Penalization of history-dependent variational inequalities

Abstract

The present paper represents a continuation of Sofonea and Matei’s paper (Sofonea, M. and Matei, A. (2011) History-dependent quasivariational inequalities arising in contact mechanics. Eur. J. Appl. Math22, 471–491). There a new class of variational inequalities involving history-dependent operators was considered, an abstract existence and uniqueness result was proved and it was completed with a regularity result. Moreover, these results were used in the analysis of various frictional and frictionless models of contact.

In this current paper we present a penalization method in the study of such inequalities. We start with an example which motivates our study; it concerns a mathematical model which describes the quasistatic contact between a viscoelastic body and a foundation; the material’s behaviour is modelled with a constitutive law with long memory, the contact is frictionless and is modelled with a multivalued normal compliance condition and unilateral constraint. Then we introduce the abstract variational inequalities together with their penalizations.

We prove the unique solvability of the penalized problems and the convergence of their solutions to the solution of the original problem, as the penalization parameter converges to zero. Finally, we turn back to our contact model, apply our abstract results in the study of this problem and provide their mechanical interpretation.

Authors

Mircea Sofonea
(Laboratoire de Mathématiques et Physique, Université de Perpignan)

Flavius Patrulescu
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Keywords

history-dependent operator, variational inequality, penalization, viscoelastic material, frictionless contact, normal compliance, unilateral constraint, weak solution

Cite this paper as

M. Sofonea, F. Pătrulescu, Penalization of history-dependent variational inequalities, European J. Appl. Math., vol. 25, no. 2 (2014), pp. 155-176
DOI: 10.1017/S0956792513000363

PDF

About this paper

Publisher Name

Cambridge University Press, Cambridge

Print ISSN

0956-7925

Online ISSN

1469-4425/e

MR

3177272

ZBL

1297.49016

Google Scholar

?

?

Paper (preprint) in HTML form

Penalization of History-Dependent Variational Inequalities

M. Sofonea 1, F. Pătrulescu 2
1 Laboratoire de Mathématiques et Physique
Université de Perpignan, 52 Avenue de Paul Alduy, 66860 Perpignan, France
2 Tiberiu Popoviciu Institute of Numerical Analysis
P.O. Box 68-1, 400110 Cluj-Napoca, Romania
Abstract

The present paper represents a continuation of [21]. There, a new class of variational inequalities involving history-dependent operators was considered, an abstract existence and uniqueness result was proved and it was completed with a regularity result. Moreover, these results were used in the analysis of various frictional and frictionless models of contact. In this current paper we present a penalization method in the study of such inequalities. We start with an example which motivates our study; it concerns a mathematical model which describes the quasistatic contact between a viscoelastic body and a foundation; the material’s behaviour is modelled with a constitutive law with long memory, the contact is frictionless and is modelled with a multivalued normal compliance condition and unilateral constraint. Then, we introduce the abstract variational inequalities together with their penalizations. We prove the unique solvability of the penalized problems and the convergence of their solutions to the solution of the original problem, as the penalization parameter converges to zero. Finally, we turn back to our a contact model, apply our abstract results in the study of this problem and provide their mechanical interpretation.

2010 Mathematics Subject Classification : 49J40, 49J45, 47J20, 74M15, 74G25, 74G30.

Keywords: history-dependent operator, variational inequality, penalization, viscoelastic material, frictionless contact, normal compliance, unilateral constraint, weak solution.

1 Introduction

The theory of variational inequalities plays an important role in the study of nonlinear boundary value problems arising in mechanics, physics and engineering science. At the heart of this theory is the intrinsic inclusion of free boundaries in an elegant mathematical formulation. General results on the analysis of the variational inequalities, including existence and uniqueness results, can be found in [1, 2, 11, 13, 17, 22, for instance. Details concerning the numerical analysis of variational inequalities, including solution algorithms and error estimates, can be found in [6, 10]. References in the study of mathematical and numerical analysis of variational inequalities arising in hardening plasticity include [7, 8).

Phenomena of contact between deformable bodies abound in industry and everyday life. For this reason, considerable progress has been achieved recently in modelling, mathematical analysis and numerical simulations of various contact processes and, as a result, a general mathematical theory of contact mechanics is currently emerging. It is concerned with the mathematical structures which underlie general contact problems with different constitutive laws, i.e. materials, varied geometries and different contact conditions. To this end, it uses various mathematical concepts which include both variational and hemivariational inequalities and multivalued inclusions. An early attempt to study frictional contact problems within the framework of variational inequalities was made in [4]. An excellent reference on analysis and numerical approximations of contact problems involving elastic materials with or without friction is 12]. The variational analysis of various contact problems can be found in the monographs [5, 9, 10, 12, 16, 17, 20. The state of the art in the field can be found in the proceedings [14, 18, 24] and in the special issue [19], as well.

Existence, uniqueness and regularity results in the study of a new class of variational inequalities were proved in [21. There, the first trait of novelty lies in the fact that, unlike the results obtained in literature, the variational inequalities considered were defined on an unbounded interval of time. The second novelty was related to their special structure, which involves two nondifferentiable convex functionals, one of them depending on the history of the solution. This class of variational inequalities represents a general framework in which a large number of quasistatic contact problems, associated with various constitutive laws and frictional contact conditions, can be cast, as exemplified in [22].

Our intention in this current paper is to present a penalization method in the study of the variational inequalities introduced in [21 and to apply it to a new model of contact. Penalization methods in the study of elliptic variational inequalities were used by many authors, mainly for numerical reasons. Details can be found in [6] and the references therein. The main ingredient of these methods arises from the fact that they remove the constraints by considering penalized problems defined on the whole space; these approximative problems have unique solutions which converge to
the solutions of the original problems, as the penalization parameter converges to zero.

The rest of the paper is structured as follows. In Section 2 we present a new mathematical model of contact which is of applied interest and which motivates the abstract study we present in this paper. In Section 3 we state the abstract problem and recall its unique solvability, obtained in [21]. Then we state the penalized problems and prove our main result, Theorem 3.2. The proof of this theorem is given in Section 4. Further, we illustrate the use of the abstract results in the study of the contact model introduced in Section 2. To this end, in Section 5 we list the assumptions on the data and derive the variational formulation. Then we state and prove Theorem 5.1 which concerns the unique weak solvability of the model. Next, in Section 6, we use our abstract penalization method. Our main result in this section is given by Theorem 6.1 which states the existence of a unique weak solution of the penalized contact problems and its convergence to the weak solution of the original contact model. Finally, in Section 7, we present some concluding remarks.

2 A viscoelastic contact problem

The physical setting is as follows. A viscoelastic body occupies a bounded domain Ωd(d=1,2,3)\Omega\subset\mathbb{R}^{d}(d=1,2,3) with a Lipschitz continuous boundary Γ\Gamma which is divided into three measurable parts Γ1,Γ2\Gamma_{1},\Gamma_{2} and Γ3\Gamma_{3}, such that meas (Γ1)>0\left(\Gamma_{1}\right)>0. The body is subject to the action of body forces of density 𝒇0\boldsymbol{f}_{0}. We also assume that it is fixed on Γ1\Gamma_{1} and surface tractions of density 𝒇2\boldsymbol{f}_{2} act on Γ2\Gamma_{2}. On Γ3\Gamma_{3}, the body is in frictionless contact with a deformable obstacle, the so-called foundation. We assume that the contact process is quasistatic, we study it in the interval of time +=[0,)\mathbb{R}_{+}=[0,\infty), and we denote by 𝝂\boldsymbol{\nu} and 𝕊d\mathbb{S}^{d} the outward unit normal at Γ\Gamma and the space of second order symmetric tensors on d\mathbb{R}^{d}, respectively. Then, the classical formulation of the contact problem we consider in the rest of this paper is the following.

Problem 𝒬\mathcal{Q}. Find a displacement field 𝒖:Ω×+d\boldsymbol{u}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d} and a stress field 𝝈\boldsymbol{\sigma} : Ω×+𝕊d\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d} such that

𝝈(t)=𝒜𝜺(𝒖(t))+0t(ts)𝜺(𝒖(s))𝑑s\displaystyle\boldsymbol{\sigma}(t)=\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))ds in Ω\displaystyle\text{ in }\quad\Omega (2.1)
Div𝝈(t)+𝒇0(t)=𝟎\displaystyle\operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0} in Ω\displaystyle\text{ in }\quad\Omega (2.2)
𝒖(t)=𝟎\displaystyle\boldsymbol{u}(t)=\mathbf{0} on Γ1\displaystyle\text{ on }\quad\Gamma_{1} (2.3)
𝝈(t)𝝂=𝒇2(t)\displaystyle\boldsymbol{\sigma}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t) on Γ2,\displaystyle\text{ on }\quad\Gamma_{2}, (2.4)
𝝈τ(t)=𝟎\displaystyle\boldsymbol{\sigma}_{\tau}(t)=\mathbf{0} on Γ3,\displaystyle\text{ on }\quad\Gamma_{3}, (2.5)

for all t+t\in\mathbb{R}_{+}, and there exists ξ:Ω×+\xi:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R} which satisfies

uν(t)g,σν(t)+p(uν(t))+ξ(t)0(uν(t)g)(σν(t)+p(uν(t))+ξ(t))=00ξ(t)Fξ(t)=0 if uν(t)<0ξ(t)=F if uν(t)>0} on Γ3\left.\begin{array}[]{l}u_{\nu}(t)\leq g,\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\leq 0\\ \left(u_{\nu}(t)-g\right)\left(\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\right)=0\\ 0\leq\xi(t)\leq F\\ \xi(t)=0\text{ if }u_{\nu}(t)<0\\ \xi(t)=F\text{ if }u_{\nu}(t)>0\end{array}\right\}\quad\text{ on }\quad\Gamma_{3}

for all t+t\in\mathbb{R}_{+}.
Here and below, in order to simplify the notation, we do not indicate explicitly the dependence of various functions on the spatial variable 𝒙\boldsymbol{x}. Equation (2.1) represents the viscoelastic constitutive law with long memory in which 𝒜\mathcal{A} is the elasticity operator, \mathcal{B} represents the relaxation tensor and ε(𝒖)\varepsilon(\boldsymbol{u}) denotes the linearized strain tensor. Equation (2.2) represents the equation of equilibrium in which Div denotes the divergence operator for tensor valued functions. Conditions (2.3) and (2.4) are the displacement boundary condition and the traction boundary condition, respectively. Condition (2.5) is the frictionless condition and it shows that the tangential stress on the contact surface, denoted by 𝝈τ\boldsymbol{\sigma}_{\tau}, vanishes. More details on the equations and conditions (2.1)-(2.5) can be found in 22.

We now describe the contact condition (2.6) in which our main interest lies and which represents the main novelty of the model. Here σν\sigma_{\nu} denotes the normal stress, uνu_{\nu} is the normal displacement and uν+u_{\nu}^{+}may be interpreted as the penetration of the body’s surface asperities and those of the foundation. Moreover, pp is a Lipschitz continuous increasing function which vanishes for a negative argument, FF is a positive function and g>0g>0. This condition can be derived in the following way. Let t+t\in\mathbb{R}_{+}be given. First, we assume that the penetration is limited by the bound gg and, therefore, the normal displacement satisfies the inequality

uν(t)g on Γ3.u_{\nu}(t)\leq g\quad\text{ on }\Gamma_{3}. (2.7)

Next, we assume that the normal stress has an additive decomposition of the form

σν(t)=σνD(t)+σνR(t)+σνM(t) on Γ3\sigma_{\nu}(t)=\sigma_{\nu}^{D}(t)+\sigma_{\nu}^{R}(t)+\sigma_{\nu}^{M}(t)\quad\text{ on }\Gamma_{3} (2.8)

in which the function σνD(t)\sigma_{\nu}^{D}(t) describes the deformability of the foundation and the functions σνR(t),σνM(t)\sigma_{\nu}^{R}(t),\sigma_{\nu}^{M}(t) describe the rigidity and the memory properties of the foundation, respectively. We assume that σνD(t)\sigma_{\nu}^{D}(t) satisfies a normal compliance contact condition, that is

σνD(t)=p(uν(t)) on Γ3.-\sigma_{\nu}^{D}(t)=p\left(u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3}. (2.9)

The part σνR(t)\sigma_{\nu}^{R}(t) of the normal stress satisfies the Signorini condition in the form with a gap function, i.e.

σνR(t)0,σνR(t)(uν(t)g)=0 on Γ3.\sigma_{\nu}^{R}(t)\leq 0,\quad\sigma_{\nu}^{R}(t)\left(u_{\nu}(t)-g\right)=0\quad\text{ on }\Gamma_{3}. (2.10)

Finally, the function σνM(t)\sigma_{\nu}^{M}(t) satisfies the condition

{|σνM(t)|F,σνM(t)=0 if uν(t)<0,σνM(t)=F if uν(t)>0 on Γ3\left\{\begin{array}[]{l}\left|\sigma_{\nu}^{M}(t)\right|\leq F,\quad\sigma_{\nu}^{M}(t)=0\quad\text{ if }\quad u_{\nu}(t)<0,\\ -\sigma_{\nu}^{M}(t)=F\quad\text{ if }\quad u_{\nu}(t)>0\end{array}\quad\text{ on }\Gamma_{3}\right.

We combine (2.8), (2.9) and write σνM(t)=ξ(t)-\sigma_{\nu}^{M}(t)=\xi(t) to see that

σνR(t)=σν(t)+p(uν(t))+ξ(t) on Γ3.\sigma_{\nu}^{R}(t)=\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\quad\text{ on }\Gamma_{3}. (2.12)

Then we substitute equality (2.12) in (2.10) and use (2.7), (2.11) to obtain the contact condition (2.6).

We now present additional details of the contact condition (2.6). The inequalities and equalities below in this section are valid at an arbitrary point 𝒙Γ3\boldsymbol{x}\in\Gamma_{3}. First, we recall that (2.6) describes a condition with unilateral constraint, since inequality (2.7) holds at each moment of time. Next, assume that at a given moment tt there is separation between the body and the foundation, i.e. uν(t)<0u_{\nu}(t)<0. Then, since p(uν(t))=0p\left(u_{\nu}(t)\right)=0, (2.6) shows that σν(t)=0\sigma_{\nu}(t)=0, i.e. the reaction of the foundation vanishes. Note that the same behaviour of the normal stress is described both in the classical normal compliance condition and in the Signorini contact condition, when there is separation. Assume now that at the moment tt there is penetration which did not reach the bound gg, i.e. 0<uν(t)<g0<u_{\nu}(t)<g. Then (2.6) yields

σν(t)=p(uν(t))+F-\sigma_{\nu}(t)=p\left(u_{\nu}(t)\right)+F (2.13)

This equality shows that, at the moment tt, the reaction of the foundation depends on the penetration and represents a normal compliance-type condition. Note that (2.6) also shows that if at the moment tt we have penetration which satisfies 0<uν(t)<g0<u_{\nu}(t)<g then σν(t)F-\sigma_{\nu}(t)\geq F. Indeed, if 0<uν(t)<g0<u_{\nu}(t)<g then (2.13) holds and this implies that σν(t)F-\sigma_{\nu}(t)\geq F. We conclude from above that if σν(t)<F-\sigma_{\nu}(t)<F then there is no penetration and, therefore, FF represents a yield limit of the normal pressure, under which the penetration is not possible. This kind of behaviour characterizes a rigidelastic foundation.

In conclusion, condition (2.6) shows that when there is separation between the body’s surface and the foundation then the normal stress vanishes; the penetration arises only if the normal stress reaches the critical value FF; when there is penetration the contact follows a normal compliance condition of the form (2.13) but up to the limit gg and then, when this limit is reached, the contact follows a Signorini-type unilateral condition with the gap gg. For this reason we refer to this condition as to a multivalued normal compliance contact condition with unilateral constraint. It can be interpreted physically as follows. The foundation is assumed to be made of a hard material covered by a thin layer of a soft material with thickness gg. The soft material has a rigid-elastic behaviour, i.e. is deformable, allows penetration, but only if the normal stress arrives to the yield value FF; the contact with this layer is modelled
with normal compliance, as shown in equality (2.13). The hard material is perfectly rigid and, therefore, it does not allow penetration; the contact with this material is modelled with the Signorini contact condition.

Two questions arise in the study of the unilateral contact problem 𝒬\mathcal{Q}. The first one concerns its unique solvability; the second one concerns the approach of the solution by the solution of a contact model with normal compliance without unilateral constraint. The answers to the questions above are provided by the variational analysis of this contact problem, presented in Section 5 and 6. This analysis is carried out based on the abstract existence, uniqueness and convergence result that we present in the next section.

3 Abstract problem and main result

Everywhere below we use the notation \mathbb{N}^{*} for the set of positive integers and +=[0,)\mathbb{R}_{+}=[0,\infty). For each normed space XX we use the notation C(+;X)C\left(\mathbb{R}_{+};X\right) for the space of continuous functions defined on +\mathbb{R}_{+}with values in XX. For a subset KXK\subset X we still use the symbol C(+;K)C\left(\mathbb{R}_{+};K\right) for the set of continuous functions defined on +\mathbb{R}_{+}with values in KK. It is well known that, if XX is a Banach space, then C(+;X)C\left(\mathbb{R}_{+};X\right) can be organized in a canonical way as a Fréchet space, i.e. as a complete metric space in which the corresponding topology is induced by a countable family of seminorms. Details can be found in 3 and [15], for instance. Here we only need to recall that the convergence of a sequence (xk)k\left(x_{k}\right)_{k} to the element xx, in the space C(+;X)C\left(\mathbb{R}_{+};X\right), can be described as follows:

{xkx in C(+;X) as k if and only if maxr[0,n]xk(r)x(r)X0 as k, for all n.\left\{\begin{array}[]{l}x_{k}\rightarrow x\quad\text{ in }C\left(\mathbb{R}_{+};X\right)\text{ as }k\rightarrow\infty\text{ if and only if }\\ \max_{r\in[0,n]}\left\|x_{k}(r)-x(r)\right\|_{X}\rightarrow 0\text{ as }k\rightarrow\infty,\text{ for all }n\in\mathbb{N}^{*}.\end{array}\right.

Consider now a real Hilbert space XX with inner product (,)X(\cdot,\cdot)_{X} and associated norm X\|\cdot\|_{X}. Also, let KK be a subset of XX, let A:XX,𝒮:C(+;X)C(+;X)A:X\rightarrow X,\mathcal{S}:C\left(\mathbb{R}_{+};X\right)\rightarrow C\left(\mathbb{R}_{+};X\right) be two operators, and let j:X,f:+Xj:X\rightarrow\mathbb{R},f:\mathbb{R}_{+}\rightarrow X be two functions. We assume in what follows that

K is a nonempty closed convex subset of X,K\text{ is a nonempty closed convex subset of }X, (3.2)

and AA is strongly monotone and Lipschitz continuous operator, i.e.

{ (a) There exists m>0 such that (Au1Au2,u1u2)Xmu1u2X2u1,u2X. (b) There exists M>0 such that Au1Au2XMu1u2Xu1,u2X.\left\{\begin{array}[]{l}\text{ (a) There exists }m>0\text{ such that }\\ \quad\left(Au_{1}-Au_{2},u_{1}-u_{2}\right)_{X}\geq m\left\|u_{1}-u_{2}\right\|_{X}^{2}\\ \quad\forall u_{1},u_{2}\in X.\\ \text{ (b) There exists }M>0\text{ such that }\\ \left\|Au_{1}-Au_{2}\right\|_{X}\leq M\left\|u_{1}-u_{2}\right\|_{X}\quad\forall u_{1},u_{2}\in X.\end{array}\right.

Moreover, we assume that the operator 𝒮\mathcal{S} satisfies the following condition:

{ For every n there exists dn>0 such that 𝒮u1(t)𝒮u2(t)Xdn0tu1(s)u2(s)X𝑑su1,u2C(+;X),t[0,n]\left\{\begin{array}[]{l}\text{ For every }n\in\mathbb{N}^{*}\text{ there exists }d_{n}>0\text{ such that }\\ \left\|\mathcal{S}u_{1}(t)-\mathcal{S}u_{2}(t)\right\|_{X}\leq d_{n}\int_{0}^{t}\left\|u_{1}(s)-u_{2}(s)\right\|_{X}ds\\ \forall u_{1},u_{2}\in C\left(\mathbb{R}_{+};X\right),\forall t\in[0,n]\end{array}\right.

Following the terminology in [21, 22] we refer to an operator 𝒮\mathcal{S} which satisfies (3.4) as a history-dependent operator. Finally, we suppose that

j:X is a proper convex lower semicontinuous function.\displaystyle j:X\rightarrow\mathbb{R}\text{ is a proper convex lower semicontinuous function. } (3.5)
fC(+;X).\displaystyle f\in C\left(\mathbb{R}_{+};X\right)\text{. } (3.6)

With the data above, we consider the following problem.
Problem 𝒫\mathcal{P}. Find a function u:+Xu:\mathbb{R}_{+}\rightarrow X such that, for all t+t\in\mathbb{R}_{+}, the inequality below holds:

u(t)\displaystyle u(t) K,(Au(t),vu(t))X+(𝒮u(t),vu(t))X\displaystyle\in K,\quad(Au(t),v-u(t))_{X}+(\mathcal{S}u(t),v-u(t))_{X} (3.7)
+j(v)j(u(t))(f(t),vu(t))XvK\displaystyle+j(v)-j(u(t))\geq(f(t),v-u(t))_{X}\quad\forall v\in K

Following [21, 22] we refer to (3.7) as a history-dependent variational inequality. It represents the framework in which the variational formulation of a large number of contact problems can be cast, with the appropriate choice of spaces and operators. Details can be found in [9, 21, 22, 23] and the references therein. The solvability of Problem 𝒫\mathcal{P} is provided by the following existence and uniqueness result, proved in [21.

Theorem 3.1 Let XX be a Hilbert space and assume that (3.2)-(3.6) hold. Then, Problem 𝒫\mathcal{P} has a unique solution uC(+;K)u\in C\left(\mathbb{R}_{+};K\right).

In order to formulate the penalized problems associated to Problem 𝒫\mathcal{P} we consider an operator G:XXG:X\rightarrow X which satisfies the following conditions:

{ (a) (GuGv,uv)X0u,vX. (b) There exists L>0 such that GuGvXLuvXu,vX. (c) (Gu,vu)X0uX,vK. (d) Gu=0X iff uK.\left\{\begin{array}[]{l}\text{ (a) }(Gu-Gv,u-v)_{X}\geq 0\quad\forall u,v\in X.\\ \text{ (b) There exists }L>0\text{ such that }\\ \quad\|Gu-Gv\|_{X}\leq L\|u-v\|_{X}\quad\forall u,v\in X.\\ \text{ (c) }(Gu,v-u)_{X}\leq 0\quad\forall u\in X,v\in K.\\ \text{ (d) }Gu=0_{X}\text{ iff }u\in K.\end{array}\right.

Note that conditions (3.8) (a) and (b) show that GG is a monotone Lipschtz continuous operator. Also, note that such an operator GG always exists. For example consider the operator G:XXG:X\rightarrow X defined by

Gu=uPKu,uK,Gu=u-P_{K}u,\quad\forall u\in K,

where PK:XKP_{K}:X\rightarrow K represents the projection operator onto KK. Then, using the properties of the projections, it is easy to see that the operator GG satisfies condition (3.8).

Next, for each μ>0\mu>0 we consider the following problem.
Problem 𝒫μ\mathcal{P}_{\mu}. Find a function uμ:+Xu_{\mu}:\mathbb{R}_{+}\rightarrow X such that, for all t+t\in\mathbb{R}_{+}, the inequality below holds:

(Auμ(t)\displaystyle\left(Au_{\mu}(t)\right. ,vuμ(t))X+(𝒮uμ(t),vuμ(t))X+1μ(Guμ(t),vuμ(t))X\displaystyle\left.,v-u_{\mu}(t)\right)_{X}+\left(\mathcal{S}u_{\mu}(t),v-u_{\mu}(t)\right)_{X}+\frac{1}{\mu}\left(Gu_{\mu}(t),v-u_{\mu}(t)\right)_{X} (3.9)
+j(v)j(uμ(t))(f(t),vuμ(t))X\displaystyle+j(v)-j\left(u_{\mu}(t)\right)\geq\left(f(t),v-u_{\mu}(t)\right)_{X} vX\displaystyle\forall v\in X

Note that, in contrast to Problem 𝒫\mathcal{P}, in Problem 𝒫μ\mathcal{P}_{\mu} the constraint u(t)Ku(t)\in K is removed and is replaced with an additional term which contains the penalization parameter μ\mu. For this reason, we refer to Problem 𝒫μ\mathcal{P}_{\mu} as a penalized problem associated to Problem 𝒫\mathcal{P}.

We have the following existence, uniqueness and convergence result, which represents the main result of this section.

Theorem 3.2 Let XX be a Hilbert space and assume that (3.2)-(3.6), (3.8) hold. Then:

  1. 1.

    For each μ>0\mu>0 Problem 𝒫μ\mathcal{P}_{\mu} has a unique solution which satisfies uμC(+;X)u_{\mu}\in C\left(\mathbb{R}_{+};X\right).

  2. 2.

    The solution uμu_{\mu} of Problem 𝒫μ\mathcal{P}_{\mu} converges to the solution uu of Problem 𝒫\mathcal{P}, that is

uμ(t)u(t)X0 as μ0\left\|u_{\mu}(t)-u(t)\right\|_{X}\rightarrow 0\quad\text{ as }\quad\mu\rightarrow 0 (3.10)

for each t+t\in\mathbb{R}_{+}.
Note that the convergence (3.10) above is understood in the following sense: for each t+t\in\mathbb{R}_{+}and for every sequence {μn}+\left\{\mu_{n}\right\}\subset\mathbb{R}_{+}converging to 0 as nn\rightarrow\infty we have uμn(t)u(t)u_{\mu_{n}}(t)\rightarrow u(t) as nn\rightarrow\infty.

4 Proof of Theorem 3.2

The proof of Theorem 3.2 will be carried out in several steps that we present in what follows. To this end, below in this section we assume that (3.2)-(3.6), (3.8) hold and
we denote by cc a positive constant which may depend on t,A,𝒮,j,ft,A,\mathcal{S},j,f and uu, but is independent of μ\mu, and whose value may change from line to line. The following lemma shows the unique solvability of the nonlinear inequality (3.9).

Lemma 4.1 For each μ>0\mu>0 there exists a unique function uμC(+;X)u_{\mu}\in C\left(\mathbb{R}_{+};X\right) which satisfies the inequality (3.9) for all t+t\in\mathbb{R}_{+}.

Proof. Let μ>0\mu>0. Using (3.3) and (3.8) it is easy to show that the operator

vAv+1μGvv\longmapsto Av+\frac{1}{\mu}Gv

is a strongly monotone Lipschitz continuous operator on XX. Lemma 4.1 is now a consequence of Theorem 3.1 used with K=XK=X.

Next, we consider the following intermediate problem.
Problem 𝒫~μ\widetilde{\mathcal{P}}_{\mu}. Find a function u~μ:+X\widetilde{u}_{\mu}:\mathbb{R}_{+}\rightarrow X such that, for all t+t\in\mathbb{R}_{+}, the inequality below holds:

(Au~μ(t),vu~μ(t))X+(𝒮u(t),vu~μ(t))X+1μ(Gu~μ(t),vu~μ(t))X\displaystyle\left(A\widetilde{u}_{\mu}(t),v-\widetilde{u}_{\mu}(t)\right)_{X}+\left(\mathcal{S}u(t),v-\widetilde{u}_{\mu}(t)\right)_{X}+\frac{1}{\mu}\left(G\widetilde{u}_{\mu}(t),v-\widetilde{u}_{\mu}(t)\right)_{X} (4.1)
+j(v)j(u~μ(t))(f(t),vu~μ(t))XvX\displaystyle+j(v)-j\left(\widetilde{u}_{\mu}(t)\right)\geq\left(f(t),v-\widetilde{u}_{\mu}(t)\right)_{X}\quad\forall v\in X

Note that inequality (3.9) is a history-dependent variational inequality, since the operator 𝒮\mathcal{S} is applied to the unknown uμu_{\mu}. In contrast, the variational inequality (4.1) is a time-dependent variational inequality, since here 𝒮u\mathcal{S}u is a given function. The following lemma shows the unique solvability of the nonlinear inequality (4.1).

Lemma 4.2 For each μ>0\mu>0 there exists a unique function u~μC(+;X)\widetilde{u}_{\mu}\in C\left(\mathbb{R}_{+};X\right) which satisfies the inequality (4.1), for all t+t\in\mathbb{R}_{+}.

Proof. The proof is obtained by similar arguments to those used in the proof of Lemma 4.1.

Next we investigate the properties of the sequence {u~μ(t)}\left\{\widetilde{u}_{\mu}(t)\right\} for a fixed t+t\in\mathbb{R}_{+}.

Lemma 4.3 For each t+t\in\mathbb{R}_{+}there exists a subsequence of the sequence {u~μ(t)}\left\{\widetilde{u}_{\mu}(t)\right\}, again denoted {u~μ(t)}\left\{\widetilde{u}_{\mu}(t)\right\}, which converges weakly to u(t)u(t), i.e.

u~μ(t)u(t) in X as μ0.\widetilde{u}_{\mu}(t)\rightharpoonup u(t)\quad\text{ in }X\quad\text{ as }\mu\rightarrow 0. (4.2)

Proof. Let t+,μ>0t\in\mathbb{R}_{+},\mu>0 and let v0Kv_{0}\in K. We use (4.1) to obtain

(Au~μ(t),v0u~μ(t))X+(𝒮u(t),v0u~μ(t))X+1μ(Gu~μ(t),v0u~μ(t))X+j(v0)j(u~μ(t))(f(t),v0u~μ(t))X\begin{gathered}\left(A\widetilde{u}_{\mu}(t),v_{0}-\widetilde{u}_{\mu}(t)\right)_{X}+\left(\mathcal{S}u(t),v_{0}-\widetilde{u}_{\mu}(t)\right)_{X}+\frac{1}{\mu}\left(G\widetilde{u}_{\mu}(t),v_{0}-\widetilde{u}_{\mu}(t)\right)_{X}\\ +j\left(v_{0}\right)-j\left(\widetilde{u}_{\mu}(t)\right)\geq\left(f(t),v_{0}-\widetilde{u}_{\mu}(t)\right)_{X}\end{gathered}

and, therefore,

(Au~μ(t)Av0,u~μ(t)v0)X(Av0,v0u~μ(t))X\displaystyle\left(A\widetilde{u}_{\mu}(t)-\right.\left.Av_{0},\widetilde{u}_{\mu}(t)-v_{0}\right)_{X}\leq\left(Av_{0},v_{0}-\widetilde{u}_{\mu}(t)\right)_{X} (4.3)
+(𝒮u(t),v0u~μ(t))X+1μ(Gu~μ(t),v0u~μ(t))X\displaystyle+\left(\mathcal{S}u(t),v_{0}-\widetilde{u}_{\mu}(t)\right)_{X}+\frac{1}{\mu}\left(G\widetilde{u}_{\mu}(t),v_{0}-\widetilde{u}_{\mu}(t)\right)_{X}
+j(v0)j(u~μ(t))+(f(t),u~μ(t)v0)X\displaystyle+j\left(v_{0}\right)-j\left(\widetilde{u}_{\mu}(t)\right)+\left(f(t),\widetilde{u}_{\mu}(t)-v_{0}\right)_{X}

We use (3.5) to see that there exist ωX\omega\in X and α\alpha\in\mathbb{R}, which do not depend on tt, such that

j(v)(ω,v)X+αvVj(v)\geq(\omega,v)_{X}+\alpha\quad\forall v\in V

and, therefore,

j(u~μ(t))(ω,u~μ(t))X+α.j\left(\widetilde{u}_{\mu}(t)\right)\geq\left(\omega,\widetilde{u}_{\mu}(t)\right)_{X}+\alpha. (4.4)

Then, we combine (4.3), (3.3), (3.8) (c) and (4.4) to find that

mu~μ(t)v0X2\displaystyle m\left\|\widetilde{u}_{\mu}(t)-v_{0}\right\|_{X}^{2} (4.5)
(Av0X+𝒮u(t)X+f(t)X+ωX)u~μ(t)v0X\displaystyle\quad\leq\left(\left\|Av_{0}\right\|_{X}+\|\mathcal{S}u(t)\|_{X}+\|f(t)\|_{X}+\|\omega\|_{X}\right)\left\|\widetilde{u}_{\mu}(t)-v_{0}\right\|_{X}
+|j(v0)|+|α|+ωXv0X\displaystyle\quad+\left|j\left(v_{0}\right)\right|+|\alpha|+\|\omega\|\left\|{}_{X}\right\|v_{0}\|_{X}

We use now (4.5), the elementary inequality

x,a,b0 and x2ax+bx2a2+2bx,a,b\geq 0\quad\text{ and }\quad x^{2}\leq ax+b\Longrightarrow x^{2}\leq a^{2}+2b

and the triangle inequality

u~μ(t)Xu~μ(t)v0X+v0X.\left\|\widetilde{u}_{\mu}(t)\right\|_{X}\leq\left\|\widetilde{u}_{\mu}(t)-v_{0}\right\|_{X}+\left\|v_{0}\right\|_{X}.

As a result we deduce that there exists c>0c>0 which depends on v0v_{0} but does not depend on μ\mu such that

u~μ(t)Xc.\left\|\widetilde{u}_{\mu}(t)\right\|_{X}\leq c. (4.6)

Inequality (4.6) shows that the sequence {u~μ(t)}\left\{\widetilde{u}_{\mu}(t)\right\} is bounded in XX. Therefore, it follows that there exists a subsequence of the sequence {u~μ(t)}\left\{\widetilde{u}_{\mu}(t)\right\}, again denoted {u~μ(t)}\left\{\widetilde{u}_{\mu}(t)\right\} and an element u~(t)X\widetilde{u}(t)\in X such that

u~μ(t)u~(t) in X as μ0.\widetilde{u}_{\mu}(t)\rightharpoonup\widetilde{u}(t)\quad\text{ in }\quad X\quad\text{ as }\mu\rightarrow 0. (4.7)

Next, we investigate the properties of the element u~(t)X\widetilde{u}(t)\in X. First of all, we show that u~(t)K\widetilde{u}(t)\in K. To this end, we use (4.1) to deduce that

1μ(Gu~μ(t),u~μ(t)v)X(Au~μ(t),vu~μ(t))X+(𝒮u(t),vu~μ(t))X\displaystyle\frac{1}{\mu}\left(G\widetilde{u}_{\mu}(t),\widetilde{u}_{\mu}(t)-v\right)_{X}\leq\left(A\widetilde{u}_{\mu}(t),v-\widetilde{u}_{\mu}(t)\right)_{X}+\left(\mathcal{S}u(t),v-\widetilde{u}_{\mu}(t)\right)_{X} (4.8)
+j(v)j(u~μ(t))+(f(t),u~μ(t)v)XvX\displaystyle+j(v)-j\left(\widetilde{u}_{\mu}(t)\right)+\left(f(t),\widetilde{u}_{\mu}(t)-v\right)_{X}\quad\forall v\in X

We now write

Au~μ(t)=Au~μ(t)A0X+A0XA\widetilde{u}_{\mu}(t)=A\widetilde{u}_{\mu}(t)-A0_{X}+A0_{X}

then we use the Lipschitz continuity of the operator AA and inequality (4.4) to obtain that

1μ(Gu~μ(t),u~μ(t)v)X(Au~μ(t)A0X,vu~μ(t))X+(A0X,vu~μ(t))X\displaystyle\frac{1}{\mu}\left(G\widetilde{u}_{\mu}(t),\widetilde{u}_{\mu}(t)-v\right)_{X}\leq\left(A\widetilde{u}_{\mu}(t)-A0_{X},v-\widetilde{u}_{\mu}(t)\right)_{X}+\left(A0_{X},v-\widetilde{u}_{\mu}(t)\right)_{X}
+(𝒮u(t),vu~μ(t))X+j(v)j(u~μ(t))+(f(t),u~μ(t)v)X\displaystyle\quad+\left(\mathcal{S}u(t),v-\widetilde{u}_{\mu}(t)\right)_{X}+j(v)-j\left(\widetilde{u}_{\mu}(t)\right)+\left(f(t),\widetilde{u}_{\mu}(t)-v\right)_{X}
(Mu~μ(t)X+A0XX+𝒮u(t)X+f(t)X)(vX+u~μ(t)X)\displaystyle\leq\left(M\left\|\widetilde{u}_{\mu}(t)\right\|_{X}+\left\|A0_{X}\right\|_{X}+\|\mathcal{S}u(t)\|_{X}+\|f(t)\|_{X}\right)\left(\|v\|_{X}+\left\|\widetilde{u}_{\mu}(t)\right\|_{X}\right)
+|j(v)|+u~μ(t)XωX+|α|\displaystyle\quad+|j(v)|+\left\|\widetilde{u}_{\mu}(t)\right\|_{X}\|\omega\|_{X}+|\alpha|

We combine now this inequality and (4.6) to see that there exists a positive constant cc which depends on t,A,f,𝒮,j,ut,A,f,\mathcal{S},j,u and vv, but is independent on μ\mu, such that

(Gu~μ(t),u~μ(t)v)XcμvX\left(G\widetilde{u}_{\mu}(t),\widetilde{u}_{\mu}(t)-v\right)_{X}\leq c\mu\quad\forall v\in X (4.9)

We take now v=u~(t)v=\widetilde{u}(t) in (4.9), then we pass to the upper limit as μ0\mu\rightarrow 0 in the resulting inequality to obtain

limμ0sup(Gu~μ(t),u~μ(t)u~(t))X0\lim_{\mu\rightarrow 0}\sup\left(G\widetilde{u}_{\mu}(t),\widetilde{u}_{\mu}(t)-\widetilde{u}(t)\right)_{X}\leq 0

Therefore, using assumption (3.8) (a), (b) the convergence (4.7) and standard arguments on pseudomonotone operators (see Proposition 1.23 in [22, for instance) we deduce that

limμ0inf(Gu~μ(t),u~μ(t)v)X(Gu~(t),u~(t)v)XvX\lim_{\mu\rightarrow 0}\inf\left(G\widetilde{u}_{\mu}(t),\widetilde{u}_{\mu}(t)-v\right)_{X}\geq(G\widetilde{u}(t),\widetilde{u}(t)-v)_{X}\quad\forall v\in X (4.10)

On the other hand, the inequality (4.9) implies that

lim infμ0(Gu~μ(t),u~μ(t)v)X0vX\liminf_{\mu\rightarrow 0}\left(G\widetilde{u}_{\mu}(t),\widetilde{u}_{\mu}(t)-v\right)_{X}\leq 0\quad\forall v\in X (4.11)

We combine the inequalities (4.10) and (4.11) to see that

(Gu~(t),u~(t)v)X0vX(G\widetilde{u}(t),\widetilde{u}(t)-v)_{X}\leq 0\quad\forall v\in X

and, taking v=u~(t)Gu~(t)v=\widetilde{u}(t)-G\widetilde{u}(t) in this inequality yields Gu~(t)X20\|G\widetilde{u}(t)\|_{X}^{2}\leq 0. We conclude that Gu~(t)=0XG\widetilde{u}(t)=0_{X} and, using assumption (3.8)(d) it follows that

u~(t)K.\widetilde{u}(t)\in K. (4.12)

Next, from inequality (4.1) and assumption (3.8) (c) we find that

(Au~μ(t),vu~μ(t))X+(𝒮u(t),vu~μ(t))X\displaystyle\left(A\widetilde{u}_{\mu}(t),v-\widetilde{u}_{\mu}(t)\right)_{X}+\left(\mathcal{S}u(t),v-\widetilde{u}_{\mu}(t)\right)_{X} (4.13)
+j(v)j(u~μ(t))(f(t),vu~μ(t))XvK\displaystyle\quad+j(v)-j\left(\widetilde{u}_{\mu}(t)\right)\geq\left(f(t),v-\widetilde{u}_{\mu}(t)\right)_{X}\quad\forall v\in K

We now take v=u~(t)Kv=\widetilde{u}(t)\in K in (4.13) and obtain

(Au~μ(t),u~μ(t)u~(t))X(𝒮u(t),u~(t)u~μ(t))X\displaystyle\left(A\widetilde{u}_{\mu}(t),\widetilde{u}_{\mu}(t)-\widetilde{u}(t)\right)_{X}\leq\left(\mathcal{S}u(t),\widetilde{u}(t)-\widetilde{u}_{\mu}(t)\right)_{X}
+j(u~(t))j(u~μ(t))+(f(t),u~μ(t)u~(t))X\displaystyle\quad+j(\widetilde{u}(t))-j\left(\widetilde{u}_{\mu}(t)\right)+\left(f(t),\widetilde{u}_{\mu}(t)-\widetilde{u}(t)\right)_{X}

then we pass to the upper limit as μ0\mu\rightarrow 0 in this inequality and use the weak convergence (4.7) and the assumption (3.5). As a result we obtain

limμ0sup(Au~μ(t),u~μ(t)u~(t))X0\lim_{\mu\rightarrow 0}\sup\left(A\widetilde{u}_{\mu}(t),\widetilde{u}_{\mu}(t)-\widetilde{u}(t)\right)_{X}\leq 0 (4.14)

and, using again the argument on pseudomonotonicity employed in the proof of Lemma 4.3, it follows that

lim infμ0(Au~μ(t),u~μ(t)v)X(Au~(t),u~(t)v)XvX\liminf_{\mu\rightarrow 0}\left(A\widetilde{u}_{\mu}(t),\widetilde{u}_{\mu}(t)-v\right)_{X}\geq(A\widetilde{u}(t),\widetilde{u}(t)-v)_{X}\quad\forall v\in X (4.15)

On the other hand, passing to the lower limit as μ0\mu\rightarrow 0 in (4.13) and using (4.7) yields

limμ0inf(Au~μ(t),u~μ(t)v)X(𝒮u(t),vu~(t))X\displaystyle\lim_{\mu\rightarrow 0}\inf\left(A\widetilde{u}_{\mu}(t),\widetilde{u}_{\mu}(t)-v\right)_{X}\leq(\mathcal{S}u(t),v-\widetilde{u}(t))_{X} (4.16)
+j(v)j(u~(t))+(f(t),u~(t)v)XvK.\displaystyle\quad+j(v)-j(\widetilde{u}(t))+(f(t),\widetilde{u}(t)-v)_{X}\quad\forall v\in K.

We combine now the inequalities (4.15) and (4.16) to see that

(Au~(t),vu~(t))X+(𝒮u(t),vu~(t))X\displaystyle(A\widetilde{u}(t),v-\widetilde{u}(t))_{X}+(\mathcal{S}u(t),v-\widetilde{u}(t))_{X} (4.17)
+j(v)j(u~(t))(f(t),vu~(t))XvK\displaystyle\quad+j(v)-j(\widetilde{u}(t))\geq(f(t),v-\widetilde{u}(t))_{X}\quad\forall v\in K

Next, we take v=u(t)v=u(t) in (4.17) and v=u~(t)v=\widetilde{u}(t) in (3.7). Then, adding the resulting inequalities and using the strong monotonicity of the operator AA we obtain that

u~(t)=u(t)\widetilde{u}(t)=u(t) (4.18)

which concludes the proof.
The next step is provided by the following weak convergence result.

Lemma 4.4 For each t+t\in\mathbb{R}_{+}the whole sequence {u~μ(t)}\left\{\widetilde{u}_{\mu}(t)\right\} converges weakly in XX to u(t)u(t) as μ0\mu\rightarrow 0.

Proof. Let t+t\in\mathbb{R}_{+}. A carefully examination of the proof of Lemma 4.3 shows that any weak convergent subsequence of the sequence {u~μ(t)}X\left\{\widetilde{u}_{\mu}(t)\right\}\subset X converges weakly to u(t)u(t), where, recall, u(t)u(t) is the element of XX which solves the variational inequality (3.7) at the moment tt. This inequality has a unique solution and, moreover, estimate (4.6) shows that the sequence {u~μ(t)}\left\{\widetilde{u}_{\mu}(t)\right\} is bounded in XX. Lemma 4.4 is now a consequence of a standard compactness argument.

We proceed with the following strong convergence result.
Lemma 4.5 For each t+t\in\mathbb{R}_{+}the sequence {u~μ(t)}\left\{\widetilde{u}_{\mu}(t)\right\} converges strongly in XX to u(t)u(t), that is

u~μ(t)u(t) in X as μ0.\widetilde{u}_{\mu}(t)\rightarrow u(t)\quad\text{ in }\quad X\quad\text{ as }\quad\mu\rightarrow 0. (4.19)

Proof. Let μ>0\mu>0 and t+t\in\mathbb{R}_{+}. We take v=u~(t)v=\widetilde{u}(t) in (4.15) to see that

lim infμ0(Au~μ(t),u~μ(t)u~(t))X0\liminf_{\mu\rightarrow 0}\left(A\widetilde{u}_{\mu}(t),\widetilde{u}_{\mu}(t)-\widetilde{u}(t)\right)_{X}\geq 0

then we combine this inequality with (4.14) to obtain that

limμ0(Au~μ(t),u~μ(t)u~(t))X=0\lim_{\mu\rightarrow 0}\left(A\widetilde{u}_{\mu}(t),\widetilde{u}_{\mu}(t)-\widetilde{u}(t)\right)_{X}=0

Finally, we use (4.18) to find that

limμ0(Au~μ(t),u~μ(t)u(t))X=0\lim_{\mu\rightarrow 0}\left(A\widetilde{u}_{\mu}(t),\widetilde{u}_{\mu}(t)-u(t)\right)_{X}=0 (4.20)

On the other hand, from the weak convergence of the sequence {u~μ(t)}\left\{\widetilde{u}_{\mu}(t)\right\} to u(t)u(t), guaranteed by Lemma 4.4, it follows that

limμ0(Au(t),u~μ(t)u(t))X=0\lim_{\mu\rightarrow 0}\left(Au(t),\widetilde{u}_{\mu}(t)-u(t)\right)_{X}=0 (4.21)

Next, from the strong monotonicity of the operator AA we have

mu~μ(t)u(t)2(Au~μ(t)Au(t),u~μ(t)u(t))X\displaystyle m\left\|\widetilde{u}_{\mu}(t)-u(t)\right\|^{2}\leq\left(A\widetilde{u}_{\mu}(t)-Au(t),\widetilde{u}_{\mu}(t)-u(t)\right)_{X} (4.22)
=(Au~μ(t),u~μ(t)u(t))X(Au(t),u~μ(t)u(t))X\displaystyle\quad=\left(A\widetilde{u}_{\mu}(t),\widetilde{u}_{\mu}(t)-u(t)\right)_{X}-\left(Au(t),\widetilde{u}_{\mu}(t)-u(t)\right)_{X}

The strong convergence (4.19) is now a consequence of (4.20)-(4.22).
The last step is provided by the following strong convergence result.
Lemma 4.6 For each t+t\in\mathbb{R}_{+}the sequence {uμ(t)}\left\{u_{\mu}(t)\right\} converges strongly in XX to u(t)u(t), that is

uμ(t)u(t) in X as μ0u_{\mu}(t)\rightarrow u(t)\quad\text{ in }\quad X\quad\text{ as }\quad\mu\rightarrow 0 (4.23)

Proof. Let t+t\in\mathbb{R}_{+}and nn\in\mathbb{N}^{*} be such that t[0,n]t\in[0,n]. Let also μ>0\mu>0. We take v=uμ(t)v=u_{\mu}(t) in (4.1) and v=u~μ(t)v=\widetilde{u}_{\mu}(t) in (3.9). Then, adding the resulting inequalities we deduce that

(Auμ(t)\displaystyle\left(Au_{\mu}(t)\right. Au~μ(t),u~μ(t)uμ(t))X+(𝒮uμ(t)𝒮u(t),u~μ(t)uμ(t))X\displaystyle\left.-A\widetilde{u}_{\mu}(t),\widetilde{u}_{\mu}(t)-u_{\mu}(t)\right)_{X}+\left(\mathcal{S}u_{\mu}(t)-\mathcal{S}u(t),\widetilde{u}_{\mu}(t)-u_{\mu}(t)\right)_{X}
+1μ(Guμ(t)Gu~μ(t),u~μ(t)uμ(t))X0\displaystyle+\frac{1}{\mu}\left(Gu_{\mu}(t)-G\widetilde{u}_{\mu}(t),\widetilde{u}_{\mu}(t)-u_{\mu}(t)\right)_{X}\geq 0

Next, we use the monotony of the operator GG, (3.8)(a), to obtain that

(Auμ(t)Au~μ(t),uμ(t)u~μ(t))X(𝒮uμ(t)𝒮u(t),u~μ(t)uμ(t))X\left(Au_{\mu}(t)-A\widetilde{u}_{\mu}(t),u_{\mu}(t)-\widetilde{u}_{\mu}(t)\right)_{X}\leq\left(\mathcal{S}u_{\mu}(t)-\mathcal{S}u(t),\widetilde{u}_{\mu}(t)-u_{\mu}(t)\right)_{X}

Therefore, using (3.3) (a) yields

uμ(t)u~μ(t)X1m𝒮uμ(t)𝒮u(t)X\left\|u_{\mu}(t)-\widetilde{u}_{\mu}(t)\right\|_{X}\leq\frac{1}{m}\left\|\mathcal{S}u_{\mu}(t)-\mathcal{S}u(t)\right\|_{X} (4.24)

We now combine (4.24) and (3.4) to find that

uμ(t)u~μ(t)Xdnm0tuμ(s)u(s)X𝑑s\left\|u_{\mu}(t)-\widetilde{u}_{\mu}(t)\right\|_{X}\leq\frac{d_{n}}{m}\int_{0}^{t}\left\|u_{\mu}(s)-u(s)\right\|_{X}ds

It follows from here that

uμ(t)u(t)Xu~μ(t)u(t)X+dnm0tuμ(s)u(s)X𝑑s\left\|u_{\mu}(t)-u(t)\right\|_{X}\leq\left\|\widetilde{u}_{\mu}(t)-u(t)\right\|_{X}+\frac{d_{n}}{m}\int_{0}^{t}\left\|u_{\mu}(s)-u(s)\right\|_{X}ds

and, using a Gronwall’s argument, we obtain that

uμ(t)u(t)Xu~μ(t)u(t)X+dnm0tednm(ts)u~μ(s)u(s)X𝑑s\left\|u_{\mu}(t)-u(t)\right\|_{X}\leq\left\|\widetilde{u}_{\mu}(t)-u(t)\right\|_{X}+\frac{d_{n}}{m}\int_{0}^{t}e^{\frac{d_{n}}{m}(t-s)}\left\|\widetilde{u}_{\mu}(s)-u(s)\right\|_{X}ds (4.25)

Note that ednm(ts)ednmtendnme^{\frac{d_{n}}{m}(t-s)}\leq e^{\frac{d_{n}}{m}t}\leq e^{\frac{nd_{n}}{m}} for all s[0,n]s\in[0,n] and, therefore, (4.25) yields

uμ(t)u(t)Xu~μ(t)u(t)X+dnmendnm0tu~μ(s)u(s)X𝑑s\left\|u_{\mu}(t)-u(t)\right\|_{X}\leq\left\|\widetilde{u}_{\mu}(t)-u(t)\right\|_{X}+\frac{d_{n}}{m}e^{\frac{nd_{n}}{m}}\int_{0}^{t}\left\|\widetilde{u}_{\mu}(s)-u(s)\right\|_{X}ds (4.26)

On the other hand, by estimate (4.6), Lemma 4.5 and Lebesgue’s convergence theorem it follows that

0tu~μ(s)u(s)X𝑑s0 as μ0\int_{0}^{t}\left\|\widetilde{u}_{\mu}(s)-u(s)\right\|_{X}ds\rightarrow 0\quad\text{ as }\quad\mu\rightarrow 0 (4.27)

We use now (4.26), (4.27) and (4.19) to obtain the convergence (4.23), which concludes the proof.

We end this section with the remark that the points 1) and 2) of Theorem 3.2 correspond to Lemmas 4.1 and 4.6, respectively. Therefore, we conclude from here that the proof of Theorem 3.2 is complete.

5 Existence and uniqueness

We turn now to the variational analysis of problem 𝒬\mathcal{Q}. To this end, we need further notation and preliminaries. First, we use the notation 𝒙=(xi)\boldsymbol{x}=\left(x_{i}\right) for a typical point in ΩΓ\Omega\cup\Gamma and we denote by 𝝂=(νi)\boldsymbol{\nu}=\left(\nu_{i}\right) the outward unit normal at Γ\Gamma. Here and below the indices i,j,k,li,j,k,l run between 1 and dd and, unless stated otherwise, the summation convention over repeated indices is used. An index that follows a comma represents the partial derivative with respect to the corresponding component of the spatial variable, e.g. ui,j=ui/xju_{i,j}=\partial u_{i}/\partial x_{j}. Recall that the inner product and norm on d\mathbb{R}^{d} and 𝕊d\mathbb{S}^{d} are defined by

𝒖𝒗=uivi,𝒗=(𝒗𝒗)12𝒖,𝒗d𝝈𝝉=σijτij,𝝉=(𝝉𝝉)12𝝈,𝝉𝕊d\begin{array}[]{lrrl}\boldsymbol{u}\cdot\boldsymbol{v}=u_{i}v_{i},&\|\boldsymbol{v}\|=(\boldsymbol{v}\cdot\boldsymbol{v})^{\frac{1}{2}}&\forall\boldsymbol{u},\boldsymbol{v}\in\mathbb{R}^{d}\\ \boldsymbol{\sigma}\cdot\boldsymbol{\tau}=\sigma_{ij}\tau_{ij},&\|\boldsymbol{\tau}\|=(\boldsymbol{\tau}\cdot\boldsymbol{\tau})^{\frac{1}{2}}&\forall\boldsymbol{\sigma},\boldsymbol{\tau}\in\mathbb{S}^{d}\end{array}

We use standard notation for the Lebesgue and Sobolev spaces associated to Ω\Omega and Γ\Gamma and, moreover, we consider the following spaces:

V={𝒗=(vi)H1(Ω)d:vi=0 on Γ1}\displaystyle V=\left\{\boldsymbol{v}=\left(v_{i}\right)\in H^{1}(\Omega)^{d}:v_{i}=0\text{ on }\Gamma_{1}\right\}
Q={𝝉=(τij):τij=τjiL2(Ω)}\displaystyle Q=\left\{\boldsymbol{\tau}=\left(\tau_{ij}\right):\tau_{ij}=\tau_{ji}\in L^{2}(\Omega)\right\}
Q1={𝝉Q:τij,jL2(Ω)}\displaystyle Q_{1}=\left\{\boldsymbol{\tau}\in Q:\tau_{ij,j}\in L^{2}(\Omega)\right\}

These are real Hilbert spaces endowed with the inner products

(𝒖,𝒗)V=Ω𝜺(𝒖)𝜺(𝒗)𝑑x,(𝝈,𝝉)Q=Ω𝝈𝝉𝑑x\displaystyle(\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{\varepsilon}(\boldsymbol{u})\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx,\quad(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q}=\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\tau}dx
(𝝈,𝝉)Q1=(𝝈,𝝉)Q+(Div𝝈,Div𝝉)L2(Ω)d\displaystyle(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q_{1}}=(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q}+(\operatorname{Div}\boldsymbol{\sigma},\operatorname{Div}\boldsymbol{\tau})_{L^{2}(\Omega)^{d}}

Here and below 𝜺\boldsymbol{\varepsilon} and Div are the deformation and the divergence operators, respectively, defined by

𝜺(𝒖)=(εij(𝒖)),εij(𝒖)=12(ui,j+uj,i),Div𝝈=(σij,j).\boldsymbol{\varepsilon}(\boldsymbol{u})=\left(\varepsilon_{ij}(\boldsymbol{u})\right),\quad\varepsilon_{ij}(\boldsymbol{u})=\frac{1}{2}\left(u_{i,j}+u_{j,i}\right),\quad\operatorname{Div}\boldsymbol{\sigma}=\left(\sigma_{ij,j}\right).

Completeness of the space ( V,VV,\|\cdot\|_{V} ) follows from the assumption meas (Γ1)>0\left(\Gamma_{1}\right)>0, which allows the use of Korn’s inequality.

For an element 𝒗V\boldsymbol{v}\in V we still write 𝒗\boldsymbol{v} for the trace of 𝒗\boldsymbol{v} on the boundary and we denote by vνv_{\nu} and 𝒗τ\boldsymbol{v}_{\tau} the normal and tangential components of 𝒗\boldsymbol{v} on Γ\Gamma, given by vν=𝒗𝝂,𝒗τ=𝒗vν𝝂v_{\nu}=\boldsymbol{v}\cdot\boldsymbol{\nu},\boldsymbol{v}_{\tau}=\boldsymbol{v}-v_{\nu}\boldsymbol{\nu}. Let Γ3\Gamma_{3} be a measurable part of Γ\Gamma. Then, by the Sobolev trace theorem, there exists a positive constant c0c_{0} which depends on Ω,Γ1\Omega,\Gamma_{1} and Γ3\Gamma_{3} such that

𝒗L2(Γ3)dc0𝒗V𝒗V.\|\boldsymbol{v}\|_{L^{2}\left(\Gamma_{3}\right)^{d}}\leq c_{0}\|\boldsymbol{v}\|_{V}\quad\forall\boldsymbol{v}\in V. (5.1)

Also, for a regular function 𝝈Q\boldsymbol{\sigma}\in Q we use the notation σν\sigma_{\nu} and 𝝈τ\boldsymbol{\sigma}_{\tau} for the normal and the tangential trace, i.e. σν=(𝝈𝝂)𝝂\sigma_{\nu}=(\boldsymbol{\sigma}\boldsymbol{\nu})\cdot\boldsymbol{\nu} and 𝝈τ=𝝈𝝂σν𝝂\boldsymbol{\sigma}_{\tau}=\boldsymbol{\sigma}\boldsymbol{\nu}-\sigma_{\nu}\boldsymbol{\nu}. Moreover, we recall that
the following Green’s formula holds:

Ω𝝈𝜺(𝒗)𝑑x+ΩDiv𝝈𝒗dx=Γ𝝈𝝂𝒗𝑑a𝒗V\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx+\int_{\Omega}\operatorname{Div}\boldsymbol{\sigma}\cdot\boldsymbol{v}dx=\int_{\Gamma}\boldsymbol{\sigma}\boldsymbol{\nu}\cdot\boldsymbol{v}da\quad\forall\boldsymbol{v}\in V (5.2)

Finally, we denote by 𝐐\mathbf{Q}_{\infty} the space of fourth order tensor fields given by

𝐐={=(ijkl):ijkl=jikl=klijL(Ω),1i,j,k,ld},\mathbf{Q}_{\infty}=\left\{\mathcal{E}=\left(\mathcal{E}_{ijkl}\right):\mathcal{E}_{ijkl}=\mathcal{E}_{jikl}=\mathcal{E}_{klij}\in L^{\infty}(\Omega),\quad 1\leq i,j,k,l\leq d\right\},

and we recall that 𝐐\mathbf{Q}_{\infty} is a real Banach space with the norm

𝐐=max1i,j,k,ldijklL(Ω).\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}=\max_{1\leq i,j,k,l\leq d}\left\|\mathcal{E}_{ijkl}\right\|_{L^{\infty}(\Omega)}.

Moreover, a simple calculation shows that

𝝉Q𝐐𝝉Q𝐐,𝝉Q.\|\mathcal{E}\boldsymbol{\tau}\|_{Q}\leq\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}\|\boldsymbol{\tau}\|_{Q}\quad\forall\mathcal{E}\in\mathbf{Q}_{\infty},\boldsymbol{\tau}\in Q. (5.3)

Next, we list the assumptions on the data, derive the variational formulation of the problem 𝒬\mathcal{Q} and then we state and prove its unique weak solvability. To this end we assume that the elasticity operator 𝒜\mathcal{A} and the relaxation tensor \mathcal{B} satisfy the following conditions.

{ (a) 𝒜:Ω×𝕊d𝕊d (b) There exists L𝒜>0 such that 𝒜(𝒙,𝜺1)𝒜(𝒙,𝜺2)L𝒜𝜺1𝜺2𝜺1,𝜺2𝕊d, a.e. 𝒙Ω (c) There exists m𝒜>0 such that (𝒜(𝒙,𝜺1)𝒜(𝒙,𝜺2))(𝜺1𝜺2)m𝒜𝜺1𝜺22𝜺1,𝜺2𝕊d, a.e. 𝒙Ω. (d) The mapping 𝒙𝒜(𝒙,𝜺) is measurable on Ω, for any 𝜺𝕊d (e) The mapping 𝒙𝒜(𝒙,𝟎) belongs to Q.C(+;𝐐).\left\{\begin{array}[]{l}\text{ (a) }\mathcal{A}:\Omega\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}\text{. }\\ \text{ (b) There exists }L_{\mathcal{A}}>0\text{ such that }\\ \left\|\mathcal{A}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{1}\right)-\mathcal{A}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{2}\right)\right\|\leq L_{\mathcal{A}}\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|\\ \quad\forall\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d}\text{, a.e. }\boldsymbol{x}\in\Omega\text{. }\\ \text{ (c) There exists }m_{\mathcal{A}}>0\text{ such that }\\ \quad\left(\mathcal{A}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{1}\right)-\mathcal{A}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{2}\right)\right)\cdot\left(\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right)\geq m_{\mathcal{A}}\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|^{2}\\ \quad\forall\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\text{ a.e. }\boldsymbol{x}\in\Omega.\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto\mathcal{A}(\boldsymbol{x},\boldsymbol{\varepsilon})\text{ is measurable on }\Omega,\\ \text{ for any }\boldsymbol{\varepsilon}\in\mathbb{S}^{d}\text{. }\\ \text{ (e) The mapping }\boldsymbol{x}\mapsto\mathcal{A}(\boldsymbol{x},\mathbf{0})\text{ belongs to }Q.\\ \qquad\mathcal{B}\in C\left(\mathbb{R}_{+};\mathbf{Q}_{\infty}\right).\end{array}\right.

The densities of body forces and surface tractions are such that

𝒇0C(+;L2(Ω)d),𝒇2C(+;L2(Γ2)d).\boldsymbol{f}_{0}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right),\quad\boldsymbol{f}_{2}\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{2}\right)^{d}\right). (5.6)

Finally, the normal compliance function pp and the surface yield function FF satisfy

{ (a) p:+.(b) There exists Lp>0 such that |p(r1)p(r2)|Lp|r1r2|r1,r2. (c) (p(r1)p(r2))(r1r2)0r1,r2. (d) p(r)=0 iff r0.\left\{\begin{array}[]{l}\text{ (a) }p:\mathbb{R}\rightarrow\mathbb{R}_{+}.\\ \text{(b) There exists }L_{p}>0\text{ such that }\\ \quad\left|p\left(r_{1}\right)-p\left(r_{2}\right)\right|\leq L_{p}\left|r_{1}-r_{2}\right|\quad\forall r_{1},r_{2}\in\mathbb{R}.\\ \text{ (c) }\left(p\left(r_{1}\right)-p\left(r_{2}\right)\right)\left(r_{1}-r_{2}\right)\geq 0\quad\forall r_{1},r_{2}\in\mathbb{R}.\\ \text{ (d) }p(r)=0\text{ iff }\quad r\leq 0.\end{array}\right.
FL2(Γ3),F(x)0 a.e. xΓ3.F\in L^{2}\left(\Gamma_{3}\right),\quad F(x)\geq 0\text{ a.e. }x\in\Gamma_{3}. (5.8)

In what follows we consider the set of admissible displacements defined by

U={𝒗V:vνg on Γ3}.U=\left\{\boldsymbol{v}\in V:v_{\nu}\leq g\text{ on }\Gamma_{3}\right\}. (5.9)

Moreover, we define the operator P:VVP:V\rightarrow V and the functions j:V+j:V\rightarrow\mathbb{R}_{+}, 𝒇:+V\boldsymbol{f}:\mathbb{R}_{+}\rightarrow V by equalities

(P𝒖,𝒗)V=Γ3p(uν)vν𝑑a𝒖,𝒗V\displaystyle(P\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Gamma_{3}}p\left(u_{\nu}\right)v_{\nu}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (5.10)
j(𝒗)=Γ3Fvν+𝑑a𝒗V\displaystyle j(\boldsymbol{v})=\int_{\Gamma_{3}}Fv_{\nu}^{+}da\quad\forall\boldsymbol{v}\in V (5.11)
(𝒇(t),𝒗)V=Ω𝒇0(t)𝒗𝑑x+Γ2𝒇2(t)𝒗𝑑a𝒗V,t[0,T]\displaystyle(\boldsymbol{f}(t),\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot\boldsymbol{v}dx+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot\boldsymbol{v}da\quad\forall\boldsymbol{v}\in V,t\in[0,T] (5.12)

Here and below, for rr\in\mathbb{R} we denote by r+r^{+}its positive part, i.e. r+=max{r,0}r^{+}=\max\{r,0\}. Note that assumptions (5.6)-(5.8) imply that the integrals in (5.10)-(5.12) are welldefined.

Assume in what follows that ( 𝒖,𝝈\boldsymbol{u},\boldsymbol{\sigma} ) are sufficiently regular functions which satisfy (2.1)-(2.6) and let 𝒗U\boldsymbol{v}\in U and t>0t>0 be given. First, we use Green’s formula (5.2) and the equilibrium equation (2.2) to see that

Ω𝝈(t)(𝜺(𝒗)𝜺(𝒖(t)))𝑑x=Ω𝒇0(t)(𝒗𝒖(t))𝑑x+Γ𝝈(t)𝝂(𝒗𝒖(t))𝑑a\int_{\Omega}\boldsymbol{\sigma}(t)\cdot(\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))dx=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx+\int_{\Gamma}\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da

We split the surface integral over Γ1,Γ2\Gamma_{1},\Gamma_{2} and Γ3\Gamma_{3} and, since 𝒗𝒖(t)=𝟎\boldsymbol{v}-\boldsymbol{u}(t)=\mathbf{0} a.e. on Γ1\Gamma_{1}, 𝝈(t)𝝂=𝒇2(t)\boldsymbol{\sigma}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t) on Γ2\Gamma_{2}, we deduce that

Ω𝝈(t)(𝜺(𝒗)𝜺(𝒖(t)))𝑑x=Ω𝒇0(t)(𝒗𝒖(t))𝑑x\displaystyle\int_{\Omega}\boldsymbol{\sigma}(t)\cdot(\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))dx=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx
+Γ2𝒇2(t)(𝒗𝒖(t))𝑑a+Γ3𝝈(t)𝝂(𝒗𝒖(t))𝑑a\displaystyle\quad+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da+\int_{\Gamma_{3}}\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da

Moreover, since

𝝈(t)𝝂(𝒗𝒖(t))=σν(t)(vνuν(t))+𝝈τ(t)(𝒗τ𝒖τ(t)) on Γ3,\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))=\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)+\boldsymbol{\sigma}_{\tau}(t)\cdot\left(\boldsymbol{v}_{\tau}-\boldsymbol{u}_{\tau}(t)\right)\quad\text{ on }\Gamma_{3},

taking into account the frictionless condition (2.5) we obtain

Ω𝝈(t)(𝜺(𝒗)𝜺(𝒖(t)))𝑑x=Ω𝒇0(t)(𝒗𝒖(t))𝑑x\displaystyle\int_{\Omega}\boldsymbol{\sigma}(t)\cdot(\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))dx=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx (5.13)
+Γ2𝒇2(t)(𝒗𝒖(t))𝑑a+Γ3σν(t)(vνuν(t))𝑑a\displaystyle\quad+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da+\int_{\Gamma_{3}}\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)da

We write now

σν(\displaystyle\sigma_{\nu}( (t)(vνuν(t))=(σν(t)+p(uν(t))+ξ(t))(vνg)\displaystyle(t)\left(v_{\nu}-u_{\nu}(t)\right)=\left(\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\right)\left(v_{\nu}-g\right)
+(σν(t)+p(uν(t))+ξ(t))(guν(t))\displaystyle+\left(\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\right)\left(g-u_{\nu}(t)\right)
(p(uν(t))+ξ(t))(vνuν(t)) on Γ3\displaystyle-\left(p\left(u_{\nu}(t)\right)+\xi(t)\right)\left(v_{\nu}-u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3}

then we use the contact conditions (2.6) and the definition (5.9) of the set UU to see that

σν(t)(vνuν(t))(p(uν(t))+ξ(t))(vνuν(t)) on Γ3.\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)\geq-\left(p\left(u_{\nu}(t)\right)+\xi(t)\right)\left(v_{\nu}-u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3}. (5.14)

We use (2.6), again, and the hypothesis (5.8) on function FF to deduce that

F(vν+uν+(t))ξ(t)(vνuν(t)) on Γ3.F\left(v_{\nu}^{+}-u_{\nu}^{+}(t)\right)\geq\xi(t)\left(v_{\nu}-u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3}. (5.15)

Then we add the inequalities (5.14) and (5.15) and integrate the result on Γ3\Gamma_{3} to find that

Γ3σν(t)(vνuν(t))𝑑a\displaystyle\int_{\Gamma_{3}}\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)da (5.16)
Γ3p(uν(t))(vνuν(t))𝑑aΓ3F(vν+uν+(t))𝑑a\displaystyle\quad\geq-\int_{\Gamma_{3}}p\left(u_{\nu}(t)\right)\left(v_{\nu}-u_{\nu}(t)\right)da-\int_{\Gamma_{3}}F\left(v_{\nu}^{+}-u_{\nu}^{+}(t)\right)da

Finally, we combine (5.13) and (5.16) and use the definitions (5.10)-(5.12) to deduce that

(𝝈(t),𝜺(𝒗)\displaystyle(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})- 𝜺(𝒖(t)))Q+(P𝒖(t),𝒗𝒖(t))V+j(𝒗)j(𝒖(t))\displaystyle\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}+(P\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}+j(\boldsymbol{v})-j(\boldsymbol{u}(t)) (5.17)
(𝒇(t),𝒗𝒖(t))V𝒗U.\displaystyle\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}\quad\forall\boldsymbol{v}\in U.

We now substitute the constitutive law (2.1) in (5.17) to obtain the following variational formulation of Problem 𝒬\mathcal{Q}.

Problem 𝒬V\mathcal{Q}^{V}. Find a displacement field 𝒖:+U\boldsymbol{u}:\mathbb{R}_{+}\rightarrow U such that, for all t+t\in\mathbb{R}_{+}, the inequality below holds:

(𝒜𝜺(𝒖(t)),𝜺(𝒗)𝜺(𝒖(t)))Q+(0t(ts)𝜺(𝒖(s))𝑑s,𝜺(𝒗)𝜺(𝒖(t)))Q\displaystyle(\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}+\left(\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))ds,\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t))\right)_{Q} (5.18)
+(P𝒖(t),𝒗𝒖(t))V+j(𝒗)j(𝒖(t))(𝒇(t),𝒗𝒖(t))V𝒗U\displaystyle\quad+(P\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}+j(\boldsymbol{v})-j(\boldsymbol{u}(t))\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}\quad\forall\boldsymbol{v}\in U

In the study of the problem 𝒬V\mathcal{Q}^{V} we have the following existence and uniqueness result.

Theorem 5.1 Assume that (5.4)-(5.8) hold. Then, Problem 𝒬V\mathcal{Q}^{V} has a unique solution which satisfies 𝒖C(+;U)\boldsymbol{u}\in C\left(\mathbb{R}_{+};U\right).

Proof. To solve the variational inequality (5.18) we use Theorem 3.1 with X=VX=V and K=UK=U. To this end we consider the operators A:VVA:V\rightarrow V and 𝒮:C(+;V)C(+;V)\mathcal{S}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};V\right) defined by

(A𝒖,𝒗)V=(𝒜𝜺(𝒖),𝜺(𝒗))Q+(P𝒖,𝒗)V𝒖,𝒗V\displaystyle(A\boldsymbol{u},\boldsymbol{v})_{V}=(\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+(P\boldsymbol{u},\boldsymbol{v})_{V}\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (5.19)
(𝒮𝒖(t),𝒗)V=(0t(ts)𝜺(𝒖(s))𝑑s,𝜺(𝒗))Q\displaystyle(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v})_{V}=\left(\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))ds,\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q} (5.20)
𝒖C(+;V),𝒗V\displaystyle\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\boldsymbol{v}\in V

It is easy to see that condition (3.2) holds. Next, we use (5.4), (5.7) and (5.1) to see that the operator AA satisfies conditions (3.3) with M=L𝒜+c02LpM=L_{\mathcal{A}}+c_{0}^{2}L_{p} and m=m𝒜m=m_{\mathcal{A}}. Let nn\in\mathbb{N}^{*}. Then, a simple calculation based on assumption (5.5) and inequality (5.3) shows that

𝒮𝒖1(t)𝒮𝒖2(t)Vmaxr[0,n](r)𝐐0t𝒖1(s)𝒖2(s)V𝑑s\displaystyle\left\|\mathcal{S}\boldsymbol{u}_{1}(t)-\mathcal{S}\boldsymbol{u}_{2}(t)\right\|_{V}\leq\max_{r\in[0,n]}\|\mathcal{B}(r)\|_{\mathbf{Q}_{\infty}}\int_{0}^{t}\left\|\boldsymbol{u}_{1}(s)-\boldsymbol{u}_{2}(s)\right\|_{V}ds (5.21)
𝒖1,𝒖2C(+;V),t[0,n]\displaystyle\forall\boldsymbol{u}_{1},\boldsymbol{u}_{2}\in C\left(\mathbb{R}_{+};V\right),\forall t\in[0,n]

This inequality shows that the operator 𝒮\mathcal{S}, defined by (5.20), satisfies condition (3.4) with

dn=maxr[0,n](r)𝐐d_{n}=\max_{r\in[0,n]}\|\mathcal{B}(r)\|_{\mathbf{Q}_{\infty}}

Next, we use condition (5.8) to see that the functional jj defined by (5.11) is a seminorm on VV and, moreover, it satisfies

j(𝒗)c0FL2(Γ3)𝒗V𝒗Vj(\boldsymbol{v})\leq c_{0}\|F\|_{L^{2}\left(\Gamma_{3}\right)}\|\boldsymbol{v}\|_{V}\quad\forall\boldsymbol{v}\in V (5.22)

Inequality (5.22) shows that the seminorm jj is continuous on VV and, therefore, (3.5) holds. Finally, using assumption (5.6) and definition (5.12) we deduce that fC(+;V)f\in C\left(\mathbb{R}_{+};V\right) which shows that (3.6) holds, too.

It follows now from Theorem 3.1 that there exists a unique function 𝒖C(+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) which satisfies the inequality

𝒖(t)\displaystyle\boldsymbol{u}(t)\in U,(A𝒖(t),𝒗𝒖(t))V+(𝒮𝒖(t),𝒗𝒖(t))V\displaystyle U,\quad(A\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}+(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V} (5.23)
+j(𝒗)j(𝒖(t))(𝒇(t),𝒗𝒖(t))V𝒗U\displaystyle+j(\boldsymbol{v})-j(\boldsymbol{u}(t))\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}\quad\forall\boldsymbol{v}\in U

for all t+t\in\mathbb{R}_{+}. And, using (5.19) and (5.20) we deduce that there exists a unique function 𝒖C(+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) such that (5.18) holds for all t+t\in\mathbb{R}_{+}, which concludes the proof.

Let 𝝈\boldsymbol{\sigma} be the function defined by (2.1). Then, it follows from (5.4) and (5.5) that 𝝈C(+;Q)\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q\right). Moreover, it is easy to see that (5.17) holds for all t+t\in\mathbb{R}_{+}and, using standard arguments, it results from here that

Div𝝈(t)+𝒇0(t)=𝟎t+\operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}\quad\forall t\in\mathbb{R}_{+} (5.24)

Therefore, using the regularity 𝒇0C(+;L2(Ω)d)\boldsymbol{f}_{0}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right) in (5.6) we deduce that Div𝝈C(+;L2(Ω)d)\operatorname{Div}\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right) which implies that 𝝈C(+;Q1)\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q_{1}\right). A couple of functions ( 𝒖,𝝈\boldsymbol{u},\boldsymbol{\sigma} ) which satisfies (2.1), (5.18) for all t+t\in\mathbb{R}_{+}is called a weak solution to the contact problem 𝒬\mathcal{Q}. We conclude that Theorem 5.1 provides the unique weak solvability of Problem 𝒬\mathcal{Q}. Moreover, the regularity of the weak solution is 𝒖C(+;U),𝝈C(+;Q1)\boldsymbol{u}\in C\left(\mathbb{R}_{+};U\right),\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q_{1}\right).

6 Penalization

In this section we show how the abstract result in Theorem 3.2 can be used in the study of the contact problem 𝒬\mathcal{Q}. To this end, for each μ>0\mu>0 we consider the following contact problem.

Problem 𝒬μ\mathcal{Q}_{\mu}. Find a displacement field 𝒖μ:Ω×+d\boldsymbol{u}_{\mu}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d} and a stress field σμ:Ω×+𝕊d\sigma_{\mu}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d} such that

𝝈μ(t)=𝒜𝜺(𝒖μ(t))+0t(ts)𝜺(𝒖μ(s))𝑑s in Ω\displaystyle\boldsymbol{\sigma}_{\mu}(t)=\mathcal{A}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)+\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(s)\right)ds\quad\text{ in }\quad\Omega (6.1)
Div𝝈μ(t)+𝒇0(t)=𝟎 in Ω\displaystyle\operatorname{Div}\boldsymbol{\sigma}_{\mu}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}\quad\text{ in }\quad\Omega (6.2)
𝒖μ(t)=𝟎 on Γ1\displaystyle\boldsymbol{u}_{\mu}(t)=\mathbf{0}\quad\text{ on }\quad\Gamma_{1} (6.3)
𝝈μ(t)𝝂=𝒇2(t) on Γ2\displaystyle\boldsymbol{\sigma}_{\mu}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t)\quad\text{ on }\quad\Gamma_{2} (6.4)
𝝈μτ(t)=𝟎 on Γ3\displaystyle\boldsymbol{\sigma}_{\mu\tau}(t)=\mathbf{0}\quad\text{ on }\quad\Gamma_{3} (6.5)

for all t+t\in\mathbb{R}_{+}, and there exists ξμ:Ω×+\xi_{\mu}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R} which satisfies

σμν(t)+p(uμν(t))+1μp(uμνg)+ξμ(t)=00ξμ(t)Fξμ(t)=0 if uμν(t)<0ξμ(t)=F if uμν(t)>0} on Γ3\left.\begin{array}[]{l}\sigma_{\mu\nu}(t)+p\left(u_{\mu\nu}(t)\right)+\frac{1}{\mu}p\left(u_{\mu\nu}-g\right)+\xi_{\mu}(t)=0\\ 0\leq\xi_{\mu}(t)\leq F\\ \xi_{\mu}(t)=0\text{ if }u_{\mu\nu}(t)<0\\ \xi_{\mu}(t)=F\text{ if }u_{\mu\nu}(t)>0\end{array}\right\}\quad\text{ on }\quad\Gamma_{3}

for all t+t\in\mathbb{R}_{+}.
Here and below uμνu_{\mu\nu} and 𝝈μτ\boldsymbol{\sigma}_{\mu\tau} represent the normal and the tangential components of the functions 𝒖μ\boldsymbol{u}_{\mu} and 𝝈μ\boldsymbol{\sigma}_{\mu}, respectively. Note that the contact condition (6.6) can be obtained from the contact condition (2.6) in the limit when gg\rightarrow\infty. For this reason, its mechanical interpretation is similar to that of condition (2.6) and could be summarised as follows: when there is separation between the body’s surface and the foundation then the normal stress vanishes; the penetration arises only if the normal stress reaches the critical value FF; when there is penetration the contact follows a normal compliance condition of the form (2.13). For this reason we refer to this
condition as to a multivalued normal compliance contact condition. It models the case when the foundation is assumed to have a rigid-elastic behaviour. Arguments similar to those used in [9, 20] show that μ\mu can be interpreted as a deformability coefficient of the hard layer of the foundation.

Using notation (5.10)-(5.12) by similar arguments as those used in the case of Problem 𝒬\mathcal{Q} we obtain the following variational formulation of Problem 𝒬μ\mathcal{Q}_{\mu}.

Problem 𝒬μV\mathcal{Q}_{\mu}^{V}. Find a displacement field 𝒖μ:+V\boldsymbol{u}_{\mu}:\mathbb{R}_{+}\rightarrow V such that, for all t+t\in\mathbb{R}_{+}, the inequality below holds:

(𝒜𝜺(𝒖μ(t)),𝜺(𝒗)𝜺(𝒖μ(t)))Q+(0t(ts)𝜺(𝒖μ(s))𝑑s,𝜺(𝒗)𝜺(𝒖μ(t)))Q\displaystyle\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)\right)_{Q}+\left(\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(s)\right)ds,\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)\right)_{Q} (6.7)
+(P𝒖μ(t),𝒗𝒖μ(t))V+1μΓ3p(uμν(t)g)(vνuμν(t))𝑑a\displaystyle+\left(P\boldsymbol{u}_{\mu}(t),\boldsymbol{v}-\boldsymbol{u}_{\mu}(t)\right)_{V}+\frac{1}{\mu}\int_{\Gamma_{3}}p\left(u_{\mu\nu}(t)-g\right)\left(v_{\nu}-u_{\mu\nu}(t)\right)da
+j(𝒗)j(𝒖μ(t))(𝒇(t),𝒗𝒖μ(t))V𝒗V\displaystyle+j(\boldsymbol{v})-j\left(\boldsymbol{u}_{\mu}(t)\right)\geq\left(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}_{\mu}(t)\right)_{V}\quad\forall\boldsymbol{v}\in V

We have the following existence, uniqueness and convergence result, which states the unique solvability of Problem 𝒬μV\mathcal{Q}_{\mu}^{V} and describes the behaviour of its solution as μ0\mu\rightarrow 0.

Theorem 6.1 Assume that (5.4)-(5.8) hold. Then:

  1. 1.

    For each μ>0\mu>0 Problem 𝒬μV\mathcal{Q}_{\mu}^{V} has a unique solution which satisfies 𝒖μC(+;V)\boldsymbol{u}_{\mu}\in C\left(\mathbb{R}_{+};V\right).

  2. 2.

    The solution 𝒖μ\boldsymbol{u}_{\mu} of Problem 𝒬μV\mathcal{Q}_{\mu}^{V} converges to the solution 𝒖\boldsymbol{u} of Problem 𝒬V\mathcal{Q}^{V}, that is

𝒖μ(t)𝒖(t)V0 as μ0\left\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}\rightarrow 0\quad\text{ as }\quad\mu\rightarrow 0 (6.8)

for all t+t\in\mathbb{R}_{+}.
Proof. We use Theorem 3.2 with X=VX=V and K=UK=U. To this end we define the operator G:VVG:V\rightarrow V by equality

(G𝒖,𝒗)V=Γ3p(uνg)vν𝑑a𝒖,𝒗V(G\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Gamma_{3}}p\left(u_{\nu}-g\right)v_{\nu}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (6.9)

We use (5.1) and (5.7) to show that GG is a monotone Lipschitz continuous operator with Lipschitz constant M=c02LpM=c_{0}^{2}L_{p}, i.e. it satisfies condition (3.8) (a) and (b).

Assume now that 𝒖V\boldsymbol{u}\in V and 𝒗U\boldsymbol{v}\in U. Then, using (5.9) and (5.7) it is easy to see that

p(uνg)(vνg)0 a.e. on Γ3\displaystyle p\left(u_{\nu}-g\right)\left(v_{\nu}-g\right)\leq 0\quad\text{ a.e. on }\Gamma_{3}
p(uνg)(guν)0 a.e. on Γ3\displaystyle p\left(u_{\nu}-g\right)\left(g-u_{\nu}\right)\leq 0\quad\text{ a.e. on }\Gamma_{3}

and, therefore

(G𝒖,𝒗𝒖)V=Γ3p(uνg)(vνuν)𝑑a\displaystyle(G\boldsymbol{u},\boldsymbol{v}-\boldsymbol{u})_{V}=\int_{\Gamma_{3}}p\left(u_{\nu}-g\right)\left(v_{\nu}-u_{\nu}\right)da
=Γ3p(uνg)(vνg)𝑑a+Γ3p(uνg)(guν)𝑑a0\displaystyle\quad=\int_{\Gamma_{3}}p\left(u_{\nu}-g\right)\left(v_{\nu}-g\right)da+\int_{\Gamma_{3}}p\left(u_{\nu}-g\right)\left(g-u_{\nu}\right)da\leq 0

which shows that (3.8) (c) holds, too.
Finally, assume that G𝒖=𝟎VG\boldsymbol{u}=\mathbf{0}_{V}. Then, (G𝒖,𝒖)V=0(G\boldsymbol{u},\boldsymbol{u})_{V}=0 and, therefore,

Γ3p(uνg)uν𝑑a=0\int_{\Gamma_{3}}p\left(u_{\nu}-g\right)u_{\nu}da=0 (6.10)

We use (5.7) to obtain the inequality

p(uνg)uνp(uνg)g0 a.e. on Γ3p\left(u_{\nu}-g\right)u_{\nu}\geq p\left(u_{\nu}-g\right)g\geq 0\quad\text{ a.e. on }\Gamma_{3}

Therefore, since the integrand in (6.10) is positive, we deduce from (6.10) that

p(uνg)uν=0 a.e. on Γ3p\left(u_{\nu}-g\right)u_{\nu}=0\quad\text{ a.e. on }\Gamma_{3}

This equality combined with assumption (5.7) (d) implies that uνgu_{\nu}\leq g a.e. on Γ3\Gamma_{3} and, therefore, we deduce that 𝒖U\boldsymbol{u}\in U. Conversely, if 𝒖U\boldsymbol{u}\in U it follows that uνgu_{\nu}\leq g a.e. on Γ3\Gamma_{3} and using assumption (5.7) (d) we deduce that p(uνg)=0p\left(u_{\nu}-g\right)=0 a.e. on Γ3\Gamma_{3}. From the definition (6.9) of the operator GG we deduce that (G𝒖,𝒗)V=0(G\boldsymbol{u},\boldsymbol{v})_{V}=0 for all 𝒗V\boldsymbol{v}\in V, which implies that G𝒖=0VG\boldsymbol{u}=0_{V}. It follows from above that GG satisfies the condition (3.8)(d).

We now turn back to (5.19) and (5.20). Thus, it is easy to see that 𝒖μ\boldsymbol{u}_{\mu} is a solution to Problem 𝒬μV\mathcal{Q}_{\mu}^{V} iff

(A𝒖μ(t)\displaystyle\left(A\boldsymbol{u}_{\mu}(t)\right. ,𝒗𝒖μ(t))V+(𝒮𝒖μ(t),𝒗𝒖μ(t))V+1μ(G𝒖μ(t),𝒗𝒖μ(t))V\displaystyle\left.,\boldsymbol{v}-\boldsymbol{u}_{\mu}(t)\right)_{V}+\left(\mathcal{S}\boldsymbol{u}_{\mu}(t),\boldsymbol{v}-\boldsymbol{u}_{\mu}(t)\right)_{V}+\frac{1}{\mu}\left(G\boldsymbol{u}_{\mu}(t),\boldsymbol{v}-\boldsymbol{u}_{\mu}(t)\right)_{V} (6.11)
+j(𝒗)j(𝒖μ(t))(𝒇(t),𝒗𝒖μ(t))V𝒗V\displaystyle+j(\boldsymbol{v})-j\left(\boldsymbol{u}_{\mu}(t)\right)\geq\left(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}_{\mu}(t)\right)_{V}\quad\forall\boldsymbol{v}\in V

for all t+t\in\mathbb{R}_{+}. Moreover, 𝒖\boldsymbol{u} is a solution to Problem 𝒬V\mathcal{Q}^{V} iff 𝒖\boldsymbol{u} satisfies inequality (5.23) for all t+t\in\mathbb{R}_{+}. Recall also that the operator GG satisfies condition (3.8). Theorem 6.1 is now a consequence of Theorem 3.2.

Note that the convergence result (6.8) can be easily extended to the weak solutions of the problems 𝒬μ\mathcal{Q}_{\mu} and 𝒬\mathcal{Q}. Indeed, let 𝝈μ\boldsymbol{\sigma}_{\mu} and 𝝈\boldsymbol{\sigma} be the functions defined by (6.1) and (2.1), respectively, and let t+,nt\in\mathbb{R}_{+},n\in\mathbb{N}^{*} be such that t[0,n]t\in[0,n]. Then, following the arguments presented in Section 5, it follows that 𝝈μ,𝝈C(+;Q)\boldsymbol{\sigma}_{\mu},\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q\right) and, moreover,

Div𝝈μ(t)=Div𝝈(t)=𝒇0(t)\operatorname{Div}\boldsymbol{\sigma}_{\mu}(t)=\operatorname{Div}\boldsymbol{\sigma}(t)=-\boldsymbol{f}_{0}(t) (6.12)

Therefore, using (2.1), (6.1) and (6.12) as well as the properties of the operators 𝒜\mathcal{A} and \mathcal{B} we deduce that

𝝈μ(t)𝝈(t)Q1=𝝈μ(t)𝝈(t)QL𝒜𝒖μ(t)𝒖(t)V\displaystyle\left\|\boldsymbol{\sigma}_{\mu}(t)-\boldsymbol{\sigma}(t)\right\|_{Q_{1}}=\left\|\boldsymbol{\sigma}_{\mu}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}\leq L_{\mathcal{A}}\left\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V} (6.13)
+dmaxr[0,n](r)𝐐0n𝒖μ(s)𝒖(s)V𝑑s\displaystyle\quad+d\max_{r\in[0,n]}\|\mathcal{B}(r)\|_{\mathbf{Q}_{\infty}}\int_{0}^{n}\left\|\boldsymbol{u}_{\mu}(s)-\boldsymbol{u}(s)\right\|_{V}ds

Next, we take 𝒗=𝟎V\boldsymbol{v}=\mathbf{0}_{V} in (6.11), then we use the properties of the operators A,GA,G combined with those of the functional jj. As a result we obtain

m𝒜𝒖μ(t)VA𝟎VV+𝒮𝒖μ(t)V+𝒇(t)V.m_{\mathcal{A}}\left\|\boldsymbol{u}_{\mu}(t)\right\|_{V}\leq\left\|A\mathbf{0}_{V}\right\|_{V}+\left\|\mathcal{S}\boldsymbol{u}_{\mu}(t)\right\|_{V}+\|\boldsymbol{f}(t)\|_{V}.

We now use the property (5.21) of the operator 𝒮\mathcal{S} and a Gronwall argument to see that

𝒖μ(t)Vcn\left\|\boldsymbol{u}_{\mu}(t)\right\|_{V}\leq c_{n} (6.14)

where cnc_{n} represents a constant which depends on nn but is independent on μ\mu. Then, we use the inequality (6.13), the convergence (6.8), the estimate (6.14) and Lebesque’s theorem to deduce that

𝝈μ(t)𝝈(t)Q10 as μ0.\left\|\boldsymbol{\sigma}_{\mu}(t)-\boldsymbol{\sigma}(t)\right\|_{Q_{1}}\rightarrow 0\quad\text{ as }\quad\mu\rightarrow 0. (6.15)

In addition to the mathematical interest in the convergence result (6.8), (6.15), it is important from the mechanical point of view, since it shows that the weak solution of the viscoelastic contact problem with multivalued normal compliance and unilateral constraint may be approached as closely as one wishes by the solution of the viscoelastic contact problem with multivalued normal compliance, with a sufficiently small deformability coefficient.

7 Conclusion

We presented a penalization method for a class of history-dependent variational inequalities in Hilbert spaces. It contains the existence and the uniqueness of the solution for the penalized problems as well as its convergence to the solution of the original problem. The proofs were based on arguments of compactness and monotonicity. The method can be applied in the study of a large class of nonlinear boundary value problems with unilateral constraints. To provide an example, we presented a new model of quasistatic frictionless contact with viscoelastic materials which, in the variational formulation, leads to a history-dependent variational inequality for the displacement field. We applied the abstract penalization method in the study of this contact problem and we presented the mechanical interpretation of the corresponding results. A numerical validation of the convergence result included in this method will be provided in a forthcoming paper.

References

[1] C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems, John Wiley, Chichester, 1984.
[2] H. Brézis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier 18 (1968), 115-175.
[3] C. Corduneanu, Problèmes globaux dans la théorie des équations intégrales de Volterra, Ann. Math. Pure Appl. 67 (1965), 349-363.
[4] G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics, SpringerVerlag, Berlin, 1976.
[5] C. Eck, J. Jarušek and M. Krbeč, Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure and Applied Mathematics 270, Chapman/CRC Press, New York, 2005.
[6] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, SpringerVerlag, New York, 1984.
[7] W. Han and B.D. Reddy, Computational plasticity: the variational basis and numerical analysis, Computational Mechanics Advances 2 (1995), 283-400.
[8] W. Han and B.D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, Springer-Verlag, New York, 1999.
[9] W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, American Mathematical Society-International Press, 2002.
[10] I. Hlaváček, J. Haslinger, J. Necǎs and J. Lovíšek, Solution of Variational Inequalities in Mechanics, Springer-Verlag, New York, 1988.
[11] N. Kikuchi and J.T. Oden, Theory of variational inequalities with applications to problems of flow through porous media, Int. J. Engng. Sci. 18 (1980), 1173-1284.
[12] N. Kikuchi and J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.
[13] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Classics in Applied Mathematics 31, SIAM, Philadelphia, 2000.
[14] J.A.C. Martins and M.D.P. Monteiro Marques, eds., Contact Mechanics, Kluwer, Dordrecht, 2002.
[15] J. J. Massera and J. J. Schäffer, Linear Differential Equations and Function Spaces, Academic Press, New York-London, 1966.
[16] S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013.
[17] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birkhäuser, Boston, 1985.
[18] M. Raous, M. Jean and J.J. Moreau, eds., Contact Mechanics, Plenum Press, New York, 1995.
[19] M. Shillor, ed., Recent advances in contact mechanics, Special issue of Math. Comput. Modelling 28 (4-8) (1998).
[20] M. Shillor, M. Sofonea and J.J. Telega, Models and Analysis of Quasistatic Contact. Variational Methods, Lecture Notes in Physics 655, Springer, Berlin, 2004.
[21] M. Sofonea and A. Matei, History-dependent quasivariational inequalities arising in Contact Mechanics, European Journal of Applied Mathematics 22 (2011), 471491.
[22] M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Notes, Cambridge University Press 398, Cambridge, 2012.
[23] M. Sofonea and F. Pătrulescu, Analysis of a history-dependent frictionless contact problem, Mathematics and Mechanics of Solids 18 (2013), 409-430.
[24] P. Wriggers and U. Nackenhorst, eds., Analysis and Simulation of Contact Problems, Lecture Notes in Applied and Computational Mechanics 27, Springer, Berlin, 2006.

2014

Related Posts