A penalized viscoplastic contact problem with unilateral constraints

Abstract

In this paper we study a mathematical model which describes the quasistatic contact between a viscoplastic body and a foundation. The contact is frictionless and is modelled with a new and nonstandard condition which involves both normal compliance, unilateral constraint and memory effects. We present a penalization method in the study of this problem. We start by introducing the penalized problem, then we prove its unique solvability as well as the convergence of its solution to the solution of the original problem, as the penalization parameter converges to zero

Authors

Flavius Patrulescu
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Anca FarcaลŸ
(BabeลŸ-Bolyai University Faculty of Mathematics and Computer Sciences)

Ahmad Ramadan
(Laboratoire de Mathรฉmatiques et Physique, Universitรฉ de Perpignan)

Keywords

viscoplastic material; frictionless contact; unilateral constraint; weak solution

Cite this paper as:

F. Pฤƒtrulescu, A. FarcaลŸ, A Ramadan, A penalized viscoplastic contact problem with unilateral constraints, Annals of the University of Bucharest โ€“ mathematical series, vol. 4 (LXII), no. 1 (2013), pp. 213-227

PDF

About this paper

Publisher Name

Editura Universitatii din Bucuresti, Bucuresti

Print ISSN

2067-9009

Online ISSN

MR

3093541

ZBL

1324.74023

[1] Barboteu, A. Matei, M. Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance, Quarterly Jnl. of Mechanics and App. Maths. . ?????
[2] Barboteu,F. Patrulescu, A. Ramadan, M. Sofonea, History-dependent contact models for viscoplastic materials, IMA J. Appl. Math., 79, no. 6 (2014), 1180-1200
[3] Barboteu, A. Ramadan, M. Sofonea, ย F. Patrulescu, An elastic contact problem with normal compliance and memory term, Machine Dynamics Research, ย 36, no. 1 (2012), 15-[4] Corduneanu,Problemes globaux dans la theorie des equations integrales de Volterra, Ann. Math. Pure Appl., 67 ย (1965), 349-363.
[5] Farcas, F. Patrulescu,M. Sofonea, A history-dependent contact problem with unilateral constraint, ย Ann. Acad. Rom. Sci. Ser. Math. Appl., ย 4, no. 1 (2012), 90-96.
[6] Han, M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics, 30, American Mathematical Societyโ€“International Press, Sommerville, MA (2002).
[7] Jarusek, M. Sofonea, On the solvability of ย dynamic elastic-visco-plastic contact problems, Zeitschrift fur Angewandte Matematik und Mechanik ย (ZAMM), 88 (2008), 3-22.
[8] J. Massera, J.J. Schaffer, Linear Differential Equations and Function Spaces, Academic Press, New York-London (1966).
[9] Shillor, M. Sofonea, J.J. Telega, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics, 655, Springer, Berlin (2004).
[10] Sofonea, A. Matei. History-dependent quasivariational inequalities arising in Contact Mechanics, Eur. J. Appl. Math., 22 (2011), 471-491.
[11] Sofonea, A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, 398, Cambridge University Press, Cambridge (2012).
[12] Sofonea, F. Patrulescu, Analysis of a history-dependent frictionless contact problem, Mathematics and Mechanics of Solids, 18, no.4 (2013), 409-430.

Paper (preprint) in HTML form

A penalized viscoplastic contact problem with unilateral constraints

F. Patrulescu, A. FarcaลŸ and A. Ramadan
Abstract

In this paper we study a mathematical model which describes the quasistatic contact between a viscoplastic body and a foundation. The contact is frictionless and is modelled with a new and nonstandard condition which involves both normal compliance, unilateral constraint and memory effects. We present a penalization method in the study of this problem. We start by introducing the penalized problem, then we prove its unique solvability as well as the convergence of its solution to the solution of the original problem, as the penalization parameter converges to zero. Moreover, we provide a numerical validation of this convergence result.

Key words and phrases : viscoplastic material, frictionless contact, unilateral constraint, weak solution, finite element, numerical simulations

Mathematics Subject Classification (2010) : 74G25, 74G30, 74M15, 74505

1 Introduction

The aim of this paper is to study a frictionless contact problem for rate-type viscoplastic materials within the framework of the Mathematical Theory of Contact Mechanics. We model the the materialโ€™s behavior with a constitutive law of the form

๐ˆห™(t)=โ„ฐฮต(๐’–ห™(t))+๐’ข(๐ˆ(t),๐œบ(๐’–(t))),\dot{\boldsymbol{\sigma}}(t)=\mathcal{E}\varepsilon(\dot{\boldsymbol{u}}(t))+\mathcal{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))), (1)

where ๐’–\boldsymbol{u} denotes the displacement field, ๐ˆ\boldsymbol{\sigma} represents the stress tensor and ฮต(๐’–)\varepsilon(\boldsymbol{u}) is the linearized strain tensor. Here โ„ฐ\mathcal{E} is a linear operator which describes the elastic properties of the material and ๐’ข\mathcal{G} is a nonlinear constitutive function which describes its viscoplastic behavior. In (1) and everywhere in this paper the dot above a variable represents the derivative with respect to the time variable tt. Quasistatic frictionless contact problems for materials of the form (11) have been considered in [1,2,6, 9, 11] and the references therein. In [6, 9] the contact was modelled with both the Signorini and the normal compliance condition which describe a rigid and an elastic foundation, respectively. In 1, 11 the contact was modelled with normal compliance and unilateral constraint. This condition, introduced for the first time in [7], models an elastic-rigid behavior of the foundation.

The present paper represents a continuation of the short note [5]. There, a model which involves a contact condition with normal compliance, unilateral constraint and memory term was considered. This condition takes into account both the deformability, the rigidity, and the memory effects of the foundation. An existence and uniqueness result was proved and the contact process was studied on an unbounded interval of time which implies the use of the framework of Frรฉchet spaces of continuous functions, instead of that of the classical Banach spaces of continuous functions defined on a bounded interval of time. The aim of this work is to provide a penalization method in the study of the contact model in 5. Penalization methods in the study of contact problems were used by many authors, mainly for numerical reasons. The main ingredient of these methods arises in the fact that they remove the constraints by considering penalized problems defined on the whole space; these approximative problems have a unique solution which converges to the solution of the original problem, as the penalization parameter converges to zero.

The rest of the paper is structured as follows. In Section 2 we present the notation we shall use as well as some preliminary material. In Section 3 we describe the model of the contact process, list the assumptions on the data and derive the variational formulation of the problem. Then we state an existence and uniqueness result, Theorem 3.1, proved in [5]. In Section 4 we present the weak solvability of the penalized problem then we state and prove our main convergence result.

2 Notations and Preliminaries

Everywhere in this paper we use the notation โ„•โˆ—\mathbb{N}^{*} for the set of positive integers and โ„+\mathbb{R}_{+}will represent the set of nonnegative real numbers, i.e. โ„+=[0,+โˆž)\mathbb{R}_{+}=[0,+\infty). For a given rโˆˆโ„r\in\mathbb{R} we denote by r+r^{+}its positive part, i.e. r=maxโก{r,0}r=\max\{r,0\}. Let ฮฉ\Omega be a bounded domain ฮฉโŠ‚โ„d(d=1,2,3)\Omega\subset\mathbb{R}^{d}(d=1,2,3) with a Lipschitz continuous boundary ฮ“\Gamma and let ฮ“1\Gamma_{1} be a measurable part of ฮ“\Gamma such that meas (ฮ“1)>0\left(\Gamma_{1}\right)>0. We use the notation ๐’™=(xi)\boldsymbol{x}=\left(x_{i}\right) for a typical point in ฮฉโˆชฮ“\Omega\cup\Gamma and we denote by ๐‚=(ฮฝi)\boldsymbol{\nu}=\left(\nu_{i}\right) the outward unit normal at ฮ“\Gamma. Here and below the indices i,j,k,li,j,k,l run between 1 and dd and, unless stated otherwise, the summation convention over repeated indices is used. An index that follows a comma represents the partial derivative with respect to the corresponding component of the spatial variable, e.g. ui,j=โˆ‚ui/โˆ‚xju_{i,j}=\partial u_{i}/\partial x_{j}. We denote by ๐•Šd\mathbb{S}^{d} the space of second order symmetric tensors on โ„d\mathbb{R}^{d} or, equivalently, the space of symmetric matrices of order dd. The inner product and norm on โ„d\mathbb{R}^{d} and ๐•Šd\mathbb{S}^{d} are defined by

๐’–โ‹…๐’—=uivi,โ€–๐’—โ€–=(๐’—โ‹…๐’—)12โˆ€๐’–,๐’—โˆˆโ„d๐ˆโ‹…๐‰=ฯƒijฯ„ij,โ€–๐‰โ€–=(๐‰โ‹…๐‰)12โˆ€๐ˆ,๐‰โˆˆ๐•Šd\begin{array}[]{llrl}\boldsymbol{u}\cdot\boldsymbol{v}=u_{i}v_{i},&\|\boldsymbol{v}\|=(\boldsymbol{v}\cdot\boldsymbol{v})^{\frac{1}{2}}&\forall\boldsymbol{u},\boldsymbol{v}\in\mathbb{R}^{d}\\ \boldsymbol{\sigma}\cdot\boldsymbol{\tau}=\sigma_{ij}\tau_{ij},&\|\boldsymbol{\tau}\|=(\boldsymbol{\tau}\cdot\boldsymbol{\tau})^{\frac{1}{2}}&\forall\boldsymbol{\sigma},\boldsymbol{\tau}\in\mathbb{S}^{d}\end{array}

In addition, we use standard notation for the Lebesgue and Sobolev spaces associated to ฮฉ\Omega and ฮ“\Gamma and, moreover, we consider the spaces

V={๐’—โˆˆH1(ฮฉ)d:๐’—=๐ŸŽ on ฮ“1},Q={๐‰=(ฯ„ij)โˆˆL2(ฮฉ)dร—d:ฯ„ij=ฯ„ji}.V=\left\{\boldsymbol{v}\in H^{1}(\Omega)^{d}:\boldsymbol{v}=\mathbf{0}\text{ on }\Gamma_{1}\right\},Q=\left\{\boldsymbol{\tau}=\left(\tau_{ij}\right)\in L^{2}(\Omega)^{d\times d}:\tau_{ij}=\tau_{ji}\right\}.

These are real Hilbert spaces endowed with the inner products

(๐’–,๐’—)V=โˆซฮฉฮต(๐’–)โ‹…ฮต(๐’—)๐‘‘x,(๐ˆ,๐‰)Q=โˆซฮฉ๐ˆโ‹…๐‰๐‘‘x(\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Omega}\varepsilon(\boldsymbol{u})\cdot\varepsilon(\boldsymbol{v})dx,\quad(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q}=\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\tau}dx

and the associated norms โˆฅโ‹…โˆฅV\|\cdot\|_{V} and โˆฅโ‹…โˆฅQ\|\cdot\|_{Q}, respectively. Here ฮต\varepsilon represents the deformation operator given by

ฮต(๐’—)=(ฮตij(๐’—)),ฮตij(๐’—)=12(vi,j+vj,i)โˆ€๐’—โˆˆH1(ฮฉ)d.\varepsilon(\boldsymbol{v})=\left(\varepsilon_{ij}(\boldsymbol{v})\right),\quad\varepsilon_{ij}(\boldsymbol{v})=\frac{1}{2}\left(v_{i,j}+v_{j,i}\right)\quad\forall\boldsymbol{v}\in H^{1}(\Omega)^{d}.

Completeness of the space ( V,โˆฅโ‹…โˆฅVV,\|\cdot\|_{V} ) follows from the assumption meas (ฮ“1)>\left(\Gamma_{1}\right)> 0 , which allows the use of Kornโ€™s inequality.

For an element ๐’—โˆˆV\boldsymbol{v}\in V we still write ๐’—\boldsymbol{v} for the trace of ๐’—\boldsymbol{v} on the boundary and we denote by vฮฝv_{\nu} and ๐’—ฯ„\boldsymbol{v}_{\tau} the normal and tangential components of ๐’—\boldsymbol{v} on ฮ“\Gamma, given by vฮฝ=๐’—โ‹…๐‚,๐’—ฯ„=๐’—โˆ’vฮฝ๐‚v_{\nu}=\boldsymbol{v}\cdot\boldsymbol{\nu},\boldsymbol{v}_{\tau}=\boldsymbol{v}-v_{\nu}\boldsymbol{\nu}. Let ฮ“3\Gamma_{3} be a measurable part of ฮ“\Gamma. Then, by the Sobolev trace theorem, there exists a positive constant c0c_{0} which depends on ฮฉ,ฮ“1\Omega,\Gamma_{1} and ฮ“3\Gamma_{3} such that

โ€–๐’—โ€–L2(ฮ“3)dโ‰คc0โ€–๐’—โ€–Vโˆ€๐’—โˆˆV.\|\boldsymbol{v}\|_{L^{2}\left(\Gamma_{3}\right)^{d}}\leq c_{0}\|\boldsymbol{v}\|_{V}\quad\forall\boldsymbol{v}\in V. (2)

Also, for a regular function ๐ˆโˆˆQ\boldsymbol{\sigma}\in Q we use the notation ฯƒฮฝ\sigma_{\nu} and ๐ˆฯ„\boldsymbol{\sigma}_{\tau} for the normal and the tangential traces, i.e. ฯƒฮฝ=(๐ˆ๐‚)โ‹…๐‚\sigma_{\nu}=(\boldsymbol{\sigma}\boldsymbol{\nu})\cdot\boldsymbol{\nu} and ๐ˆฯ„=๐ˆ๐‚โˆ’ฯƒฮฝ๐‚\boldsymbol{\sigma}_{\tau}=\boldsymbol{\sigma}\boldsymbol{\nu}-\sigma_{\nu}\boldsymbol{\nu}. Moreover, we recall that the divergence operator is defined by the equality Divโก๐ˆ=(ฯƒij,j)\operatorname{Div}\boldsymbol{\sigma}=\left(\sigma_{ij,j}\right) and, finally, the following Greenโ€™s formula holds:

โˆซฮฉ๐ˆโ‹…๐œบ(๐’—)๐‘‘x+โˆซฮฉDivโก๐ˆโ‹…๐’—dx=โˆซฮ“๐ˆ๐‚โ‹…๐’—๐‘‘aโˆ€๐’—โˆˆV\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx+\int_{\Omega}\operatorname{Div}\boldsymbol{\sigma}\cdot\boldsymbol{v}dx=\int_{\Gamma}\boldsymbol{\sigma}\boldsymbol{\nu}\cdot\boldsymbol{v}da\quad\forall\boldsymbol{v}\in V (3)

Finally, we consider the space of fourth order tensor fields

๐โˆž={โ„ฐ=(โ„ฐijkl):โ„ฐijkl=โ„ฐjikl=โ„ฐklijโˆˆLโˆž(ฮฉ),1โ‰คi,j,k,lโ‰คd}\mathbf{Q}_{\infty}=\left\{\mathcal{E}=\left(\mathcal{E}_{ijkl}\right):\mathcal{E}_{ijkl}=\mathcal{E}_{jikl}=\mathcal{E}_{klij}\in L^{\infty}(\Omega),\quad 1\leq i,j,k,l\leq d\right\}

This is a real Banach space with the norm โ€–โ„ฐโ€–๐โˆž=max1โ‰คi,j,k,lโ‰คdโกโ€–โ„ฐijklโ€–Lโˆž(ฮฉ)\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}=\max_{1\leq i,j,k,l\leq d}\left\|\mathcal{E}_{ijkl}\right\|_{L^{\infty}(\Omega)}. Moreover, a simple calculation shows that

โ€–โ„ฐ๐‰โ€–Qโ‰คdโ€–โ„ฐโ€–๐โˆžโ€–๐‰โ€–Qโˆ€โ„ฐโˆˆ๐โˆž,๐‰โˆˆQ.\|\mathcal{E}\boldsymbol{\tau}\|_{Q}\leq d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}\|\boldsymbol{\tau}\|_{Q}\quad\forall\mathcal{E}\in\mathbf{Q}_{\infty},\boldsymbol{\tau}\in Q. (4)

For each Banach space XX we use the notation C(โ„+;X)C\left(\mathbb{R}_{+};X\right) for the space of continuous functions defined on โ„+\mathbb{R}_{+}with values in XX. For a subset KโŠ‚XK\subset X we still use the symbol C(โ„+;K)C\left(\mathbb{R}_{+};K\right) for the set of continuous functions defined on โ„+\mathbb{R}_{+}with values in KK. It is well known that C(โ„+;X)C\left(\mathbb{R}_{+};X\right) can be organized in a canonical way as a Frรฉchet space, i.e. as a complete metric space in which
the corresponding topology is induced by a countable family of seminorms. Details can be found in [4] and [8], for instance. Here we restrict ourseleves to recall that the convergence of a sequence (xk)k\left(x_{k}\right)_{k} to the element xx, in the space C(โ„+;X)C\left(\mathbb{R}_{+};X\right), can be described as follows:

{xkโ†’x in C(โ„+;X) as kโ†’โˆž if and only if maxrโˆˆ[0,n]โกโ€–xk(r)โˆ’x(r)โ€–Xโ†’0 as kโ†’โˆž, for all nโˆˆโ„•โˆ—\left\{\begin{array}[]{l}x_{k}\rightarrow x\text{ in }C\left(\mathbb{R}_{+};X\right)\text{ as }k\rightarrow\infty\text{ if and only if }\\ \max_{r\in[0,n]}\left\|x_{k}(r)-x(r)\right\|_{X}\rightarrow 0\text{ as }k\rightarrow\infty,\text{ for all }n\in\mathbb{N}^{*}\end{array}\right.

3 Problem statement

The physical setting is as follows. A viscoplastic body occupies a bounded domain ฮฉโŠ‚โ„d(d=1,2,3)\Omega\subset\mathbb{R}^{d}(d=1,2,3) with a Lipschitz continuous boundary ฮ“\Gamma, divided into three measurable parts ฮ“1,ฮ“2\Gamma_{1},\Gamma_{2} and ฮ“3\Gamma_{3}, such that meas (ฮ“1)>0\left(\Gamma_{1}\right)>0. The body is subject to the action of body forces of density ๐’‡0\boldsymbol{f}_{0}. We also assume that it is fixed on ฮ“1\Gamma_{1} and surface tractions of density ๐’‡2\boldsymbol{f}_{2} act on ฮ“2\Gamma_{2}. On ฮ“3\Gamma_{3}, the body is in frictionless contact with a deformable obstacle, the so-called foundation. We assume that the contact process is quasistatic and we study it in the interval of time โ„+=[0,โˆž)\mathbb{R}_{+}=[0,\infty). Then, the classical formulation of the contact problem we consider in this paper is the following.

Problem ๐’ซ\mathcal{P}. Find a displacement field ๐’–:ฮฉร—โ„+โ†’โ„d\boldsymbol{u}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d} and a stress field ๐ˆ:ฮฉร—โ„+โ†’๐•Šd\boldsymbol{\sigma}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d} such that, for all tโˆˆโ„+t\in\mathbb{R}_{+},

๐ˆห™(t)=โ„ฐ๐œบ(๐’–ห™(t))+๐’ข(๐ˆ(t),๐œบ(๐’–(t))) in ฮฉ,Divโก๐ˆ(t)+๐’‡0(t)=๐ŸŽ in ฮฉ,๐’–(t)=๐ŸŽ on ฮ“1,๐ˆ(t)๐‚=๐’‡2(t) on ฮ“2,\begin{array}[]{rll}\dot{\boldsymbol{\sigma}}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\dot{\boldsymbol{u}}(t))+\mathcal{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))&\text{ in }&\Omega,\\ \operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}&\text{ in }&\Omega,\\ \boldsymbol{u}(t)=\mathbf{0}&\text{ on }&\Gamma_{1},\\ \boldsymbol{\sigma}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t)&\text{ on }&\Gamma_{2},\end{array}

for all tโˆˆโ„+t\in\mathbb{R}_{+}, there exists ฮพ:ฮฉร—โ„+โ†’โ„\xi:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R} which satisfies

uฮฝ(t)โ‰คg,ฯƒฮฝ(t)+p(uฮฝ(t))+ฮพ(t)โ‰ค0\displaystyle u_{\nu}(t)\leq g,\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\leq 0 (10)
(uฮฝ(t)โˆ’g)(ฯƒฮฝ(t)+p(uฮฝ(t))+ฮพ(t))=0\displaystyle\left(u_{\nu}(t)-g\right)\left(\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\right)=0 (11)
0โ‰คฮพ(t)โ‰คโˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s\displaystyle 0\leq\xi(t)\leq\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds (12)
ฮพ(t)=0 if uฮฝ(t)<0\displaystyle\xi(t)=0\text{ if }u_{\nu}(t)<0
ฮพ(t)=โˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s if uฮฝ(t)>0} on ฮ“3\displaystyle\left.\begin{array}[]{r}\xi(t)=\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\text{ if }u_{\nu}(t)>0\end{array}\right\}\quad\text{ on }\quad\Gamma_{3}
๐ˆฯ„(t)=๐ŸŽ\displaystyle\boldsymbol{\sigma}_{\tau}(t)=\mathbf{0}
๐’–(0)=๐’–0,๐ˆ(0)=๐ˆ0 on ฮ“3\displaystyle\boldsymbol{u}(0)=\boldsymbol{u}_{0},\boldsymbol{\sigma}(0)=\boldsymbol{\sigma}_{0}\text{ on }\quad\Gamma_{3}

Here and below, in order to simplify the notation, we do not indicate explicitly the dependence of various functions on the spatial variable ๐’™โˆˆฮฉโˆชฮ“\boldsymbol{x}\in\Omega\cup\Gamma. Equation (6) represents the viscoplastic constitutive law of the material already introduced in Section 1. Equation (7) is the equilibrium equation in which Div denotes the divergence operator for tensor valued functions. Conditions (8) and (9) are the displacement and traction boundary conditions, respectively, and condition (10) represents the contact condition with normal compliance, unilateral constraint and memory term, in which ฯƒฮฝ\sigma_{\nu} denotes the normal stress, uฮฝu_{\nu} is the normal displacement, gโ‰ฅ0g\geq 0 and p,bp,b are given functions. This condition was first introduced in [5] and, in the case when bb vanishes, was used in [7, 10, for instance. Condition (11) shows that the tangential stress on the contact surface, denoted ๐ˆฯ„\boldsymbol{\sigma}_{\tau}, vanishes. We use it here since we assume that the contact process is frictionless. Finally, (12) represents the initial conditions in which ๐’–0\boldsymbol{u}_{0} and ๐ˆ0\boldsymbol{\sigma}_{0} denote the initial displacement and the initial stress field, respectively.

Next, we list the assumptions on the data, present the variational formulation of the problem ๐’ซ\mathcal{P} and then we state and prove its unique weak solvability. To this end, we assume that the elasticity tensor โ„ฐ\mathcal{E}, the nonlinear constitutive function ๐’ข\mathcal{G} and the normal compliance function pp satisfy the following conditions.

{ (a) โ„ฐ=(โ„ฐijkl):ฮฉร—๐•Šdโ†’๐•Šd. (b) โ„ฐijkl=โ„ฐklij=โ„ฐjiklโˆˆLโˆž(ฮฉ),1โ‰คi,j,k,lโ‰คd. (c) There exists mโ„ฐ>0 such that โ„ฐ๐‰โ‹…๐‰โ‰ฅmโ„ฐโ€–๐‰โ€–2โˆ€๐‰โˆˆ๐•Šd, a.e. in ฮฉ,{ (a) ๐’ข:ฮฉร—๐•Šdร—๐•Šdโ†’๐•Šd. (b) There exists L๐’ข>0 such that โ€–๐’ข(๐’™,๐ˆ1,๐œบ1)โˆ’๐’ข(๐’™,๐ˆ2,๐œบ2)โ€–โ‰คL๐’ข(โ€–๐ˆ1โˆ’๐ˆ2โ€–+โ€–๐œบ1โˆ’๐œบ2โ€–)โˆ€๐ˆ1,๐ˆ2,๐œบ1,๐œบ2โˆˆ๐•Šd, a.e. ๐’™โˆˆฮฉ. (c) The mapping ๐’™โ†ฆ๐’ข(๐’™,๐ˆ,๐œบ) is measurable on ฮฉ, for any ๐ˆ,๐œบโˆˆ๐•Šd. (d) The mapping ๐’™โ†ฆ๐’ข(๐’™,๐ŸŽ,๐ŸŽ) belongs to Q\displaystyle\left\{\begin{array}[]{l}\text{ (a) }\mathcal{E}=\left(\mathcal{E}_{ijkl}\right):\Omega\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}.\\ \text{ (b) }\mathcal{E}_{ijkl}=\mathcal{E}_{klij}=\mathcal{E}_{jikl}\in L^{\infty}(\Omega),1\leq i,j,k,l\leq d.\\ \text{ (c) There exists }m_{\mathcal{E}}>0\text{ such that }\\ \mathcal{E}\boldsymbol{\tau}\cdot\boldsymbol{\tau}\geq m_{\mathcal{E}}\|\boldsymbol{\tau}\|^{2}\forall\boldsymbol{\tau}\in\mathbb{S}^{d}\text{, a.e. in }\Omega,\\ \left\{\begin{array}[]{l}\text{ (a) }\mathcal{G}:\Omega\times\mathbb{S}^{d}\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}.\\ \text{ (b) There exists }L_{\mathcal{G}}>0\text{ such that }\\ \left\|\mathcal{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{1},\boldsymbol{\varepsilon}_{1}\right)-\mathcal{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{2}\right)\right\|\\ \leq L_{\mathcal{G}}\left(\left\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\right\|+\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|\right)\\ \forall\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\text{ a.e. }\boldsymbol{x}\in\Omega.\end{array}\right.\\ \text{ (c) The mapping }\boldsymbol{x}\mapsto\mathcal{G}(\boldsymbol{x},\boldsymbol{\sigma},\boldsymbol{\varepsilon})\text{ is measurable on }\Omega,\\ \text{ for any }\boldsymbol{\sigma},\boldsymbol{\varepsilon}\in\mathbb{S}^{d}.\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto\mathcal{G}(\boldsymbol{x},\mathbf{0},\mathbf{0})\text{ belongs to }Q\end{array}\right. (13)
{ (a) p:โ„โ†’โ„+.(b) There exists Lp>0 such that |p(r1)โˆ’p(r2)|โ‰คLp|r1โˆ’r2|โˆ€r1,r2โˆˆโ„. (c) (p(r1)โˆ’p(r2))(r1โˆ’r2)โ‰ฅ0โˆ€r1,r2โˆˆโ„. (d) p(r)=0 for all r<0.\displaystyle\left\{\begin{array}[]{l}\text{ (a) }p:\mathbb{R}\rightarrow\mathbb{R}_{+}.\\ \text{(b) There exists }L_{p}>0\text{ such that }\\ \left|p\left(r_{1}\right)-p\left(r_{2}\right)\right|\leq L_{p}\left|r_{1}-r_{2}\right|\forall r_{1},r_{2}\in\mathbb{R}.\\ \text{ (c) }\left(p\left(r_{1}\right)-p\left(r_{2}\right)\right)\left(r_{1}-r_{2}\right)\geq 0\quad\forall r_{1},r_{2}\in\mathbb{R}.\\ \text{ (d) }p(r)=0\text{ for all }r<0.\end{array}\right. (14)

Moreover, the densities of body forces, surface tractions and the memory function are such that

๐’‡0โˆˆC(โ„+;L2(ฮฉ)d),๐’‡2โˆˆC(โ„+;L2(ฮ“2)d).\boldsymbol{f}_{0}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right),\quad\boldsymbol{f}_{2}\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{2}\right)^{d}\right). (16)
bโˆˆC(โ„+;Lโˆž(ฮ“3)),b(t,๐’™)โ‰ฅ0b\in C\left(\mathbb{R}_{+};L^{\infty}\left(\Gamma_{3}\right)\right),\quad b(t,\boldsymbol{x})\geq 0 (17)

Finally, the initial data verifies

๐’–0โˆˆV,๐ˆ0โˆˆQ.\boldsymbol{u}_{0}\in V,\quad\boldsymbol{\sigma}_{0}\in Q. (18)

We introduce the set of admissible displacements UU given by

U={๐’—โˆˆV:vฮฝโ‰คg on ฮ“3}U=\left\{\boldsymbol{v}\in V:v_{\nu}\leq g\text{ on }\Gamma_{3}\right\} (19)

Next, using the Riesz representation theorem we define the operators PP : Vโ†’V,โ„ฌ:C(โ„+,V)โ†’C(โ„+,L2(ฮ“3))V\rightarrow V,\mathcal{B}:C\left(\mathbb{R}_{+},V\right)\rightarrow C\left(\mathbb{R}_{+},L^{2}\left(\Gamma_{3}\right)\right) and the function f:โ„+โ†’Vf:\mathbb{R}_{+}\rightarrow V by equalities

(P๐’–,๐’—)V=โˆซฮ“3p(uฮฝ)vฮฝ๐‘‘aโˆ€๐’–,๐’—โˆˆV\displaystyle(P\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Gamma_{3}}p\left(u_{\nu}\right)v_{\nu}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (20)
(โ„ฌ๐’–(t),ฮพ)L2(ฮ“3)=(โˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s,ฮพ)L2(ฮ“3)\displaystyle(\mathcal{B}\boldsymbol{u}(t),\xi)_{L^{2}\left(\Gamma_{3}\right)}=\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,\xi\right)_{L^{2}\left(\Gamma_{3}\right)} (21)
โˆ€๐’–โˆˆC(โ„+;V),ฮพโˆˆL2(ฮ“3),tโˆˆโ„+\displaystyle\quad\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\xi\in L^{2}\left(\Gamma_{3}\right),t\in\mathbb{R}_{+}
(๐’‡(t),๐’—)V=โˆซฮฉ๐’‡0(t)โ‹…๐’—๐‘‘x+โˆซฮ“2๐’‡2(t)โ‹…๐’—๐‘‘a\displaystyle(\boldsymbol{f}(t),\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot\boldsymbol{v}dx+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot\boldsymbol{v}da (22)
โˆ€๐’—โˆˆV,tโˆˆโ„+\displaystyle\quad\forall\boldsymbol{v}\in V,t\in\mathbb{R}_{+}

In order to derive the variational formulation of the Problem ๐’ซ\mathcal{P} we introduce the operator ๐’ฎ\mathcal{S} by the following lemma.

Lemma 3.1 Assume that (14) and (18) hold. Then, for each function ๐’–โˆˆC(โ„+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) there exists a unique function ๐’ฎ๐’–โˆˆC(โ„+;Q)\mathcal{S}\boldsymbol{u}\in C\left(\mathbb{R}_{+};Q\right) such that

๐’ฎ๐’–(t)=โˆซ0t๐’ข(๐’ฎ๐’–(s)+โ„ฐ๐œบ(๐’–(s)),๐œบ(๐’–(s)))๐‘‘s+๐ˆ0โˆ’โ„ฐ๐œบ(๐’–0)โˆ€tโˆˆโ„+\mathcal{S}\boldsymbol{u}(t)=\int_{0}^{t}\mathcal{G}(\mathcal{S}\boldsymbol{u}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)))ds+\boldsymbol{\sigma}_{0}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0}\right)\quad\forall t\in\mathbb{R}_{+} (23)

Moreover, the operator ๐’ฎ:C(โ„+;V)โ†’C(โ„+;Q)\mathcal{S}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};Q\right) satisfies the following condition: for every nโˆˆโ„•n\in\mathbb{N} there exists kn>0k_{n}>0 such that, โˆ€๐’–1,๐’–2โˆˆC(โ„+;V),โˆ€tโˆˆ[0,n]\forall\boldsymbol{u}_{1},\boldsymbol{u}_{2}\in C\left(\mathbb{R}_{+};V\right),\forall t\in[0,n],

โ€–๐’ฎ๐’–1(t)โˆ’๐’ฎ๐’–2(t)โ€–Qโ‰คknโˆซ0tโ€–๐’–1(s)โˆ’๐’–2(s)โ€–V๐‘‘s\left\|\mathcal{S}\boldsymbol{u}_{1}(t)-\mathcal{S}\boldsymbol{u}_{2}(t)\right\|_{Q}\leq k_{n}\int_{0}^{t}\left\|\boldsymbol{u}_{1}(s)-\boldsymbol{u}_{2}(s)\right\|_{V}ds (24)

The variational formulation of Problem ๐’ซ\mathcal{P} is the following.
Problem ๐’ซV\mathcal{P}^{V}. Find a displacement field ๐’–:โ„+โ†’U\boldsymbol{u}:\mathbb{R}_{+}\rightarrow U and a stress field ๐ˆ:โ„+โ†’Q\boldsymbol{\sigma}:\mathbb{R}_{+}\rightarrow Q such that, for all tโˆˆโ„+t\in\mathbb{R}_{+},

๐ˆ(t)=โ„ฐ๐œบ(๐’–(t))+๐’ฎ๐’–(t)โˆ€tโˆˆโ„+\displaystyle\boldsymbol{\sigma}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\mathcal{S}\boldsymbol{u}(t)\quad\forall t\in\mathbb{R}_{+} (25)
(โ„ฐ๐œบ(๐’–(t)),๐œบ(๐’—)โˆ’๐œบ(๐’–(t)))Q+(๐’ฎ๐’–(t),๐œบ(๐’—)โˆ’๐œบ(๐’–(t)))Q\displaystyle(\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}+(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q} (26)
+(โ„ฌ๐’–(t),vฮฝ+โˆ’uฮฝ+(t))L2(ฮ“3)+(P๐’–(t),๐’—โˆ’๐’–(t))V\displaystyle\quad+\left(\mathcal{B}\boldsymbol{u}(t),v_{\nu}^{+}-u_{\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}+(P\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}
โ‰ฅ(๐’‡(t),๐’—โˆ’๐’–(t))Vโˆ€๐’—โˆˆU,โˆ€tโˆˆโ„+\displaystyle\quad\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}\quad\forall\boldsymbol{v}\in U,\forall t\in\mathbb{R}_{+}

The proof of Lemma 3.1 including the variational formulation ๐’ซV\mathcal{P}^{V} were obtained in [5]. Note that (25) is a consequence of (6) and (12), while (26) can be easily obtained by using integrations by parts, (7)-(11) and notation (19)-(21). The unique weak solvability of Problem ๐’ซ\mathcal{P} follows from the following result.

Theorem 3.1 Assume that (13)-(18) hold. Then Problem ๐’ซV\mathcal{P}^{V} has a unique solution, which satisfies ๐’–โˆˆC(โ„+;U)\boldsymbol{u}\in C\left(\mathbb{R}_{+};U\right) and ๐ˆโˆˆC(โ„+;Q)\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q\right).

The proof of Theorem 3.1 was given in [5], based on an abstract result provided by 11, 12 .

4 A penalization result

In this section we introduce a penalized contact problem ๐’ซฮผ\mathcal{P}_{\mu} and we prove that its unique weak solution converges to the weak solution of problem ๐’ซ\mathcal{P}.

Let qq be a function which satisfies

{ (a) q:[g,+โˆž[โ†’โ„+.(b) There exists Lq>0 such that |q(r1)โˆ’q(r2)|โ‰คLq|r1โˆ’r2|โˆ€r1,r2โ‰ฅg. (c) (q(r1)โˆ’q(r2))(r1โˆ’r2)>0โˆ€r1,r2โ‰ฅg,r1โ‰ r2. (d) q(g)=0.\left\{\begin{array}[]{l}\text{ (a) }q:\left[g,+\infty\left[\rightarrow\mathbb{R}_{+}.\right.\right.\\ \text{(b) There exists }L_{q}>0\text{ such that }\\ \quad\left|q\left(r_{1}\right)-q\left(r_{2}\right)\right|\leq L_{q}\left|r_{1}-r_{2}\right|\quad\forall r_{1},r_{2}\geq g.\\ \text{ (c) }\left(q\left(r_{1}\right)-q\left(r_{2}\right)\right)\left(r_{1}-r_{2}\right)>0\quad\forall r_{1},r_{2}\geq g,r_{1}\neq r_{2}.\\ \text{ (d) }q(g)=0.\end{array}\right.

Let ฮผ>0\mu>0 and consider the function pฮผp_{\mu} defined by

pฮผ(r)={p(r) if rโ‰คg1ฮผq(r)+p(g) if r>gp_{\mu}(r)=\left\{\begin{array}[]{cl}p(r)&\text{ if }\quad r\leq g\\ \frac{1}{\mu}q(r)+p(g)&\text{ if }\quad r>g\end{array}\right.

We deduce that the function pฮผp_{\mu} satisfies condition (15), i.e.

{ (a) pฮผ:โ„โ†’โ„+.(b) There exists Lpฮผ>0 such that |pฮผ(r1)โˆ’pฮผ(r2)|โ‰คLpฮผ|r1โˆ’r2|โˆ€r1,r2โˆˆโ„. (c) (pฮผ(r1)โˆ’pฮผ(r2))(r1โˆ’r2)โ‰ฅ0โˆ€r1,r2โˆˆโ„. (d) pฮผ(r)=0 for all r<0.\left\{\begin{array}[]{l}\text{ (a) }p_{\mu}:\mathbb{R}\rightarrow\mathbb{R}_{+}.\\ \text{(b) There exists }L_{p_{\mu}}>0\text{ such that }\\ \quad\left|p_{\mu}\left(r_{1}\right)-p_{\mu}\left(r_{2}\right)\right|\leq L_{p_{\mu}}\left|r_{1}-r_{2}\right|\quad\forall r_{1},r_{2}\in\mathbb{R}.\\ \text{ (c) }\left(p_{\mu}\left(r_{1}\right)-p_{\mu}\left(r_{2}\right)\right)\left(r_{1}-r_{2}\right)\geq 0\quad\forall r_{1},r_{2}\in\mathbb{R}.\\ \text{ (d) }p_{\mu}(r)=0\text{ for all }r<0.\end{array}\right.

This allows us to consider the operator Pฮผ:Vโ†’VP_{\mu}:V\rightarrow V defined by

(Pฮผ๐’–,๐’—)V=โˆซฮ“3pฮผ(uฮฝ)vฮฝ๐‘‘aโˆ€๐’–,๐’—โˆˆV\left(P_{\mu}\boldsymbol{u},\boldsymbol{v}\right)_{V}=\int_{\Gamma_{3}}p_{\mu}\left(u_{\nu}\right)v_{\nu}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (30)

and we note that PฮผP_{\mu} is a monotone Lipschitz continuous operator.
With these notation, we consider the following contact problem.
Problem ๐’ซฮผ\mathcal{P}_{\mu}. Find a displacement field ๐’–ฮผ:ฮฉร—โ„+โ†’โ„d\boldsymbol{u}_{\mu}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d} and a stress field ฯƒฮผ:ฮฉร—โ„+โ†’๐•Šd\sigma_{\mu}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d} such that, for all tโˆˆโ„+t\in\mathbb{R}_{+},

๐ˆห™ฮผ(t)=โ„ฐ๐œบ(๐’–ห™ฮผ(t))+๐’ข(๐ˆฮผ(t),๐œบ(๐’–ฮผ(t)))\displaystyle\dot{\boldsymbol{\sigma}}_{\mu}(t)=\mathcal{E}\boldsymbol{\varepsilon}\left(\dot{\boldsymbol{u}}_{\mu}(t)\right)+\mathcal{G}\left(\boldsymbol{\sigma}_{\mu}(t),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)\right) in ฮฉ,\displaystyle\text{ in }\quad\Omega, (31)
Divโก๐ˆฮผ(t)+๐’‡0(t)=๐ŸŽ\displaystyle\operatorname{Div}\boldsymbol{\sigma}_{\mu}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0} in ฮฉ,\displaystyle\text{ in }\quad\Omega, (32)
๐’–ฮผ(t)=๐ŸŽ\displaystyle\boldsymbol{u}_{\mu}(t)=\mathbf{0} on ฮ“1,\displaystyle\text{ on }\quad\Gamma_{1}, (33)
๐ˆฮผ(t)๐‚=๐’‡2(t)\displaystyle\boldsymbol{\sigma}_{\mu}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t) on ฮ“2,\displaystyle\text{ on }\quad\Gamma_{2}, (34)

for all tโˆˆโ„+t\in\mathbb{R}_{+}, there exists ฮพ:ฮฉร—โ„+โ†’โ„\xi:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R} which satisfies

ฯƒฮผฮฝ(t)+pฮผ(uฮผฮฝ(t))+ฮพ(t)=00โ‰คฮพ(t)โ‰คโˆซ0tb(tโˆ’s)uฮผฮฝ+(s)๐‘‘sฮพ(t)=0 if uฮผฮฝ(t)<0ฮพ(t)=โˆซ0tb(tโˆ’s)uฮผฮฝ+(s)๐‘‘s if uฮผฮฝ(t)>0 on ฮ“3๐ˆฮผฯ„(t)=๐ŸŽ on ฮ“3๐’–ฮผ(0)=๐’–0,๐ˆฮผ(0)=๐ˆ0 in ๐›€2\begin{array}[]{ll}\sigma_{\mu\nu}(t)+p_{\mu}\left(u_{\mu\nu}(t)\right)+\xi(t)=0&\\ 0\leq\xi(t)\leq\int_{0}^{t}b(t-s)u_{\mu\nu}^{+}(s)ds&\\ \xi(t)=0\text{ if }u_{\mu\nu}(t)<0&\\ \xi(t)=\int_{0}^{t}b(t-s)u_{\mu\nu}^{+}(s)ds\text{ if }u_{\mu\nu}(t)>0&\text{ on }\Gamma_{3}\\ &\boldsymbol{\sigma}_{\mu\tau}(t)=\mathbf{0}\\ &\text{ on }\Gamma_{3}\\ \boldsymbol{u}_{\mu}(0)=\boldsymbol{u}_{0},\boldsymbol{\sigma}_{\mu}(0)=\boldsymbol{\sigma}_{0}&\text{ in }\boldsymbol{\Omega}^{2}\end{array}

Note that here and below uฮผฮฝu_{\mu\nu} represents the normal component of the displacement field ๐’–ฮผ\boldsymbol{u}_{\mu} and ฯƒฮผฮฝ,๐ˆฮผฯ„\sigma_{\mu\nu},\boldsymbol{\sigma}_{\mu\tau} represent the normal and tangential components of the stress tensor ฯƒฮผ\sigma_{\mu}, respectively. The equations and boundary conditions in problem (31)-(37) have a similar interpretation as those in problem (6)-(12). The difference arises in the fact that here we replace the contact condition with normal compliance, memory term and unilateral constraint (10) with the contact condition with normal compliance and memory term (35). In this condition ฮผ\mu represents a penalization parameter which may be interpreted as a deformability coefficient of the foundation, and then 1ฮผ\frac{1}{\mu} is the surface stiffness coefficient.

Using notation (221), (21) and (30) by similar arguments as in the case of Problem ๐’ซ\mathcal{P} we obtain the following variational formulation of Problem ๐’ซฮผ\mathcal{P}_{\mu}.
Problem ๐’ซฮผV\mathcal{P}_{\mu}^{V}. Find a displacement field ๐’–ฮผ:โ„+โ†’U\boldsymbol{u}_{\mu}:\mathbb{R}_{+}\rightarrow U and a stress field
๐ˆฮผ:โ„+โ†’Q\boldsymbol{\sigma}_{\mu}:\mathbb{R}_{+}\rightarrow Q such that, for all tโˆˆโ„+t\in\mathbb{R}_{+},

๐ˆฮผ(t)=โ„ฐ๐œบ(๐’–ฮผ(t))+๐’ฎ๐’–ฮผ(t)โˆ€tโˆˆโ„+\displaystyle\boldsymbol{\sigma}_{\mu}(t)=\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)+\mathcal{S}\boldsymbol{u}_{\mu}(t)\quad\forall t\in\mathbb{R}_{+} (38)
(โ„ฐ๐œบ(๐’–ฮผ(t)),๐œบ(๐’—)โˆ’๐œบ(๐’–ฮผ(t)))Q+(๐’ฎ๐’–ฮผ(t),๐œบ(๐’—)โˆ’๐œบ(๐’–ฮผ(t)))Q\displaystyle\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)\right)_{Q}+\left(\mathcal{S}\boldsymbol{u}_{\mu}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)\right)_{Q} (39)
+(โ„ฌ๐’–ฮผ(t),vฮฝ+โˆ’uฮผฮฝ+(t))L2(ฮ“3)+(Pฮผ๐’–ฮผ(t),๐’—โˆ’๐’–ฮผ(t))V\displaystyle\quad+\left(\mathcal{B}\boldsymbol{u}_{\mu}(t),v_{\nu}^{+}-u_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}+\left(P_{\mu}\boldsymbol{u}_{\mu}(t),\boldsymbol{v}-\boldsymbol{u}_{\mu}(t)\right)_{V}
โ‰ฅ(๐’‡(t),๐’—โˆ’๐’–ฮผ(t))Vโˆ€๐’—โˆˆV,โˆ€tโˆˆโ„+\displaystyle\quad\geq\left(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}_{\mu}(t)\right)_{V}\quad\forall\boldsymbol{v}\in V,\forall t\in\mathbb{R}_{+}

We have the following existence, uniqueness and convergence result.
Theorem 4.1 Assume that (13) - (18) and (29) hold. Then
a) For each ฮผ>0\mu>0 there exists a unique solution ๐’–ฮผโˆˆV\boldsymbol{u}_{\mu}\in V to Problem ๐’ซฮผV\mathcal{P}_{\mu}^{V}.
b) The solution ๐’–ฮผ\boldsymbol{u}_{\mu} of Problem ๐’ซฮผV\mathcal{P}_{\mu}^{V} converges strongly to the solution ๐’–\boldsymbol{u} of Problem ๐’ซV\mathcal{P}^{V}, that is

โ€–๐’–ฮผ(t)โˆ’๐’–(t)โ€–V+โ€–๐ˆฮผ(t)โˆ’๐ˆ(t)โ€–Qโ†’0\left\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}+\left\|\boldsymbol{\sigma}_{\mu}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}\rightarrow 0 (40)

as ฮผโ†’0\mu\rightarrow 0, for all tโˆˆโ„+t\in\mathbb{R}_{+}.
Note that the convergence (40) above is understood in the following sense: for all tโˆˆโ„+t\in\mathbb{R}_{+}and for every sequence {ฮผn}โŠ‚โ„+\left\{\mu_{n}\right\}\subset\mathbb{R}_{+}converging to 0 as nโ†’โˆžn\rightarrow\infty we have ๐’–ฮผn(t)โ†’๐’–(t)\boldsymbol{u}_{\mu_{n}}(t)\rightarrow\boldsymbol{u}(t) in V,๐ˆฮผn(t)โ†’๐ˆ(t)V,\boldsymbol{\sigma}_{\mu_{n}}(t)\rightarrow\boldsymbol{\sigma}(t) in QQ as nโ†’โˆžn\rightarrow\infty.

The proof of Theorem 4.1 is carried out in several steps that we present in what follows. To this end we assume below that (13)-(18) and (29) hold. Let ฮผ>0\mu>0. We consider the auxiliary problem of finding a displacement field ๐’–~ฮผ:โ„+โ†’V\widetilde{\boldsymbol{u}}_{\mu}:\mathbb{R}_{+}\rightarrow V such that, for all tโˆˆโ„+t\in\mathbb{R}_{+},

(โ„ฐ๐œบ(๐’–~ฮผ(t)),๐œบ(๐’—)โˆ’๐œบ(๐’–~ฮผ(t)))Q+(๐’ฎ๐’–(t),๐œบ(๐’—)โˆ’๐œบ(๐’–~ฮผ(t)))Q\displaystyle\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}+\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q} (41)
+(โ„ฌ๐’–(t),vฮฝ+โˆ’u~ฮผฮฝ+(t))L2(ฮ“3)+(Pฮผ๐’–~ฮผ(t),๐’—โˆ’๐’–~ฮผ(t))V\displaystyle+\left(\mathcal{B}\boldsymbol{u}(t),v_{\nu}^{+}-\widetilde{u}_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}+\left(P_{\mu}\widetilde{\boldsymbol{u}}_{\mu}(t),\boldsymbol{v}-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}
โ‰ฅ(๐’‡(t),๐’—โˆ’๐’–~ฮผ(t))Vโˆ€๐’—โˆˆU\displaystyle\geq\left(\boldsymbol{f}(t),\boldsymbol{v}-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\forall\boldsymbol{v}\in U

This problem is an intermediate problem between (39) and (26), since here ๐’ฎ๐’–(t),โ„ฌ๐’–(t)\mathcal{S}\boldsymbol{u}(t),\mathcal{B}\boldsymbol{u}(t) are knowns, taken from the problem ๐’ซV\mathcal{P}^{V}.

We have the following existence and uniqueness result.
Lemma 4.1 There exists a unique function ๐’–~ฮผโˆˆC(โ„+;V)\widetilde{\boldsymbol{u}}_{\mu}\in C\left(\mathbb{R}_{+};V\right) which satisfies (41), for all tโˆˆโ„+t\in\mathbb{R}_{+}.

Proof. We define the operator Aฮผ:Vโ†’VA_{\mu}:V\rightarrow V and the function ๐’‡~:โ„+โ†’V\widetilde{\boldsymbol{f}}:\mathbb{R}_{+}\rightarrow V by equalities

(Aฮผ๐’–,๐’—)V\displaystyle\left(A_{\mu}\boldsymbol{u},\boldsymbol{v}\right)_{V} =(โ„ฐ๐œบ(๐’–),๐œบ(๐’—))Q+(Pฮผ๐’–,๐’—)V\displaystyle=(\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\left(P_{\mu}\boldsymbol{u},\boldsymbol{v}\right)_{V} (42)
(๐’‡~(t),๐’—)V\displaystyle(\widetilde{\boldsymbol{f}}(t),\boldsymbol{v})_{V} =(๐’‡(t),๐’—)Vโˆ’(๐’ฎ๐’–(t),๐œบ(๐’—))Qโˆ’(โ„ฌ๐’–(t),vฮฝ+)L2(ฮ“3)\displaystyle=(\boldsymbol{f}(t),\boldsymbol{v})_{V}-(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}-\left(\mathcal{B}\boldsymbol{u}(t),v_{\nu}^{+}\right)_{L^{2}\left(\Gamma_{3}\right)} (43)

for all ๐’–,๐’—โˆˆV,tโˆˆโ„+\boldsymbol{u},\boldsymbol{v}\in V,t\in\mathbb{R}_{+}. We note that (17), (16), (22) and (23) yield ๐’‡~โˆˆC(โ„+;V)\widetilde{\boldsymbol{f}}\in C\left(\mathbb{R}_{+};V\right).

Let tโˆˆโ„+t\in\mathbb{R}_{+}. Based on (42)-(43), it is easy to see that (41) is equivalent with the nonlinear variational inequality of the first kind

(Aฮผ๐’–~ฮผ(t),๐’—โˆ’๐’–~ฮผ(t))Vโ‰ฅ(๐’‡~(t),๐’—โˆ’๐’–~ฮผ(t))Vโˆ€๐’—โˆˆU\left(A_{\mu}\widetilde{\boldsymbol{u}}_{\mu}(t),\boldsymbol{v}-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\geq\left(\widetilde{\boldsymbol{f}}(t),\boldsymbol{v}-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\quad\forall\boldsymbol{v}\in U (44)

Next, by (13) and the properties of operator PฮผP_{\mu} it follows that AฮผA_{\mu} is a strongly monotone and Lipschitz continuous operator. Therefore, using standard arguments on variational inequalities we deduce that there exists a unique solution ๐’–~ฮผโˆˆC(โ„+;U)\widetilde{\boldsymbol{u}}_{\mu}\in C\left(\mathbb{R}_{+};U\right) for (44), which concludes the proof.

We proceed with the following weak convergence result.
Lemma 4.2 As ฮผโ†’0\mu\rightarrow 0,

๐’–~ฮผ(t)โŸถ๐’–(t) in V,\widetilde{\boldsymbol{u}}_{\mu}(t)\longrightarrow\boldsymbol{u}(t)\quad\text{ in }V,

for all tโˆˆโ„+t\in\mathbb{R}_{+}.
Proof. Let tโˆˆโ„+t\in\mathbb{R}_{+}. We take ๐’—=๐ŸŽ\boldsymbol{v}=\mathbf{0} in (41) to obtain

(โ„ฐ๐œบ(๐’–~ฮผ(t)),๐œบ(๐’–~ฮผ(t)))Qโ‰ค(๐’‡(t),๐’–~ฮผ(t))Vโˆ’(๐’ฎ๐’–(t),๐œบ(๐’–~ฮผ(t)))Q\displaystyle\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}\leq\left(\boldsymbol{f}(t),\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}-\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}
โˆ’(โ„ฌ๐’–(t),u~ฮผฮฝ+(t))L2(ฮ“3)โˆ’(Pฮผ๐’–~ฮผ(t),๐’–~ฮผ(t))V\displaystyle-\left(\mathcal{B}\boldsymbol{u}(t),\widetilde{u}_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}-\left(P_{\mu}\widetilde{\boldsymbol{u}}_{\mu}(t),\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V} (45)

On the other hand, the properties (29) yield (Pฮผ๐’–~ฮผ(t),๐’–~ฮผ(t))Vโ‰ฅ0\left(P_{\mu}\widetilde{\boldsymbol{u}}_{\mu}(t),\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\geq 0, and from (45) we deduce that

(โ„ฐ๐œบ(๐’–~ฮผ(t)),๐œบ(๐’–~ฮผ(t)))Qโ‰ค(๐’‡(t),๐’–~ฮผ(t))V\displaystyle\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}\leq\left(\boldsymbol{f}(t),\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}
โˆ’(๐’ฎ๐’–(t),๐œบ(๐’–~ฮผ(t)))Qโˆ’(โ„ฌ๐’–(t),u~ฮผฮฝ+(t))L2(ฮ“3)\displaystyle\quad-\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}-\left(\mathcal{B}\boldsymbol{u}(t),\widetilde{u}_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)} (46)

From (13) we obtain that

โ€–๐’–~ฮผ(t)โ€–Vโ‰คc(โ€–๐’‡(t)โ€–V+โ€–๐’ฎ๐’–(t)โ€–V+โ€–โ„ฌ๐’–(t)โ€–L2(ฮ“3))\left\|\widetilde{\boldsymbol{u}}_{\mu}(t)\right\|_{V}\leq c\left(\|\boldsymbol{f}(t)\|_{V}+\|\mathcal{S}\boldsymbol{u}(t)\|_{V}+\|\mathcal{B}\boldsymbol{u}(t)\|_{L^{2}\left(\Gamma_{3}\right)}\right) (47)

Note that here and below cc is a constant which does not depend on ฮผ\mu and tt and whose value can change from line to line. This inequality shows that the sequence {๐’–~ฮผ(t)}ฮผโŠ‚V\left\{\widetilde{\boldsymbol{u}}_{\mu}(t)\right\}_{\mu}\subset V is bounded. Hence, there exists a subsequence of the sequence {๐’–~ฮผ(t)}ฮผ\left\{\widetilde{\boldsymbol{u}}_{\mu}(t)\right\}_{\mu}, still denoted {๐’–~ฮผ(t)}ฮผ\left\{\widetilde{\boldsymbol{u}}_{\mu}(t)\right\}_{\mu}, and an element ๐’–~(t)โˆˆV\widetilde{\boldsymbol{u}}(t)\in V such that

๐’–~ฮผ(t)โŸถ๐’–~(t) in V as ฮผโ†’0.\widetilde{\boldsymbol{u}}_{\mu}(t)\longrightarrow\widetilde{\boldsymbol{u}}(t)\quad\text{ in }V\quad\text{ as }\mu\rightarrow 0. (48)

Next we study the properties of the element ๐’–~(t)\widetilde{\boldsymbol{u}}(t). It follows from (45) that

(Pฮผ๐’–~ฮผ(t),๐’–~ฮผ(t))Vโ‰ค(๐’‡(t),๐’–~ฮผ(t))Vโˆ’(โ„ฐ๐œบ(๐’–~ฮผ(t)),๐œบ(๐’–~ฮผ(t)))Qโˆ’(๐’ฎ๐’–(t),๐œบ(๐’–~ฮผ(t)))Qโˆ’(โ„ฌ๐’–(t),u~ฮผฮฝ+(t))L2(ฮ“3)\begin{array}[]{r}\left(P_{\mu}\widetilde{\boldsymbol{u}}_{\mu}(t),\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\leq\left(\boldsymbol{f}(t),\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}-\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}\\ -\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}-\left(\mathcal{B}\boldsymbol{u}(t),\widetilde{u}_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}\end{array}

and, since {๐’–~ฮผ(t)}ฮผ\left\{\widetilde{\boldsymbol{u}}_{\mu}(t)\right\}_{\mu} is a bounded sequence in VV, we deduce that

(Pฮผ๐’–~ฮผ(t),๐’–~ฮผ(t))Vโ‰คc\left(P_{\mu}\widetilde{\boldsymbol{u}}_{\mu}(t),\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\leq c

This implies that โˆซฮ“3pฮผ(u~ฮผฮฝ(t))u~ฮผฮฝ(t)๐‘‘aโ‰คc\int_{\Gamma_{3}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\widetilde{u}_{\mu\nu}(t)da\leq c and, since โˆซฮ“3pฮผ(u~ฮผฮฝ(t))g๐‘‘aโ‰ฅ\int_{\Gamma_{3}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)gda\geq 0, it follows that

โˆซฮ“3pฮผ(u~ฮผฮฝ(t))(u~ฮผฮฝ(t)โˆ’g)๐‘‘aโ‰คc\int_{\Gamma_{3}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\left(\widetilde{u}_{\mu\nu}(t)-g\right)da\leq c (49)

We consider now the measurable subsets of ฮ“3\Gamma_{3} defined by

ฮ“31={๐’™โˆˆฮ“3:u~ฮผฮฝ(t)(๐’™)โ‰คg},ฮ“32={๐’™โˆˆฮ“3:u~ฮผฮฝ(t)(๐’™)>g}\Gamma_{31}=\left\{\boldsymbol{x}\in\Gamma_{3}:\widetilde{u}_{\mu\nu}(t)(\boldsymbol{x})\leq g\right\},\quad\Gamma_{32}=\left\{\boldsymbol{x}\in\Gamma_{3}:\widetilde{u}_{\mu\nu}(t)(\boldsymbol{x})>g\right\} (50)

Clearly, both ฮ“31\Gamma_{31} and ฮ“32\Gamma_{32} depend on tt and ฮผ\mu but, for simplicity, we do not indicate explicitly this dependence. We use (49) to write

โˆซฮ“31pฮผ(u~ฮผฮฝ(t))(u~ฮผฮฝ(t)โˆ’g)๐‘‘a+โˆซฮ“32pฮผ(u~ฮผฮฝ(t))(u~ฮผฮฝ(t)โˆ’g)๐‘‘aโ‰คc\int_{\Gamma_{31}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\left(\widetilde{u}_{\mu\nu}(t)-g\right)da+\int_{\Gamma_{32}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\left(\widetilde{u}_{\mu\nu}(t)-g\right)da\leq c

and, since โˆซฮ“31pฮผ(u~ฮผฮฝ(t))u~ฮผฮฝ(t)๐‘‘aโ‰ฅ0\int_{\Gamma_{31}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\widetilde{u}_{\mu\nu}(t)da\geq 0, we obtain

โˆซฮ“32pฮผ(u~ฮผฮฝ(t))(u~ฮผฮฝ(t)โˆ’g)๐‘‘aโ‰คโˆซฮ“31pฮผ(u~ฮผฮฝ(t))g๐‘‘a+c\int_{\Gamma_{32}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\left(\widetilde{u}_{\mu\nu}(t)-g\right)da\leq\int_{\Gamma_{31}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)gda+c

Thus, taking into account that pฮผ(r)=p(r)p_{\mu}(r)=p(r) for rโ‰คgr\leq g, by the monotonicity of the function pp we can write

โˆซฮ“32pฮผ(u~ฮผฮฝ(t))(u~ฮผฮฝ(t)โˆ’g)๐‘‘aโ‰คโˆซฮ“31p(u~ฮผฮฝ(t))g๐‘‘a+cโ‰คโˆซฮ“3p(g)g๐‘‘a+c\int_{\Gamma_{32}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\left(\widetilde{u}_{\mu\nu}(t)-g\right)da\leq\int_{\Gamma_{31}}p\left(\widetilde{u}_{\mu\nu}(t)\right)gda+c\leq\int_{\Gamma_{3}}p(g)gda+c

Therefore, we deduce that

โˆซฮ“32pฮผ(u~ฮผฮฝ(t))(u~ฮผฮฝ(t)โˆ’g)๐‘‘aโ‰คc\int_{\Gamma_{32}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\left(\widetilde{u}_{\mu\nu}(t)-g\right)da\leq c (51)

We use now the definitions (28) and (50) to see that, a.e on ฮ“32\Gamma_{32}, we have

pฮผ(u~ฮผฮฝ(t))=1ฮผq(u~ฮผฮฝ(t))+p(g),p(g)(u~ฮผฮฝ(t)โˆ’g)>0.p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)=\frac{1}{\mu}q\left(\widetilde{u}_{\mu\nu}(t)\right)+p(g),\quad p(g)\left(\widetilde{u}_{\mu\nu}(t)-g\right)>0.

Consequently, the inequality (51) yields

โˆซฮ“32q(u~ฮผฮฝ(t))(u~ฮผฮฝ(t)โˆ’g)๐‘‘aโ‰คcฮผ\int_{\Gamma_{32}}q\left(\widetilde{u}_{\mu\nu}(t)\right)\left(\widetilde{u}_{\mu\nu}(t)-g\right)da\leq c\mu (52)

Next, we consider the function defined by

p~:โ„โ†’โ„+p~(r)={0 if rโ‰คgq(r) if r>g\widetilde{p}:\mathbb{R}\rightarrow\mathbb{R}_{+}\quad\widetilde{p}(r)=\left\{\begin{array}[]{clc}0&\text{ if }&r\leq g\\ q(r)&\text{ if }&r>g\end{array}\right.

and we note that by (27) it follows that p~\widetilde{p} is a continuous increasing function and, moreover,

p~(r)=0 iff rโ‰คg.\widetilde{p}(r)=0\quad\text{ iff }\quad r\leq g. (53)

We use (52), equality q(u~ฮผฮฝ(t))=p~(u~ฮผฮฝ(t))q\left(\widetilde{u}_{\mu\nu}(t)\right)=\widetilde{p}\left(\widetilde{u}_{\mu\nu}(t)\right) a.e on ฮ“32\Gamma_{32} and (50) to deduce that

โˆซฮ“3p~(u~ฮผฮฝ(t))(u~ฮผฮฝ(t)โˆ’g)+โ‰คcฮผ\int_{\Gamma_{3}}\widetilde{p}\left(\widetilde{u}_{\mu\nu}(t)\right)\left(\widetilde{u}_{\mu\nu}(t)-g\right)^{+}\leq c\mu

where (u~ฮผฮฝ(t)โˆ’g)+\left(\widetilde{u}_{\mu\nu}(t)-g\right)^{+}denotes the positive part of u~ฮผฮฝ(t)โˆ’g\widetilde{u}_{\mu\nu}(t)-g. Therefore, passing to the limit as ฮผโ†’0\mu\rightarrow 0, by using (48) as well as compactness of the trace operator we find that

โˆซฮ“3p~(u~ฮฝ(t))(u~ฮฝ(t)โˆ’g)+๐‘‘aโ‰ค0\int_{\Gamma_{3}}\widetilde{p}\left(\widetilde{u}_{\nu}(t)\right)\left(\widetilde{u}_{\nu}(t)-g\right)^{+}da\leq 0

Since the integrand p~(u~ฮฝ(t))(u~ฮฝ(t)โˆ’g)+\widetilde{p}\left(\widetilde{u}_{\nu}(t)\right)\left(\widetilde{u}_{\nu}(t)-g\right)^{+}is positive a.e on ฮ“3\Gamma_{3}, the last inequality yields p~(u~ฮฝ(t))(u~ฮฝ(t)โˆ’g)+=0\widetilde{p}\left(\widetilde{u}_{\nu}(t)\right)\left(\widetilde{u}_{\nu}(t)-g\right)^{+}=0 a.e on ฮ“3\Gamma_{3} and, using (53) and definition (19) we conclude that

๐’–~(t)โˆˆU.\widetilde{\boldsymbol{u}}(t)\in U. (54)

Since ๐’—โˆˆU\boldsymbol{v}\in U we have pฮผ(vฮฝ)=p(vฮฝ)p_{\mu}\left(v_{\nu}\right)=p\left(v_{\nu}\right) a.e. on ฮ“3\Gamma_{3}. Taking into account this equality and the monotonicity of the function pฮผp_{\mu} we have

p(vฮฝ)(vฮฝโˆ’u~ฮผฮฝ(t))โ‰ฅpฮผ(u~ฮผฮฝ(t))(vฮฝโˆ’u~ฮผฮฝ(t)) a.e. on ฮ“3p\left(v_{\nu}\right)\left(v_{\nu}-\widetilde{u}_{\mu\nu}(t)\right)\geq p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\left(v_{\nu}-\widetilde{u}_{\mu\nu}(t)\right)\text{ a.e. on }\Gamma_{3}

and, therefore, by using (30) we obtain

(P๐’—,๐’—โˆ’๐’–~ฮผ(t))Vโ‰ฅ(Pฮผ๐’–~ฮผ(t),๐’—โˆ’๐’–~ฮผ(t))V\left(P\boldsymbol{v},\boldsymbol{v}-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\geq\left(P_{\mu}\widetilde{\boldsymbol{u}}_{\mu}(t),\boldsymbol{v}-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V} (55)

Then, using (55) and (41) we find that

(โ„ฐ๐œบ(๐’–~ฮผ(t)),๐œบ(๐’—)โˆ’๐œบ(๐’–~ฮผ(t)))Q+(๐’ฎ๐’–(t),๐œบ(๐’—)โˆ’๐œบ(๐’–~ฮผ(t)))Q\displaystyle\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}+\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q} (56)
+\displaystyle+ (โ„ฌ๐’–(t),vฮฝ+โˆ’u~ฮผฮฝ+(t))L2(ฮ“3)+(P๐’—,๐’—โˆ’๐’–~ฮผ(t))Vโ‰ฅ(๐’‡(t),๐’—โˆ’๐’–~ฮผ(t))V\displaystyle\left(\mathcal{B}\boldsymbol{u}(t),v_{\nu}^{+}-\widetilde{u}_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}+\left(P\boldsymbol{v},\boldsymbol{v}-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\geq\left(\boldsymbol{f}(t),\boldsymbol{v}-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}

for all ๐’—โˆˆU\boldsymbol{v}\in U. We pass to the lower limit in (56) and use (48) to obtain

(โ„ฐ๐œบ(๐’–~(t)),๐œบ(๐’—)โˆ’๐œบ(๐’–~(t)))Q+(๐’ฎ๐’–(t),๐œบ(๐’—)โˆ’๐œบ(๐’–~(t)))Q\displaystyle\quad(\mathcal{E}\boldsymbol{\varepsilon}(\widetilde{\boldsymbol{u}}(t)),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\widetilde{\boldsymbol{u}}(t)))_{Q}+(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\widetilde{\boldsymbol{u}}(t)))_{Q} (57)
+(โ„ฌ๐’–(t),vฮฝ+โˆ’u~ฮฝ+(t))L2(ฮ“3)+(P๐’—,๐’—โˆ’๐’–~(t))Vโ‰ฅ(๐’‡(t),๐’—โˆ’๐’–~(t))V\displaystyle+\left(\mathcal{B}\boldsymbol{u}(t),v_{\nu}^{+}-\widetilde{u}_{\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}+(P\boldsymbol{v},\boldsymbol{v}-\widetilde{\boldsymbol{u}}(t))_{V}\geq(\boldsymbol{f}(t),\boldsymbol{v}-\widetilde{\boldsymbol{u}}(t))_{V}

for all ๐’—โˆˆU\boldsymbol{v}\in U. Next, we take ๐’—=๐’–~(t)\boldsymbol{v}=\widetilde{\boldsymbol{u}}(t) in (26) and ๐’—=๐’–(t)\boldsymbol{v}=\boldsymbol{u}(t) in (57). Then, adding the resulting inequalities we find that

(โ„ฐฮต(๐’–~(t))โˆ’โ„ฐฮต(๐’–(t)),๐œบ(๐’–~(t))โˆ’๐œบ(๐’–(t)))Qโ‰ค0(\mathcal{E}\varepsilon(\widetilde{\boldsymbol{u}}(t))-\mathcal{E}\varepsilon(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\widetilde{\boldsymbol{u}}(t))-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}\leq 0

Using (13), the above inequality implies that ๐’–~(t)=๐’–(t)\widetilde{\boldsymbol{u}}(t)=\boldsymbol{u}(t). It follows from here that the whole sequence {๐’–~ฮผ(t)}ฮผ\left\{\widetilde{\boldsymbol{u}}_{\mu}(t)\right\}_{\mu} is weakly convergent to the element ๐’–(t)โˆˆV\boldsymbol{u}(t)\in V, which concludes the proof.

We proceed with the following strong convergence result.

Lemma 4.3 As ฮผโ†’0\mu\rightarrow 0,

โ€–๐’–~ฮผ(t)โˆ’๐’–(t)โ€–Vโ†’0\left\|\widetilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}\rightarrow 0

for all tโˆˆโ„+t\in\mathbb{R}_{+}.
Proof. Let tโˆˆโ„+t\in\mathbb{R}_{+}and ฮผ>0\mu>0. Using (13) we write

mโ„ฐโ€–๐’–~ฮผ(t)โˆ’๐’–(t)โ€–V2โ‰ค(โ„ฐ๐œบ(๐’–~ฮผ(t))โˆ’โ„ฐ๐œบ(๐’–(t)),๐œบ(๐’–~ฮผ(t))โˆ’๐œบ(๐’–(t)))Q\displaystyle m_{\mathcal{E}}\left\|\widetilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}^{2}\leq\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)-\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)-\boldsymbol{\varepsilon}(\boldsymbol{u}(t))\right)_{Q}
=(โ„ฐ๐œบ(๐’–(t)),๐œบ(๐’–(t))โˆ’๐œบ(๐’–~ฮผ(t)))Qโˆ’(โ„ฐ๐œบ(๐’–~ฮผ(t)),๐œบ(๐’–(t))โˆ’๐œบ(๐’–~ฮผ(t)))Q\displaystyle=\left(\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}-\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}

Next, we take ๐’—=๐’–(t)\boldsymbol{v}=\boldsymbol{u}(t) in (56) to obtain

โˆ’(โ„ฐ๐œบ(๐’–~ฮผ(t)),๐œบ(๐’–(t))โˆ’๐œบ(๐’–~ฮผ(t)))Qโ‰ค(๐’ฎ๐’–(t),๐œบ(๐’–(t))โˆ’๐œบ(๐’–~ฮผ(t)))Q\displaystyle-\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}\leq\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}
+\displaystyle+ (โ„ฌ๐’–(t),uฮฝ+(t)โˆ’u~ฮผฮฝ+(t))L2(ฮ“3)+(P๐’–(t),๐’–(t)โˆ’๐’–~ฮผ(t))Vโˆ’(๐’‡(t),๐’–(t)โˆ’๐’–~ฮผ(t))V\displaystyle\left(\mathcal{B}\boldsymbol{u}(t),u_{\nu}^{+}(t)-\widetilde{u}_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}+\left(P\boldsymbol{u}(t),\boldsymbol{u}(t)-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}-\left(\boldsymbol{f}(t),\boldsymbol{u}(t)-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}

and, therefore, combining the above inequalities we find that

mโ„ฐ\displaystyle m_{\mathcal{E}} โ€–๐’–~ฮผ(t)โˆ’๐’–(t)โ€–V2โ‰ค(โ„ฐ๐œบ(๐’–(t)),๐œบ(๐’–(t))โˆ’๐œบ(๐’–~ฮผ(t)))Q\displaystyle\left\|\widetilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}^{2}\leq\left(\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}
+\displaystyle+ (๐’ฎ๐’–(t),๐œบ(๐’–(t))โˆ’๐œบ(๐’–~ฮผ(t)))Q+(P๐’–(t),๐’–(t)โˆ’๐’–~ฮผ(t))V\displaystyle\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}+\left(P\boldsymbol{u}(t),\boldsymbol{u}(t)-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}
+\displaystyle+ (โ„ฌ๐’–(t),uฮฝ+(t)โˆ’u~ฮผฮฝ+(t))L2(ฮ“3)โˆ’(๐’‡(t),๐’–(t)โˆ’๐’–~ฮผ(t))V\displaystyle\left(\mathcal{B}\boldsymbol{u}(t),u_{\nu}^{+}(t)-\widetilde{u}_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}-\left(\boldsymbol{f}(t),\boldsymbol{u}(t)-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}

We pass to the upper limit in this inequality and use Lemma 4.2 to conclude the proof.

We are now in position to provide the proof of Theorem 4.1.
Proof. Let tโˆˆโ„+t\in\mathbb{R}_{+}and let nโˆˆโ„•n\in\mathbb{N} be such that tโˆˆ[0,n]t\in[0,n]. Let also ฮผ>0\mu>0. Next, we take ๐’—=๐’–ฮผ(t)\boldsymbol{v}=\boldsymbol{u}_{\mu}(t) in (41) and ๐’–~ฮผ(t)\widetilde{\boldsymbol{u}}_{\mu}(t) in (39). Then adding the resulting inequalities and using the monotonicity of the operator PฮผP_{\mu} we deduce that

(โ„ฐ๐œบ(๐’–ฮผ(t))โˆ’โ„ฐ๐œบ(๐’–~ฮผ(t)),๐œบ(๐’–ฮผ(t))โˆ’๐œบ(๐’–~ฮผ(t)))Qโ‰ค(๐’ฎ๐’–(t)โˆ’๐’ฎ๐’–ฮผ(t),๐œบ(๐’–ฮผ(t))โˆ’๐œบ(๐’–~ฮผ(t)))Q+(โ„ฌ๐’–(t)โˆ’โ„ฌ๐’–ฮผ(t),uฮผฮฝ+(t)โˆ’u~ฮผฮฝ+(t))L2(ฮ“3)\begin{array}[]{r}\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)-\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}\\ \leq\left(\mathcal{S}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{u}_{\mu}(t),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}\\ \quad+\left(\mathcal{B}\boldsymbol{u}(t)-\mathcal{B}\boldsymbol{u}_{\mu}(t),u_{\mu\nu}^{+}(t)-\widetilde{u}_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}\end{array}

and, therefore,

โ€–๐’–ฮผ(t)โˆ’๐’–~ฮผ(t)โ€–Vโ‰คcmโ„ฐ(โ€–๐’ฎ๐’–(t)โˆ’๐’ฎ๐’–ฮผ(t)โ€–Q+โ€–โ„ฌ๐’–(t)โˆ’โ„ฌ๐’–ฮผ(t)โ€–L2(ฮ“3)).\left\|\boldsymbol{u}_{\mu}(t)-\widetilde{\boldsymbol{u}}_{\mu}(t)\right\|_{V}\leq\frac{c}{m_{\mathcal{E}}}\left(\left\|\mathcal{S}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{u}_{\mu}(t)\right\|_{Q}+\left\|\mathcal{B}\boldsymbol{u}(t)-\mathcal{B}\boldsymbol{u}_{\mu}(t)\right\|_{L^{2}\left(\Gamma_{3}\right)}\right). (58)

We use (58) to find that

โ€–๐’–ฮผ(t)โˆ’๐’–~ฮผ(t)โ€–Vโ‰คrnmโ„ฐโˆซ0tโ€–๐’–(s)โˆ’๐’–ฮผ(s)โ€–V๐‘‘s\left\|\boldsymbol{u}_{\mu}(t)-\widetilde{\boldsymbol{u}}_{\mu}(t)\right\|_{V}\leq\frac{r_{n}}{m_{\mathcal{E}}}\int_{0}^{t}\left\|\boldsymbol{u}(s)-\boldsymbol{u}_{\mu}(s)\right\|_{V}ds

where rn=kn+c02maxrโˆˆ[0,n]โกโ€–b(r)โ€–L2(ฮ“3)r_{n}=k_{n}+c_{0}^{2}\max_{r\in[0,n]}\|b(r)\|_{L^{2}\left(\Gamma_{3}\right)}. It follows from here that

โ€–๐’–ฮผ(t)โˆ’๐’–(t)โ€–Vโ‰คโ€–๐’–~ฮผ(t)โˆ’๐’–(t)โ€–V+rnmโ„ฐโˆซ0tโ€–๐’–ฮผ(s)โˆ’๐’–(s)โ€–V๐‘‘s\left\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left\|\widetilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}+\frac{r_{n}}{m_{\mathcal{E}}}\int_{0}^{t}\left\|\boldsymbol{u}_{\mu}(s)-\boldsymbol{u}(s)\right\|_{V}ds

and, using a Gronwall argument, we obtain

โ€–๐’–ฮผ(t)โˆ’๐’–(t)โ€–Vโ‰คโ€–๐’–~ฮผ(t)โˆ’๐’–(t)โ€–V+rnmโ„ฐโˆซ0ternmโ„ฐ(tโˆ’s)โ€–๐’–~ฮผ(s)โˆ’๐’–(s)โ€–V๐‘‘s\left\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left\|\widetilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}+\frac{r_{n}}{m_{\mathcal{E}}}\int_{0}^{t}e^{\frac{r_{n}}{m_{\mathcal{E}}}(t-s)}\left\|\widetilde{\boldsymbol{u}}_{\mu}(s)-\boldsymbol{u}(s)\right\|_{V}ds

Note that ernmโ„ฐ(tโˆ’s)โ‰คernmโ„ฐtโ‰คenrnmโ„ฐe^{\frac{r_{n}}{m_{\mathcal{E}}}(t-s)}\leq e^{\frac{r_{n}}{m_{\mathcal{E}}}t}\leq e^{\frac{nr_{n}}{m_{\mathcal{E}}}} for all sโˆˆ[0,t]s\in[0,t] and we deduce that

โ€–๐’–ฮผ(t)โˆ’๐’–(t)โ€–Vโ‰คโ€–๐’–~ฮผ(t)โˆ’๐’–(t)โ€–V+rnmโ„ฐenrnmโ„ฐโˆซ0tโ€–๐’–~ฮผ(s)โˆ’๐’–(s)โ€–V๐‘‘s\left\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left\|\widetilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}+\frac{r_{n}}{m_{\mathcal{E}}}e^{\frac{nr_{n}}{m_{\mathcal{E}}}}\int_{0}^{t}\left\|\widetilde{\boldsymbol{u}}_{\mu}(s)-\boldsymbol{u}(s)\right\|_{V}ds (59)

On the other hand, by estimate (47), Lemma 4.3 and Lebesgueโ€™s convergence Theorem it follows that

โˆซ0tโ€–๐’–~ฮผ(s)โˆ’๐’–(s)โ€–V๐‘‘sโ†’0 as ฮผโ†’0\int_{0}^{t}\left\|\widetilde{\boldsymbol{u}}_{\mu}(s)-\boldsymbol{u}(s)\right\|_{V}ds\rightarrow 0\quad\text{ as }\quad\mu\rightarrow 0 (60)

We use now (59), (60) and Lemma 4.3 to see that

โ€–๐’–ฮผ(t)โˆ’๐’–(t)โ€–Vโ†’0 as ฮผโ†’0\left\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}\rightarrow 0\quad\text{ as }\quad\mu\rightarrow 0 (61)

Next, by (25), (38), (13), (24) and (17) it follows that

โˆฅ๐ˆฮผ(t)โˆ’๐ˆ(t)โˆฅQโ‰คcโˆฅ๐’–ฮผ(t)โˆ’๐’–(t))โˆฅV+knโˆซ0tโˆฅ๐’–ฮผ(s)โˆ’๐’–(s)โˆฅVds\left.\left\|\boldsymbol{\sigma}_{\mu}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}\leq c\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right)\left\|{}_{V}+k_{n}\int_{0}^{t}\right\|\boldsymbol{u}_{\mu}(s)-\boldsymbol{u}(s)\|_{V}ds

We use again the convergence (61) and Lebesqueโ€™s Theorem to find that

โ€–๐ˆฮผ(t)โˆ’๐ˆ(t)โ€–Qโ†’0 as ฮผโ†’0\left\|\boldsymbol{\sigma}_{\mu}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}\rightarrow 0\quad\text{ as }\quad\mu\rightarrow 0 (62)

Theorem 4.1 is now a consequence of the convergences (61) and (62).

Acknowledgments

The work of the second author was supported within the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project POSDRU/107/1.5/ S/76841 entitled Modern Doctoral Studies: Internationalization and Interdisciplinarity, at BabeลŸ-Bolyai University, Cluj-Napoca.

References

[1] M. Barboteu, A. Matei and M. Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance, Quarterly Jnl. of Mechanics and App. Maths., to appear.
[2] M. Barboteu, F. Pฤƒtrulescu, A. Ramadan, M. Sofonea, History-dependent contact models for viscoplastic materials, IMA J. Appl. Math., 79, no. 6 (2014), pp. 11801200
[3] M. Barboteu, A. Ramadan, M. Sofonea and F. Pฤƒtrulescu, An elastic contact problem with normal compliance and memory term, Machine Dynamics Research, 36, no. 1 (2012), pp. 15-25..
[4] C. Corduneanu, Problรจmes globaux dans la thรฉorie des รฉquations intรฉgrales de Volterra, Ann. Math. Pure Appl. 67 (1965), 349-363.
[5] A. FarcaลŸ, F. Pฤƒtrulescu and M. Sofonea, A history-dependent contact problem with unilateral constraint, Ann. Acad. Rom. Sci. Ser. Math. Appl. 4, no. 1 (2012), 90-96.
[6] W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, American Mathematical SocietyInternational Press, 2002.
[7] J. Jaruลกek and M. Sofonea. On the solvability of dynamic elastic-visco-plastic contact problems. Zeitschrift fรผr Angewandte Matematik und Mechanik (ZAMM), 88 (2008) pp. 3-22.
[8] J. J. Massera and J. J. Schรคffer, Linear Differential Equations and Function Spaces, Academic Press, New York-London, 1966.
[9] M. Shillor, M. Sofonea and J.J. Telega, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics 655, Springer, Berlin, 2004.
[10] M. Sofonea and A. Matei. History-dependent quasivariational inequalities arising in Contact Mechanics. European Journal of Applied Mathematics, 22 (2011), pp. 471491.
[11] M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series 398, Cambridge University Press, Cambridge, 2012.
[12] M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Notes, Cambridge University Press 398, Cambridge, 2012.
[13] M. Sofonea and F. Pฤƒtrulescu, Analysis of a history-dependent frictionless contact problem, Mathematics and Mechanics of Solids, 18, no. 4 (2013), pp. 409-430.
F.Pฤƒtrulescu

Tiberiu Popoviciu Institute of Numerical Analysis
P.O. Box 68-1, 400110 Cluj-Napoca, Romania, fpatrulescu@ictp.acad.ro
A. FarcaลŸ

Faculty of Mathematics and Computer Science, BabeลŸ-Bolyai University
Kogฤƒlniceanu street, no. 1, 400084, Cluj-Napoca, Romania
A. Ramadan

Laboratoire de Mathรฉmatiques et Physique, Universitรฉ de Perpignan
52 Avenue de Paul Alduy, 66860 Perpignan, France

2013

Related Posts