left(\mathbb{R}_{+};V\right) and โˆ€tโˆˆ[0,n]\forall t\in[0,n]

โ€–๐’ฎ1๐’–(t)โˆ’๐’ฎ1๐’—(t)โ€–Qโ‰คknโˆซ0tโ€–๐’–(s)โˆ’๐’—(s)โ€–V๐‘‘s\left\|\mathcal{S}_{1}\boldsymbol{u}(t)-\mathcal{S}_{1}\boldsymbol{v}(t)\right\|_{Q}\leq k_{n}\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}ds (4.13)

We use (3.15), the Rieszโ€™s representation Theorem and the above lemma to define the operator ๐’ฎ:C(โ„+;V)โ†’C(โ„+;V)\mathcal{S}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};V\right) by equality

(๐’ฎ๐’–(t),๐’—)V=(๐’ฎ1๐’–(t),๐œบ(๐’—))Q+(โ„ฌ๐’–(t),๐’—)V,โˆ€๐’–โˆˆC(โ„+;V),๐’—โˆˆV.(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v})_{V}=\left(\mathcal{S}_{1}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q}+(\mathcal{B}\boldsymbol{u}(t),\boldsymbol{v})_{V},\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\boldsymbol{v}\in V. (4.14)

The variational formulation of Problem ๐’ซ2\mathcal{P}_{2}, derived in [3], is the following.
Problem ๐’ซ2V\mathcal{P}_{2}^{V}. Find a displacement field ๐’–:โ„+โ†’V\boldsymbol{u}:\mathbb{R}_{+}\rightarrow V and a stress field ๐ˆ:โ„+โ†’Q\boldsymbol{\sigma}:\mathbb{R}_{+}\rightarrow Q, such that

๐ˆ(t)=โ„ฑ๐œบ(๐’–(t))+๐’ฎ1๐’–(t)\displaystyle\boldsymbol{\sigma}(t)=\mathcal{F}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\mathcal{S}_{1}\boldsymbol{u}(t) (4.15)
(โ„ฑ๐œบ(๐’–(t)),๐œบ(๐’—)โˆ’๐œบ(๐’–(t)))Q+(๐’ฎ๐’–(t),๐’—โˆ’๐’–(t))V\displaystyle(\mathcal{F}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}+(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V} (4.16)
+(P๐’–(t),๐’—โˆ’๐’–(t))Vโ‰ฅ(๐’‡(t),๐’—โˆ’๐’–(t))Vโˆ€๐’—โˆˆU\displaystyle+(P\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}\quad\forall\boldsymbol{v}\in U

hold, for all tโˆˆโ„+t\in\mathbb{R}_{+}.
In the study of the problem ๐’ซ2V\mathcal{P}_{2}^{V} we have the following existence and uniqueness result.

THEOREM 4.2 Assume that (3.7) -(3.9) and (4.8) -(4.10) hold. Then, Problem ๐’ซ2V\mathcal{P}_{2}^{V} has a unique solution, which satisfies

๐’–โˆˆC(โ„+;U),๐ˆโˆˆC(โ„+;Q)\boldsymbol{u}\in C\left(\mathbb{R}_{+};U\right),\quad\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q\right) (4.17)

The proof of Theorem 4.2 can be found in [3]. It is based on arguments of history-dependent variational inequalities developed in 6.

We study now the dependence of the solution of Problem ๐’ซ2V\mathcal{P}_{2}^{V} with respect to perturbations of the data. To this end, we assume in what follows that (3.7)-(3.9), (3.13), (4.8)-(4.10) hold and we denote by ( ๐’–,๐ˆ\boldsymbol{u},\boldsymbol{\sigma} ) the solution of Problem ๐’ซ2V\mathcal{P}_{2}^{V} obtained in Theorem 4.2. For each ฯ>0\rho>0 let pฯ,bฯ,๐’‡0ฯp_{\rho},b_{\rho},\boldsymbol{f}_{0\rho}, ๐’‡2ฯ,๐’–0ฯ\boldsymbol{f}_{2\rho},\boldsymbol{u}_{0\rho} and ๐ˆ0ฯ\boldsymbol{\sigma}_{0\rho} be perturbations of p,b,๐’‡0,๐’‡2,๐’–0p,b,\boldsymbol{f}_{0},\boldsymbol{f}_{2},\boldsymbol{u}_{0} and ๐ˆ0\boldsymbol{\sigma}_{0}, respectively, which satisfy conditions (3.8), (3.9), (3.7), (4.10). We define the operators ๐’ฎ1ฯ:C(โ„+;V)โ†’C(โ„+;Q)\mathcal{S}_{1\rho}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};Q\right) and ๐’ฎฯ:C(โ„+;V)โ†’C(โ„+;V)\mathcal{S}_{\rho}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};V\right) by

๐’ฎ1ฯ๐’–(t)=โˆซ0t๐’ข(๐’ฎ1ฯ๐’–(s)+โ„ฑ๐œบ(๐’–(s)),๐œบ(๐’–(s)))๐‘‘s+๐ˆ0ฯโˆ’โ„ฑ๐œบ(๐’–0ฯ)\displaystyle\mathcal{S}_{1\rho}\boldsymbol{u}(t)=\int_{0}^{t}\mathcal{G}\left(\mathcal{S}_{1\rho}\boldsymbol{u}(s)+\mathcal{F}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s))\right)ds+\boldsymbol{\sigma}_{0\rho}-\mathcal{F}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0\rho}\right) (4.18)
(๐’ฎฯ๐’–(t),๐’—)V=(๐’ฎ1ฯ๐’–(t),๐œบ(๐’—))Q+(โ„ฌฯ๐’–(t),๐’—)Vโˆ€๐’—โˆˆV\displaystyle\left(\mathcal{S}_{\rho}\boldsymbol{u}(t),\boldsymbol{v}\right)_{V}=\left(\mathcal{S}_{1\rho}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q}+\left(\mathcal{B}_{\rho}\boldsymbol{u}(t),\boldsymbol{v}\right)_{V}\quad\forall\boldsymbol{v}\in V (4.19)

and we consider the following variational problem.
Problem ๐’ซ2ฯV\mathcal{P}_{2\rho}^{V}. Find a displacement field ๐’–ฯ:โ„+โ†’V\boldsymbol{u}_{\rho}:\mathbb{R}_{+}\rightarrow V and a stress field ฯƒฯ:โ„+โ†’Q\sigma_{\rho}:\mathbb{R}_{+}\rightarrow Q, such that

๐ˆฯ(t)=โ„ฑ๐œบ(๐’–ฯ(t))+๐’ฎ1ฯ๐’–ฯ(t)\displaystyle\boldsymbol{\sigma}_{\rho}(t)=\mathcal{F}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)+\mathcal{S}_{1\rho}\boldsymbol{u}_{\rho}(t) (4.20)
(โ„ฑ๐œบ(๐’–ฯ(t)),๐œบ(๐’—)โˆ’๐œบ(๐’–ฯ(t)))Q+(๐’ฎฯ๐’–ฯ(t),๐’—โˆ’๐’–ฯ(t))V\displaystyle\left(\mathcal{F}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q}+\left(\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t),\boldsymbol{v}-\boldsymbol{u}_{\rho}(t)\right)_{V} (4.21)
+(Pฯ๐’–ฯ(t),๐’—โˆ’๐’–ฯ(t))Vโ‰ฅ(๐’‡ฯ(t),๐’—โˆ’๐’–ฯ(t))Vโˆ€๐’—โˆˆU\displaystyle+\left(P_{\rho}\boldsymbol{u}_{\rho}(t),\boldsymbol{v}-\boldsymbol{u}_{\rho}(t)\right)_{V}\geq\left(\boldsymbol{f}_{\rho}(t),\boldsymbol{v}-\boldsymbol{u}_{\rho}(t)\right)_{V}\forall\boldsymbol{v}\in U

It follows from Theorem 4.2 that, for each ฯ>0\rho>0 Problem ๐’ซ2ฯV\mathcal{P}_{2\rho}^{V} has a unique solution ( ๐’–ฯ,๐ˆฯ\boldsymbol{u}_{\rho},\boldsymbol{\sigma}_{\rho} ) with the regularity ๐’–ฯโˆˆC(โ„+;U),๐ˆฯโˆˆC(โ„+;Q)\boldsymbol{u}_{\rho}\in C\left(\mathbb{R}_{+};U\right),\boldsymbol{\sigma}_{\rho}\in C\left(\mathbb{R}_{+};Q\right). Consider now the assumptions (3.23)-(3.26) and

๐’–0ฯโ†’๐’–0 in V,๐ˆ0ฯโ†’๐ˆ0 in Q as ฯโ†’0.\boldsymbol{u}_{0\rho}\rightarrow\boldsymbol{u}_{0}\quad\text{ in }V,\quad\boldsymbol{\sigma}_{0\rho}\rightarrow\boldsymbol{\sigma}_{0}\quad\text{ in }Q\quad\text{ as }\quad\rho\rightarrow 0. (4.22)

We have the following convergence result.
THEOREM 4.3 Under assumptions (3.23)-(3.26) and (4.22) the solution ( ๐’–ฯ,๐ˆฯ\boldsymbol{u}_{\rho},\boldsymbol{\sigma}_{\rho} ) of Problem ๐’ซ2ฯV\mathcal{P}_{2\rho}^{V} converges to the solution ( ๐’–,๐ˆ\boldsymbol{u},\boldsymbol{\sigma} ) of Problem ๐’ซ2V\mathcal{P}_{2}^{V}, i.e.

๐’–ฯโ†’๐’– in C(โ„+;V),๐ˆฯโ†’๐ˆ in C(โ„+;Q) as ฯโ†’0.\boldsymbol{u}_{\rho}\rightarrow\boldsymbol{u}\quad\text{ in }\quad C\left(\mathbb{R}_{+};V\right),\quad\boldsymbol{\sigma}_{\rho}\rightarrow\boldsymbol{\sigma}\quad\text{ in }\quad C\left(\mathbb{R}_{+};Q\right)\quad\text{ as }\quad\rho\rightarrow 0. (4.23)

Proof. Let ฯ>0,nโˆˆโ„•โˆ—\rho>0,n\in\mathbb{N}^{*} and let tโˆˆ[0,n]t\in[0,n]. We take ๐’—=๐’–(t)\boldsymbol{v}=\boldsymbol{u}(t) in (4.21) and ๐’—=๐’–ฯ(t)\boldsymbol{v}=\boldsymbol{u}_{\rho}(t) in (4.16) and add the resulting inequalities to obtain

(โ„ฑ๐œบ(๐’–(t))โˆ’โ„ฑ๐œบ(๐’–ฯ(t)),๐œบ(๐’–(t))โˆ’๐œบ(๐’–ฯ(t)))Q\displaystyle\left(\mathcal{F}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\mathcal{F}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q} (4.24)
โ‰ค(Pฯ๐’–ฯ(t)โˆ’P๐’–(t),๐’–(t)โˆ’๐’–ฯ(t))V+(๐’‡ฯ(t)โˆ’๐’‡(t),๐’–ฯ(t)โˆ’๐’–(t))V\displaystyle\leq\left(P_{\rho}\boldsymbol{u}_{\rho}(t)-P\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}+\left(\boldsymbol{f}_{\rho}(t)-\boldsymbol{f}(t),\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right)_{V}
+(๐’ฎฯ๐’–ฯ(t)โˆ’๐’ฎ๐’–(t),๐’–(t)โˆ’๐’–ฯ(t))V\displaystyle+\left(\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}

We have

(๐’ฎฯ๐’–ฯ(t)โˆ’๐’ฎ๐’–(t),๐’–(t)โˆ’๐’–ฯ(t))V\left(\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V} (4.25)
=(๐’ฎ1ฯ๐’–ฯ(t)โˆ’๐’ฎ1๐’–(t),๐œบ(๐’–(t))โˆ’๐œบ(๐’–ฯ(t)))Q+(โ„ฌฯ๐’–ฯ(t)โˆ’โ„ฌ๐’–(t),๐’–(t)โˆ’๐’–ฯ(t))V.=\left(\mathcal{S}_{1\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}_{1}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q}+\left(\mathcal{B}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{B}\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}.

Using Lemma 4.1, (2.4) and (4.8) we have the following inequality

โ€–๐’ฎ1ฯ๐’–ฯ(t)โˆ’๐’ฎ1๐’–(t)โ€–Qโ‰คknโˆซ0tโ€–๐’–ฯ(s)โˆ’๐’–(s)โ€–V๐‘‘s+ฮฑ0ฯqn\left\|\mathcal{S}_{1\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}_{1}\boldsymbol{u}(t)\right\|_{Q}\leq k_{n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\alpha_{0\rho}q_{n} (4.26)

where

ฮฑ0ฯ=โ€–๐ˆ0ฯโˆ’๐ˆ0โ€–Q+dโ€–โ„ฑโ€–๐โˆžโ€–๐’–0ฯโˆ’๐’–0โ€–V\alpha_{0\rho}=\left\|\boldsymbol{\sigma}_{0\rho}-\boldsymbol{\sigma}_{0}\right\|_{Q}+d\|\mathcal{F}\|_{\mathbf{Q}_{\infty}}\left\|\boldsymbol{u}_{0\rho}-\boldsymbol{u}_{0}\right\|_{V} (4.27)

and qnq_{n} is a positive constant which depends on nn and ๐’ข\mathcal{G}.
From (4.25), (3.36) and (4.26) we obtain

(๐’ฎฯ๐’–ฯ(t)โˆ’๐’ฎ๐’–(t),๐’–(t)โˆ’๐’–ฯ(t))Vโ‰ค(knโˆซ0tโˆฅ๐’–ฯ(s)โˆ’๐’–(s)โˆฅVds\left(\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}\leq\left(k_{n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds\right. (4.28)
+ฮฑ0ฯqn+ฮธฯnโˆซ0tโˆฅ๐’–ฯ(s)โˆ’๐’–(s)โˆฅVds+ฯ‰ฯnโˆซ0tโˆฅ๐’–(s)โˆฅVds)โˆฅ๐’–ฯ(t)โˆ’๐’–(t)โˆฅV\left.+\alpha_{0\rho}q_{n}+\theta_{\rho n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\omega_{\rho n}\int_{0}^{t}\|\boldsymbol{u}(s)\|_{V}ds\right)\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}

Next, we combine (4.24), (4.8) (c), (3.33), (3.38) and (4.28) to see that

mโ„ฑโ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–Vโ‰คG(ฯ)(c02โ€–๐’–(t)โ€–V+c0ฮฒ meas (ฮ“3)12)\displaystyle m_{\mathcal{F}}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq G(\rho)\left(c_{0}^{2}\|\boldsymbol{u}(t)\|_{V}+c_{0}\beta\text{ meas }\left(\Gamma_{3}\right)^{\frac{1}{2}}\right) (4.29)
+(kn+ฮธฯn)โˆซ0tโ€–๐’–ฯ(s)โˆ’๐’–(s)โ€–V๐‘‘s+ฯ‰ฯnโˆซ0tโ€–๐’–(s)โ€–V๐‘‘s+ฮฑ0ฯqn+ฮดฯn\displaystyle+\left(k_{n}+\theta_{\rho n}\right)\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\omega_{\rho n}\int_{0}^{t}\|\boldsymbol{u}(s)\|_{V}ds+\alpha_{0\rho}q_{n}+\delta_{\rho n}

Next, using (4.15), (4.20), (2.4), (4.8), (4.9) and (4.26) we deduce that

โ€–๐ˆฯ(t)โˆ’๐ˆ(t)โ€–Qโ‰คcโ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–V+knโˆซ0tโ€–๐’–ฯ(s)โˆ’๐’–(s)โ€–V๐‘‘s+ฮฑ0ฯqn\left\|\boldsymbol{\sigma}_{\rho}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}\leq c\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}+k_{n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\alpha_{0\rho}q_{n} (4.30)

where cc is a positive generic constant and whose value may change from line to line.

Following, we use the notation for ฮพn,u:=maxโก{ฮพn,u,qn}\xi_{n,u}:=\max\left\{\xi_{n,u},q_{n}\right\} and we add now inequalities (4.30) and (4.29) to obtain

โˆฅ๐ˆฯ(t)\displaystyle\|\boldsymbol{\sigma}_{\rho}(t) โˆ’๐ˆ(t)โˆฅ+Qโˆฅ๐’–ฯ(t)โˆ’๐’–(t)โˆฅVโ‰คc(G(ฯ)+ฮฑ0ฯ+ฯ‰ฯn+ฮดฯn)ฮพn,u\displaystyle-\boldsymbol{\sigma}(t)\left\|{}_{Q}+\right\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\|_{V}\leq c\left(G(\rho)+\alpha_{0\rho}+\omega_{\rho n}+\delta_{\rho n}\right)\xi_{n,u} (4.31)
+c(kn+ฮธฯn)โˆซ0t(โ€–๐’–ฯ(s)โˆ’๐’–(s)โ€–V+โ€–๐ˆฯ(s)โˆ’๐ˆ(s)โ€–Q)๐‘‘s\displaystyle+c\left(k_{n}+\theta_{\rho n}\right)\int_{0}^{t}\left(\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}+\left\|\boldsymbol{\sigma}_{\rho}(s)-\boldsymbol{\sigma}(s)\right\|_{Q}\right)ds

Then, we use Gronwall inequality to see that

โ€–๐ˆฯ(t)โˆ’๐ˆ(t)โ€–Q+โ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–V\displaystyle\left\|\boldsymbol{\sigma}_{\rho}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}+\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V} (4.32)
โ‰คc(G(ฯ)+ฮฑ0ฯ+ฯ‰ฯn+ฮดฯn)ฮพn,uec(ฮธฯn+kn)t\displaystyle\leq c\left(G(\rho)+\alpha_{0\rho}+\omega_{\rho n}+\delta_{\rho n}\right)\xi_{n,u}e^{c\left(\theta_{\rho n}+k_{n}\right)t}

We pass to the upper bound as tโˆˆ[0,n]t\in[0,n] in (4.32) and use (3.44) to obtain

maxtโˆˆ[0,n]\displaystyle\max_{t\in[0,n]} (โ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–V+โ€–๐ˆฯ(t)โˆ’๐ˆ(t)โ€–Q)\displaystyle\left(\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}+\left\|\boldsymbol{\sigma}_{\rho}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}\right)
โ‰คc(G(ฯ)+ฮฑ0ฯ+ฯ‰ฯn+ฮดฯn)ฮพn,uecn(ฮถn+kn)\displaystyle\leq c\left(G(\rho)+\alpha_{0\rho}+\omega_{\rho n}+\delta_{\rho n}\right)\xi_{n,u}e^{cn\left(\zeta_{n}+k_{n}\right)}

Finally, (4.22) yields
(4.33) ฮฑ0ฯโ†’0\alpha_{0\rho}\rightarrow 0\quad as ฯโ†’0\quad\rho\rightarrow 0.

We use now (3.26) (b), (3.46) and (4.33) in the above inequality to obtain
(4.34) maxtโˆˆ[0,n]โก(โ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–V+โ€–๐ˆฯ(t)โˆ’๐ˆ(t)โ€–Q)โ†’0\max_{t\in[0,n]}\left(\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}+\left\|\boldsymbol{\sigma}_{\rho}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}\right)\rightarrow 0\quad as ฯโ†’0\quad\rho\rightarrow 0.

Since the convergence (4.34) holds for each nโˆˆโ„•โˆ—n\in\mathbb{N}^{*} we deduce from (2.5) that (4.23) holds, which concludes the proof.

In addition to the mathematical interest in the convergence results (3.27), (3.50), (4.23) it is of importance from mechanical point of view, since it states that the weak solution of the problems (3.1)-(3.6) and (4.1)-(4.7) depends continuously on the normal compliance function, the surface memory function, the densities of body forces and surface tractions. Moreover, for the second problem the weak solution depends continuously on the initial data too.

References

[1] C. Corduneanu, Problรจmes globaux dans la thรฉorie des รฉquations intรฉgrales de Volterra, Ann. Math. Pure Appl. 67 (1965), 349-363.
[2] M. Barboteu, A. Matei and M. Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance, Quart. J. of Mech. and Appl. Math. 65 (2012), 555-579.
[3] M. Barboteu, F. Pฤƒtrulescu, A. Ramadan and M. Sofonea, Historydependent contact models for viscoplastic materials, The IMA J. of Appl. Math., IMA J. Appl. Math. 79 (2014), 6, 1180-1200.
[4] W. Han and M. Sofonea, Quasistatic Contact Problem in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, American Mathematical Society-International Press, 2002.
[5] J. J. Massera and J. J. Schรคffer, Linear Differential Equations and Function Spaces, Academic Press, New York-London, 1966.
[6] M. Sofonea and A. Matei, History-dependent quasivariational inequalities arising in Contact Mechanics, European J. of Appl. Math. 22 (2011), 471-491.
[7] M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, Cambridge University Press 398, Cambridge, 2012.
[8] M. Sofonea and F. Pฤƒtrulescu, Analysis of a history-dependent frictionless contact problem, Math. and Mech. of Solids 18 (2013), 409-430.

Tiberiu Popoviciu Institute of Numerical Analysis Romanian Academy, Cluj-Napoca, Romania fpatrulescu@ictp.acad.ro
2 Faculty of Mathematics and Computer Science, BabeลŸ-Bolyai University, Cluj-Napoca, Romania
3 Laboratoire de Mathรฉmatiques et Physique, Universitรฉ de Perpignan, Perpignan, France ahmad.ramadan@univ-perp.fr

2015

Related Posts