## Abstract

In this paper we shall study a functional differential equation of second order with mixed type argument. For this problem we give an algorithm based on the step method and the successive approximation method.

## Authors

D. **Otrocol
**(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

V.A. **Ilea
**(Babes Bolyai Univ.)

V. **Revnic**

(Univ Med & Pharm Iuliu Hatieganu)

## Keywords

## Cite this paper as:

D. Otrocol, V. Ilea, C. Revnic, *An iterative method for a functional-differential equation of second order with mixed type argument*, Fixed Point Theory, 14(2013), no. 2, pp. 427-434

## About this paper

##### Journal

Fixed Point Theory

##### Publisher Name

Casa Cartii de Stiinta, Cluj-Napoca, Romania

##### DOI

##### Print ISSN

1583-5022

##### Online ISSN

2066-9208

##### MR

MR3137184

##### ZBL

## Google Scholar

[1] G. Belitskii, V. Tkachenko, *One-Dimensional Functional Equations*, Operator Theory: Advances and Applications 144, Birkh˝auser Verlag, Basel, 2003.

[2] J.S. Cassell, Z. Hou, *Initial value problem of mixed-type differential equations*, Monatshefte Math., 124(1997), 133-145.

[3] V.A. Darzu, *Wheeler-Feynman problem on compact interval*, Studia Univ. Babe¸s-Bolyai Math., 47(2002), no. 1, 43-46.

[4] R.D. Driver, *A “backwards” two-body problem of classical relativistic electrodynamics*, The Physical Review, 178(1969), 2051-2057.

[5] L.J. Grimm, H. Schmidt, *Boundary value problem for differential equations with deviating arguments*, Aequationes Math., 4(1970), 176-180.

[6] Z. Hou, J.S. Cassell, *Asymptotic solutions of mixed-type equations with a diagonal matrix*, Analysis, 17(1997), 1-12.

[7] V. Hutson, *A note on a boundary value problem for linear differential difference equations of mixed type*, J. Math. Anal., 61(1977), 416-425.

[8] V.A. Ilea, *Functional Differential Equations of First Order with Advanced and Retarded Arguments*, Cluj University Press, 2006 (in Romanian).

[9] C.T. Kelley, *Solving Nonlinear Equations with Newton’s Method*, SIAM, 2003.

[10] J. Mallet-Paret, *The Fredholm alternative for functional differential equations of mixed type*, J. Dynam. Diff. Eq., 11(1999), no. 1, 1-47.

[11] D. Otrocol, V.A. Ilea, C. Revnic, *An iterative method for a functional-differential equations with mixed type argument*, Fixed Point Theory, 11(2010), no. 2, 327-336.

[12] R. Precup, *Some existence results for differential equations with both retarded and advanced arguments*, Mathematica (Cluj), 44(2002), no. 1, 25-31.

[13] I.A. Rus, *Functional-differential equations of mixed type, via weakly Picard operators*, Seminar on Fixed Point Theory Cluj-Napoca, 3(2002), 335-346.

[14] I.A. Rus, *Picard operators and applications*, Sciantiae Math. Jpn., 58(2003), no. 1, 191-219.

[15] I.A. Rus, *Abstract models of step method which imply the convergence of successive approximations*, Fixed Point Theory, 9(2008), no. 1, 293-307.

[16] I.A. Rus, M.A. Serban, D. Trif, *Step method for some integral equations from biomathematics*, Bull. Math. Soc. Sci. Math. Roumanie, 54(102)(2011), no. 2, 167-183.

[17] I.A. Rus, C. Iancu, *Wheeler-Feynman problem for mixed order functional differential equations*, Tiberiu Popoviciu Itinerant Seminar of Functional Equations, Approximation and Convexity, Cluj-Napoca, May 23-29, 2000, 197-200.

[18] L.S. Schulman, *Some differential difference equations containing both advance and retardation*, J. Math. Phys., 15(1974), 195-198.

[19] J. Wu, X. Zou, *Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations*, J. Diff. Eq., 135(1997), 315-357.