A Galerkin Methods for a singularly perturbed bilocal problem

Abstract


A bilocal singularly perturbed problem is solved using Galerkin’s method in a space in which the test functions are weighted primitives of wavelets. This method provides a “good” numerical solution of this problem.

Authors

Adrian Muresan
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania

Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania

Keywords

Paper coordinates

A.C. Mureşan, C. Mustăţa, A Galerkin Methods for a singularly perturbed bilocal problem, Bull. Şt. Univ. Baia Mare, Seria B, Fascicola Matematică-informatică, 15 (1999) nos. 1-2, 89-102, https://www.jstor.org/stable/44001741

PDF

About this paper

Journal

Buletinul ştiinţific al Universitatii Baia Mare,

Publisher Name

Sinus Association

Print ISSN

12221201

Online ISSN

google scholar link

[1] I. Daubechies, Orthonormal bases of compactly supported wavelets. Comm. pure Appl. Math. 41 (1998), pp. 909-996.
[2] R. Głowiński, W.N. Lawton, M. Ravachol, E. Tenenbaum, Wavelets solution of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension. In: R. Głowiński, A. Lichnewsky, ads., Computing Methods in Applied Sciences and Engineering, SIAM, Philadelphia (1990), pp. 55-120.
[3] P.W. Hemker, A numerical study of stiff two-point boundary problems, Amsterdam, 1997.
[4] J.-C. Xu, W.-C. Shann, Galerkin – wavelet methods for two point boundary value problems. Numer. Math., 63 (1992), pp. 123-142.
[5] H. Yserentant, On the multi – level splitting of finite element spaces. Numer. Math. 49 (1986), pp. 379-412.

Paper (preprint) in HTML form

1999-Mustata-BAM-A-Galerkin-methods-for-a-singularly-perturbed-bilocal-problem

A Galerkin Method for a Singularly Perturbed Bilocal Problem*

A.C.Muresan and C.Mustata

Abstract

A bilocal singularly perturbed problem is solved using Galerkin's method in a space in which the test functions are weighted primitives of wavelets. This method provides a "good" numerical solution of this problem.

In the study of convection - diffusion problems, the following boundary value singularly perturbed problem appears:
( P ) { ε u ( x ) + a ( x ) u ( x ) = f ( x ) , for x ( 0 , 1 ) u ( 0 ) = u ( 1 ) = 0 ( P ) ε u ( x ) + a ( x ) u ( x ) = f ( x ) ,  for  x ( 0 , 1 ) u ( 0 ) = u ( 1 ) = 0 (P){[-epsiu^('')(x)+a(x)u^(')(x)=f(x)","" for "x in(0","1)],[u(0)=u(1)=0]:}(P)\left\{\begin{array}{c} -\varepsilon u^{\prime \prime}(x)+a(x) u^{\prime}(x)=f(x), \text { for } x \in(0,1) \\ u(0)=u(1)=0 \end{array}\right.(P){εu(x)+a(x)u(x)=f(x), for x(0,1)u(0)=u(1)=0
where 0 < ε 1 , a ( x ) > α > 0 , x [ 0 , 1 ] 0 < ε 1 , a ( x ) > α > 0 , x [ 0 , 1 ] 0 < epsi≪1,a(x) > alpha > 0,x in[0,1]0<\varepsilon \ll 1, a(x)>\alpha>0, x \in[0,1]0<ε1,a(x)>α>0,x[0,1] and functions a a aaa and f f fff are sufficiently smooth.
The exact solution of problem ( P ) ( P ) (P)(P)(P) has a boundary layer in x = 1 x = 1 x=1x=1x=1. Because of its presence, certain numerical methods (finite element method, centered finite difference method) lead to numerical solutions with oscillations in the area of the boundary layer, abnormal from the physical point of view.
The piecewise polinomial test functions are replaced by wavelets, within the finite element method, in the work of Glowinski, Lawton, Ravachol and Tenenbaum [2]. Many examples provided show the great potential which wavelets have in the numerical solving of differential equations. Unfortunately, some disavantages may occur : the weak regularity of wavelets does not allow the use of small order wavelets; orthogonality of wavelets does not play a significant role.
Disadvantages in the use of wavelets can be partially eliminated if primitives of wavelets as test functions ([4]) are used.
In the present paper, Galerkin's method is not applied, for problem ( P ) ( P ) (P)(P)(P) (in the space H 0 1 [ 0 , 1 ] H 0 1 [ 0 , 1 ] H_(0)^(1)[0,1]H_{0}^{1}[0,1]H01[0,1] ). First, the space H 0 1 [ 0 , 1 ] H 0 1 [ 0 , 1 ] H_(0)^(1)[0,1]H_{0}^{1}[0,1]H01[0,1] turns "conveniently" into the space G H 0 1 [ 0 , 1 ] G H 0 1 [ 0 , 1 ] GH_(0)^(1)[0,1]G H_{0}^{1}[0,1]GH01[0,1], which is the image of H 0 1 [ 0 , 1 ] H 0 1 [ 0 , 1 ] H_(0)^(1)[0,1]H_{0}^{1}[0,1]H01[0,1] by G u := u o g , u H 0 1 [ 0 , 1 ] G u := u o g , u H 0 1 [ 0 , 1 ] Gu:=uog,u inH_(0)^(1)[0,1]G u:=u o g, u \in H_{0}^{1}[0,1]Gu:=uog,uH01[0,1] and g : [ 0 , 1 ] > [ 0 , 1 ] g : [ 0 , 1 ] > [ 0 , 1 ] g:[0,1]- > [0,1]g:[0,1]->[0,1]g:[0,1]>[0,1] with g ( 0 ) = 0 , g ( 1 ) = 1 g ( 0 ) = 0 , g ( 1 ) = 1 g(0)=0,g(1)=1g(0)=0, g(1)=1g(0)=0,g(1)=1 and M > 0 M > 0 EE M > 0\exists M>0M>0, such that 0 g ( y ) M , y [ 0 , 1 ] 0 g ( y ) M , y [ 0 , 1 ] 0 <= g^(')(y) <= M,y in[0,1]0 \leq g^{\prime}(y) \leq M, y \in[0,1]0g(y)M,y[0,1]. Problem ( P P PPP ) is transcribed in G H 0 1 [ 0 , 1 ] G H 0 1 [ 0 , 1 ] GH_(0)^(1)[0,1]G H_{0}^{1}[0,1]GH01[0,1] and Galerkin's method is applied in order to solve the new problem. Weighted primitives of Haar's system are used as test functions (weighted primitives of Daubechies wavelets of the first order).
Accordingly, the problem in G H 0 1 [ 0 , 1 ] G H 0 1 [ 0 , 1 ] GH_(0)^(1)[0,1]G H_{0}^{1}[0,1]GH01[0,1] will have a Galerkin solution with attenuated oscillations in the area of the boundary layer. Getting back to problem ( P P PPP ), it becomes out that a very good solution from the numerical point of view, is obtained. The numerical example fairly confirms it.
We consider the standard spaces. Let
L 2 [ 0 , 1 ] := { v : [ 0 , 1 ] > R / v is measurable, and v L 2 0 , 1 ] < } , L 2 [ 0 , 1 ] := v : [ 0 , 1 ] > R / v  is measurable, and  v L 2 0 , 1 < , L^(2)[0,1]:={v:[0,1]- > R//v" is measurable, and "||v||_({:L^(2)∣0,1]) < oo},L^{2}[0,1]:=\left\{v:[0,1]->R / v \text { is measurable, and }\|v\|_{\left.L^{2} \mid 0,1\right]}<\infty\right\},L2[0,1]:={v:[0,1]>R/v is measurable, and vL20,1]<},
norm on L 2 [ 0 , 1 ] L 2 [ 0 , 1 ] L^(2)[0,1]L^{2}[0,1]L2[0,1] being:
v L 2 [ 0 , 1 ] := ( 0 1 | v ( x ) | 2 d x ) 1 2 v L 2 [ 0 , 1 ] := 0 1 | v ( x ) | 2 d x 1 2 ||v||_(L^(2)[0,1]):=(int_(0)^(1)|v(x)|^(2)dx)^((1)/(2))\|v\|_{L^{2}[0,1]}:=\left(\int_{0}^{1}|v(x)|^{2} d x\right)^{\frac{1}{2}}vL2[0,1]:=(01|v(x)|2dx)12
Let
H 1 [ 0 , 1 ] := { v L 2 [ 0 , 1 ] / v ( k ) L 2 [ 0 , 1 ] for k = 0 , 1 } H 1 [ 0 , 1 ] := v L 2 [ 0 , 1 ] / v ( k ) L 2 [ 0 , 1 ]  for  k = 0 , 1 H^(1)[0,1]:={v inL^(2)[0,1]//v^((k))inL^(2)[0,1]" for "k=0,1}H^{1}[0,1]:=\left\{v \in L^{2}[0,1] / v^{(k)} \in L^{2}[0,1] \text { for } k=0,1\right\}H1[0,1]:={vL2[0,1]/v(k)L2[0,1] for k=0,1}
with norm
v 1 := ( 0 1 | v ( x ) | 2 d x + 0 1 | v l ( x ) | 2 d x ) 1 2 v 1 := 0 1 | v ( x ) | 2 d x + 0 1 v l ( x ) 2 d x 1 2 ||v||_(1):=(int_(0)^(1)|v(x)|^(2)dx+int_(0)^(1)|v^(l)(x)|^(2)dx)^((1)/(2))\|v\|_{1}:=\left(\int_{0}^{1}|v(x)|^{2} d x+\int_{0}^{1}\left|v^{l}(x)\right|^{2} d x\right)^{\frac{1}{2}}v1:=(01|v(x)|2dx+01|vl(x)|2dx)12
and seminorm
| v | 1 := ( 0 1 | v ( x ) | 2 d x ) 1 2 | v | 1 := 0 1 v ( x ) 2 d x 1 2 |v|_(1):=(int_(0)^(1)|v^(')(x)|^(2)dx)^((1)/(2))|v|_{1}:=\left(\int_{0}^{1}\left|v^{\prime}(x)\right|^{2} d x\right)^{\frac{1}{2}}|v|1:=(01|v(x)|2dx)12
and subspace
H 0 1 [ 0 , 1 ] := { v H 1 [ 0 , 1 ] / v ( 0 ) = v ( 1 ) = 0 } . H 0 1 [ 0 , 1 ] := v H 1 [ 0 , 1 ] / v ( 0 ) = v ( 1 ) = 0 . H_(0)^(1)[0,1]:={v inH^(1)[0,1]//v(0)=v(1)=0}.H_{0}^{1}[0,1]:=\left\{v \in H^{1}[0,1] / v(0)=v(1)=0\right\} .H01[0,1]:={vH1[0,1]/v(0)=v(1)=0}.
Seminorm | | 1 | | 1 |*|_(1)|\cdot|_{1}||1 is norm (equivalent to 1 1 ||*||_(1)\|\cdot\|_{1}1 ) on the space H 0 1 [ 0 , 1 ] H 0 1 [ 0 , 1 ] H_(0)^(1)[0,1]H_{0}^{1}[0,1]H01[0,1].
Let g : [ 0 , 1 ] > [ 0 , 1 ] g : [ 0 , 1 ] > [ 0 , 1 ] g:[0,1]- > [0,1]g:[0,1]->[0,1]g:[0,1]>[0,1] a differe. atiable function on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1] so that:
g ( 0 ) = 0 , g ( 1 ) = 1 M > 0 a.i. 0 g ( y ) M , for y [ 0 , 1 ] . g ( 0 ) = 0 , g ( 1 ) = 1 M > 0  a.i.  0 g ( y ) M ,  for  y [ 0 , 1 ] . {:[g(0)=0","g(1)=1],[EE M > 0" a.i. "0 <= g^(')(y) <= M","" for "AA y in[0","1].]:}\begin{aligned} & g(0)=0, g(1)=1 \\ & \exists M>0 \text { a.i. } 0 \leq g^{\prime}(y) \leq M, \text { for } \forall y \in[0,1] . \end{aligned}g(0)=0,g(1)=1M>0 a.i. 0g(y)M, for y[0,1].
We note J ( y ) = g ( y ) J ( y ) = g ( y ) J(y)=g^(')(y)J(y)=g^{\prime}(y)J(y)=g(y) and we define G H 0 1 [ 0 , 1 ] G H 0 1 [ 0 , 1 ] GH_(0)^(1)[0,1]G H_{0}^{1}[0,1]GH01[0,1] to be the image of space H 0 1 [ 0 , 1 ] H 0 1 [ 0 , 1 ] H_(0)^(1)[0,1]H_{0}^{1}[0,1]H01[0,1] by transformation G u := u g G u := u g Gu:=u@gG u:=u \circ gGu:=ug.

Lemma 1

v G H 0 1 { 0 1 1 J ( y ) | v ( y ) | 2 d y } 1 2 v G H 0 1 0 1 1 J ( y ) v ( y ) 2 d y 1 2 ||v||_(GH_(0)^(1))-={int_(0)^(1)(1)/(J(y))|v^(')(y)|^(2)dy}^((1)/(2))\|v\|_{G H_{0}^{1}} \equiv\left\{\int_{0}^{1} \frac{1}{J(y)}\left|v^{\prime}(y)\right|^{2} d y\right\}^{\frac{1}{2}}vGH01{011J(y)|v(y)|2dy}12
is norm on the space G H 0 1 G H 0 1 GH_(0)^(1)G H_{\mathbf{0}}^{1}GH01 and the following inequality takes place :
v L [ 0 , 1 ] sup { | v ( y ) | : 0 y 1 } v G H 0 1 v L [ 0 , 1 ] sup { | v ( y ) | : 0 y 1 } v G H 0 1 ||v||_(L^(oo)[0,1])-=s u p{|v(y)|:0 <= y <= 1} <= ||v||_(GH_(0)^(1))\|v\|_{L^{\infty}[0,1]} \equiv \sup \{|v(y)|: 0 \leq y \leq 1\} \leq\|v\|_{G H_{0}^{1}}vL[0,1]sup{|v(y)|:0y1}vGH01 for v C H 0 1 v C H 0 1 AA v in CH_(0)^(1)\forall v \in C H_{0}^{1}vCH01.

Proof.

Because for v G H 0 1 ( 0 , 1 ) , u H 0 1 ( 0 , 1 ) v G H 0 1 ( 0 , 1 ) , u H 0 1 ( 0 , 1 ) AA v in GH_(0)^(1)(0,1),EE u inH_(0)^(1)(0,1)\forall v \in G H_{0}^{1}(0,1), \exists u \in H_{0}^{1}(0,1)vGH01(0,1),uH01(0,1) so that v ( y ) = u ( g ( y ) ) v ( y ) = u ( g ( y ) ) v(y)=u(g(y))v(y)=u(g(y))v(y)=u(g(y)) we have
v G H 0 1 ( 0 , 1 ) = ( 0 1 1 J ( y ) | v ( y ) | 2 d y ) 1 2 = ( 0 1 J ( y ) | u ( g ( y ) ) | 2 d y ) 1 2 = | u | 1 v G H 0 1 ( 0 , 1 ) = 0 1 1 J ( y ) v ( y ) 2 d y 1 2 = 0 1 J ( y ) u ( g ( y ) ) 2 d y 1 2 = | u | 1 ||v||_(GH_(0)^(1)(0,1))=(int_(0)^(1)(1)/(J(y))|v^(')(y)|^(2)dy)^((1)/(2))=(int_(0)^(1)J(y)|u^(')(g(y))|^(2)dy)^((1)/(2))=|u|_(1)\|v\|_{G H_{0}^{1}(0,1)}=\left(\int_{0}^{1} \frac{1}{J(y)}\left|v^{\prime}(y)\right|^{2} d y\right)^{\frac{1}{2}}=\left(\int_{0}^{1} J(y)\left|u^{\prime}(g(y))\right|^{2} d y\right)^{\frac{1}{2}}=|u|_{1}vGH01(0,1)=(011J(y)|v(y)|2dy)12=(01J(y)|u(g(y))|2dy)12=|u|1
so . G H 0 1 ( 0 , 1 ) . G H 0 1 ( 0 , 1 ) ||.||_(GH_(0)^(1)(0,1))\|.\|_{G H_{0}^{1}(0,1)}.GH01(0,1) is norm on space G H 0 1 G H 0 1 GH_(0)^(1)G H_{0}^{1}GH01.
Let v G H 0 1 ( 0 , 1 ) v v G H 0 1 ( 0 , 1 ) v v in GH_(0)^(1)(0,1)Longrightarrow vv \in G H_{0}^{1}(0,1) \Longrightarrow vvGH01(0,1)v is absolutely continuous, and v ( 0 ) = 0 v ( 0 ) = 0 v(0)=0v(0)=0v(0)=0, thus.
v ( y ) = 0 y v ( t ) d t = 0 y J ( t ) ( 1 J ( t ) v ( t ) ) d t , for y [ 0 , 1 ] v ( y ) = 0 y v ( t ) d t = 0 y J ( t ) 1 J ( t ) v ( t ) d t ,  for  y [ 0 , 1 ] v(y)=int_(0)^(y)v^(')(t)dt=int_(0)^(y)sqrt(J(t))((1)/(sqrt(J(t)))v^(')(t))dt," for "AA y in[0,1]v(y)=\int_{0}^{y} v^{\prime}(t) d t=\int_{0}^{y} \sqrt{J(t)}\left(\frac{1}{\sqrt{J(t)}} v^{\prime}(t)\right) d t, \text { for } \forall y \in[0,1]v(y)=0yv(t)dt=0yJ(t)(1J(t)v(t))dt, for y[0,1]
By use of Cauchy-Schwartz inequality, we obtain
| v ( y ) | ( 0 1 J ( t ) d t ) 1 2 ( 0 1 1 J ( t ) | v ( t ) | 2 d t ) 1 2 = v c ; H 0 1 . q.e.d. | v ( y ) | 0 1 J ( t ) d t 1 2 0 1 1 J ( t ) v ( t ) 2 d t 1 2 = v c ; H 0 1 . q.e.d.  |v(y)| <= (int_(0)^(1)J(t)dt)^((1)/(2))(int_(0)^(1)(1)/(J(t))|v^(')(t)|^(2)dt)^((1)/(2))=||v||_(c;H_(0)^(1))". q.e.d. "|v(y)| \leq\left(\int_{0}^{1} J(t) d t\right)^{\frac{1}{2}}\left(\int_{0}^{1} \frac{1}{J(t)}\left|v^{\prime}(t)\right|^{2} d t\right)^{\frac{1}{2}}=\|v\|_{c ; H_{0}^{1}} \text {. q.e.d. }|v(y)|(01J(t)dt)12(011J(t)|v(t)|2dt)12=vc;H01. q.e.d. 
For the sake of simplicity, we consider a ( x ) 1 a ( x ) 1 a(x)-=1a(x) \equiv 1a(x)1 in ( P P PPP ) and consequently we have the following singularly perturbed problem :
( P 1 ) { ε u ( x ) + u ( x ) = f ( x ) , for x ( 0 , 1 ) u ( 0 ) = u ( 1 ) = 0 ( P 1 ) ε u ( x ) + u ( x ) = f ( x ) ,  for  x ( 0 , 1 ) u ( 0 ) = u ( 1 ) = 0 (P1){[-epsiu^('')(x)+u^(')(x)=f(x)","" for "x in(0","1)],[u(0)=u(1)=0]:}(P 1)\left\{\begin{array}{c} -\varepsilon u^{\prime \prime}(x)+u^{\prime}(x)=f(x), \text { for } x \in(0,1) \\ u(0)=u(1)=0 \end{array}\right.(P1){εu(x)+u(x)=f(x), for x(0,1)u(0)=u(1)=0
Making the change of variable x = g ( y ) x = g ( y ) x=g(y)x=g(y)x=g(y) we obtain:
( P 2 ) { ε ( 1 J ( y ) v ( y ) ) + v ( y ) = J ( y ) F ( y ) , for x ( 0 , 1 ) v ( 0 ) = v ( 1 ) = 0 ( P 2 ) ε 1 J ( y ) v ( y ) + v ( y ) = J ( y ) F ( y ) ,  for  x ( 0 , 1 ) v ( 0 ) = v ( 1 ) = 0 (P2){[-epsi((1)/(J(y))v^(')(y))^(')+v^(')(y)=J(y)F(y)","" for "x in(0","1)],[v(0)=v(1)=0]:}(P 2)\left\{\begin{array}{c} -\varepsilon\left(\frac{1}{J(y)} v^{\prime}(y)\right)^{\prime}+v^{\prime}(y)=J(y) F(y), \text { for } x \in(0,1) \\ v(0)=v(1)=0 \end{array}\right.(P2){ε(1J(y)v(y))+v(y)=J(y)F(y), for x(0,1)v(0)=v(1)=0
where F ( y ) = f ( g ( y ) ) F ( y ) = f ( g ( y ) ) F(y)=f(g(y))F(y)=f(g(y))F(y)=f(g(y)), and v ( y ) = u ( g ( y ) ) v ( y ) = u ( g ( y ) ) v(y)=u(g(y))v(y)=u(g(y))v(y)=u(g(y)).
Problem (P1) has one solution,
(1) { u H 0 1 ( 0 , 1 ) , such that ε 0 1 u ( x ) w ( x ) d x + 0 1 u ( x ) w ( x ) d x = 0 1 f ( x ) w ( x ) d x , w H 0 1 ( 0 , 1 ) . u H 0 1 ( 0 , 1 ) ,  such that  ε 0 1 u ( x ) w ( x ) d x + 0 1 u ( x ) w ( x ) d x = 0 1 f ( x ) w ( x ) d x , w H 0 1 ( 0 , 1 ) . {[u inH_(0)^(1)(0","1)","" such that "],[epsiint_(0)^(1)u^(')(x)w^(')(x)dx+int_(0)^(1)u^(')(x)w(x)dx=int_(0)^(1)f(x)w(x)dx","AA w inH_(0)^(1)(0","1).]:}\left\{\begin{array}{c}u \in H_{0}^{1}(0,1), \text { such that } \\ \varepsilon \int_{0}^{1} u^{\prime}(x) w^{\prime}(x) d x+\int_{0}^{1} u^{\prime}(x) w(x) d x=\int_{0}^{1} f(x) w(x) d x, \forall w \in H_{0}^{1}(0,1) .\end{array}\right.{uH01(0,1), such that ε01u(x)w(x)dx+01u(x)w(x)dx=01f(x)w(x)dx,wH01(0,1).
and problem ( P 2 P 2 P2P 2P2 ) will have one solution,
(2) { v G H 0 1 ( 0 , 1 ) , such that ε 0 1 1 J ( y ) v ( y ) w ( y ) d y + 0 1 v ( y ) w ( y ) d y = 0 1 F ( y ) J ( y ) w ( y ) , w G H 0 1 ( 0 , 1 ) . v G H 0 1 ( 0 , 1 ) ,  such that  ε 0 1 1 J ( y ) v ( y ) w ( y ) d y + 0 1 v ( y ) w ( y ) d y = 0 1 F ( y ) J ( y ) w ( y ) , w G H 0 1 ( 0 , 1 ) . {[v in GH_(0)^(1)(0","1)","" such that "],[epsiint_(0)^(1)(1)/(J(y))v^(')(y)w^(')(y)dy+int_(0)^(1)v^(')(y)w(y)dy=int_(0)^(1)F(y)J(y)w(y)","AA w in GH_(0)^(1)(0","1).]:}\left\{\begin{array}{c}v \in G H_{0}^{1}(0,1), \text { such that } \\ \varepsilon \int_{0}^{1} \frac{1}{J(y)} v^{\prime}(y) w^{\prime}(y) d y+\int_{0}^{1} v^{\prime}(y) w(y) d y=\int_{0}^{1} F(y) J(y) w(y), \forall w \in G H_{0}^{1}(0,1) .\end{array}\right.{vGH01(0,1), such that ε011J(y)v(y)w(y)dy+01v(y)w(y)dy=01F(y)J(y)w(y),wGH01(0,1). (see [3]).
We will describe further the approximation scheme of the solution of pröblem (2).
Let L > 0 L > 0 L > 0L>0L>0 fixed natural number, and Π L : 0 = y 0 < y 1 < < y N = 1 Π L : 0 = y 0 < y 1 < < y N = 1 Pi^(L):0=y_(0) < y_(1) < dots < y_(N)=1\Pi^{L}: 0=y_{0}<y_{1}<\ldots<y_{N}=1ΠL:0=y0<y1<<yN=1 a uniform division of interval [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1], where N = 2 L N = 2 L N=2^(L)N=2^{L}N=2L and y j = j 2 L , 0 j 2 L y j = j 2 L , 0 j 2 L y_(j)=(j)/(2^(L)),0 <= j <= 2^(L)y_{j}=\frac{j}{2^{L}}, 0 \leq j \leq 2^{L}yj=j2L,0j2L. We define set V L V L V^(L)V^{L}VL as being the subspace of G H 0 1 G H 0 1 GH_(0)^(1)G H_{0}^{1}GH01, which contains those functions w w www satisfying,
(3) ( 1 J ( y ) w ( y ) ) = 0 1 J ( y ) w ( y ) = 0 ((1)/(J(y))w^(')(y))^(')=0\left(\frac{1}{J(y)} w^{\prime}(y)\right)^{\prime}=0(1J(y)w(y))=0 where y j < y < y j + 1 y j < y < y j + 1 y_(j) < y < y_(j+1)y_{j}<y<y_{j+1}yj<y<yj+1 for each 0 j 2 L 1 0 j 2 L 1 0 <= j <= 2^(L)-10 \leq j \leq 2^{L}-10j2L1.
In V L V L V^(L)V^{L}VL we consider the system of functions:
(4) Φ L , k ( y ) = 0 y J ( s ) χ L , k 1 ( s ) d s 0 1 J ( s ) χ L , k 1 ( s ) d s 0 y J ( s ) χ L , k ( s ) d s 0 1 J ( s ) χ L , k ( s ) d s  (4)  Φ L , k ( y ) = 0 y J ( s ) χ L , k 1 ( s ) d s 0 1 J ( s ) χ L , k 1 ( s ) d s 0 y J ( s ) χ L , k ( s ) d s 0 1 J ( s ) χ L , k ( s ) d s " (4) "Phi_(L,k)(y)=(int_(0)^(y)J(s)chi_(L,k-1)(s)ds)/(int_(0)^(1)J(s)chi_(L,k-1)(s)ds)-(int_(0)^(y)J(s)chi_(L,k)(s)ds)/(int_(0)^(1)J(s)chi_(L,k)(s)ds)\text { (4) } \Phi_{L, k}(y)=\frac{\int_{0}^{y} J(s) \chi_{L, k-1}(s) d s}{\int_{0}^{1} J(s) \chi_{L, k-1}(s) d s}-\frac{\int_{0}^{y} J(s) \chi_{L, k}(s) d s}{\int_{0}^{1} J(s) \chi_{L, k}(s) d s} (4) ΦL,k(y)=0yJ(s)χL,k1(s)ds01J(s)χL,k1(s)ds0yJ(s)χL,k(s)ds01J(s)χL,k(s)ds
for 1 k 2 L 1 1 k 2 L 1 1 <= k <= 2^(L)-11 \leq k \leq 2^{L}-11k2L1, where χ L , k χ L , k chi_(L,k)\chi_{L, k}χL,k is characteristic function of interval [ k 2 L , k + 1 2 L ] k 2 L , k + 1 2 L [(k)/(2^(L)),(k+1)/(2^(L))]\left[\frac{k}{2^{L}}, \frac{k+1}{2^{L}}\right][k2L,k+12L]. Obviously Φ L , k V L Φ L , k V L Phi_(L,k)inV^(L)\Phi_{L, k} \in V^{L}ΦL,kVL for 1 k 2 L 1 1 k 2 L 1 1 <= k <= 2^(L)-11 \leq k \leq 2^{L}-11k2L1 and Φ L , k ( 0 ) = Φ L , k ( 1 ) = 0 Φ L , k ( 0 ) = Φ L , k ( 1 ) = 0 Phi_(L,k)(0)=Phi_(L,k)(1)=0\Phi_{L, k}(0)=\Phi_{L, k}(1)=0ΦL,k(0)=ΦL,k(1)=0.
Because in addition,
Φ L , k ( y j ) = δ k , j , 1 k 2 L 1 , 0 j 2 L Φ L , k y j = δ k , j , 1 k 2 L 1 , 0 j 2 L Phi_(L,k)(y_(j))=delta_(k,j),1 <= k <= 2^(L)-1,0 <= j <= 2^(L)\Phi_{L, k}\left(y_{j}\right)=\delta_{k, j}, 1 \leq k \leq 2^{L}-1,0 \leq j \leq 2^{L}ΦL,k(yj)=δk,j,1k2L1,0j2L
very function g V L g V L g inV^(L)g \in V^{L}gVL can be represented using base { Φ L , k } k = 1 2 L 1 Φ L , k k = 1 2 L 1 {Phi_(L,k)}_(k=1)^(2^(L)-1)\left\{\Phi_{L, k}\right\}_{k=1}^{2^{L}-1}{ΦL,k}k=12L1 thus
g ( y ) = k = 1 2 L 1 g ( y k ) Φ L , k ( y ) . g ( y ) = k = 1 2 L 1 g y k Φ L , k ( y ) . g(y)=sum_(k=1)^(2^(L)-1)g(y_(k))Phi_(L,k)(y).g(y)=\sum_{k=1}^{2^{L}-1} g\left(y_{k}\right) \Phi_{L, k}(y) .g(y)=k=12L1g(yk)ΦL,k(y).
onsequently { Φ L , k } , 1 k 2 L 1 Φ L , k , 1 k 2 L 1 {Phi_(L,k)},1 <= k <= 2^(L)-1\left\{\Phi_{L, k}\right\}, 1 \leq k \leq 2^{L}-1{ΦL,k},1k2L1 form a base in V L V L V^(L)V^{L}VL.
For v G H 0 1 ( 0 , 1 ) v G H 0 1 ( 0 , 1 ) v in GH_(0)^(1)(0,1)v \in G H_{0}^{1}(0,1)vGH01(0,1), we define the interpolant w L w L w_(L)^(**)w_{L}^{*}wL from V L V L V^(L)V^{L}VL as being the nique element from V L V L V^(L)V^{L}VL which satisfies
w L ( y j ) = v ( y j ) , 0 j 2 L . w L y j = v y j , 0 j 2 L . w_(L)^(**)(y_(j))=v(y_(j)),0 <= j <= 2^(L).w_{L}^{*}\left(y_{j}\right)=v\left(y_{j}\right), 0 \leq j \leq 2^{L} .wL(yj)=v(yj),0j2L.
emma 2 Let v v vvv be the solution of problem ( P 2 P 2 P2P 2P2 ) and be w L w L w_(L)^(**)w_{L}^{*}wL the unique V L V L V^(L)-V^{L}-VL nterpolant . Then,
w L v L [ y j , y j + 1 ] h g ( ξ j ) | x j x j + 1 u ( x ) d x | , 0 j 2 L 1 w L v L y j , y j + 1 h g ξ j x j x j + 1 u ( x ) d x , 0 j 2 L 1 ||w_(L)^(**)-v||_(L^(oo)[y_(j),y_(j+1)]) <= hg^(')(xi_(j))|int_(x_(j))^(x_(j+1))u^('')(x)dx|,0 <= j <= 2^(L)-1\left\|w_{L}^{*}-v\right\|_{L^{\infty}\left[y_{j}, y_{j+1}\right]} \leq h g^{\prime}\left(\xi_{j}\right)\left|\int_{x_{j}}^{x_{j+1}} u^{\prime \prime}(x) d x\right|, 0 \leq j \leq 2^{L}-1wLvL[yj,yj+1]hg(ξj)|xjxj+1u(x)dx|,0j2L1
here h = 1 2 L , ξ j ( y j , y j + 1 ) h = 1 2 L , ξ j y j , y j + 1 h=(1)/(2^(L)),xi_(j)in(y_(j),y_(j+1))h=\frac{1}{2^{L}}, \xi_{j} \in\left(y_{j}, y_{j+1}\right)h=12L,ξj(yj,yj+1) and x j = g ( y j ) x j = g y j x_(j)=g(y_(j))x_{j}=g\left(y_{j}\right)xj=g(yj) for 0 j 2 L 1 0 j 2 L 1 0 <= j <= 2^(L)-10 \leq j \leq 2^{L}-10j2L1.
Proof.
Consider a certain interval [ y j , y j + 1 ] , 0 j 2 L 1 y j , y j + 1 , 0 j 2 L 1 [y_(j),y_(j+1)],0 <= j <= 2^(L)-1\left[y_{j}, y_{j+1}\right], 0 \leq j \leq 2^{L}-1[yj,yj+1],0j2L1. Because w L v w L v w_(L)^(**)-vw_{L}^{*}-vwLv ancels at the end of this interval, we obtain, integrating by parts :
y j y j + 1 1 J ( t ) { w L ( t ) v ( t ) } 2 d t = y j y j + 1 1 J ( t ) [ w L ( t ) v ( t ) ] [ w L ( t ) v ( t ) ] d t = y j y j + 1 1 J ( t ) w L ( t ) v ( t ) 2 d t = y j y j + 1 1 J ( t ) w L ( t ) v ( t ) w L ( t ) v ( t ) d t = _(y_(j))^(y_(j+1))(1)/(J(t)){w_(L)^(**')(t)-v^(')(t)}^(2)dt=int_(y_(j))^(y_(j+1))(1)/(J(t))[w_(L)^(**')(t)-v^(')(t)][w_(L)^(**')(t)-v^(')(t)]dt={ }_{y_{j}}^{y_{j+1}} \frac{1}{J(t)}\left\{w_{L}^{* \prime}(t)-v^{\prime}(t)\right\}^{2} d t=\int_{y_{j}}^{y_{j+1}} \frac{1}{J(t)}\left[w_{L}^{* \prime}(t)-v^{\prime}(t)\right]\left[w_{L}^{* \prime}(t)-v^{\prime}(t)\right] d t=yjyj+11J(t){wL(t)v(t)}2dt=yjyj+11J(t)[wL(t)v(t)][wL(t)v(t)]dt=
1 J ( t ) [ w L ( t ) v ( t ) ] [ w L ( t ) v ( t ) ] | y j y j + 1 y j y j + 1 { 1 J ( t ) [ w L ( t ) v ( t ) ] } [ w L ( t ) v ( t ) ] d t = 1 J ( t ) w L ( t ) v ( t ) w L ( t ) v ( t ) y j y j + 1 y j y j + 1 1 J ( t ) w L ( t ) v ( t ) w L ( t ) v ( t ) d t = (1)/(J(t))[w_(L)^(**')(t)-v^(')(t)][w_(L)^(**)(t)-v(t)]|_(y_(j))^(y_(j+1))-int_(y_(j))^(y_(j+1)){(1)/(J(t))[w_(L)^(**')(t)-v^(')(t)]}^(')[w_(L)^(**)(t)-v(t)]dt=\left.\frac{1}{J(t)}\left[w_{L}^{* \prime}(t)-v^{\prime}(t)\right]\left[w_{L}^{*}(t)-v(t)\right]\right|_{y_{j}} ^{y_{j+1}}-\int_{y_{j}}^{y_{j+1}}\left\{\frac{1}{J(t)}\left[w_{L}^{* \prime}(t)-v^{\prime}(t)\right]\right\}^{\prime}\left[w_{L}^{*}(t)-v(t)\right] d t=1J(t)[wL(t)v(t)][wL(t)v(t)]|yjyj+1yjyj+1{1J(t)[wL(t)v(t)]}[wL(t)v(t)]dt=
ecause w L ( y j ) v ( y j ) = 0 , w L ( y j + 1 ) v ( y j + 1 ) = 0 w L y j v y j = 0 , w L y j + 1 v y j + 1 = 0 w_(L)^(**)(y_(j))-v(y_(j))=0,w_(L)^(**)(y_(j+1))-v(y_(j+1))=0w_{L}^{*}\left(y_{j}\right)-v\left(y_{j}\right)=0, w_{L}^{*}\left(y_{j+1}\right)-v\left(y_{j+1}\right)=0wL(yj)v(yj)=0,wL(yj+1)v(yj+1)=0 and v , w L G H 0 1 ( 0 , 1 ) u , u L H 0 1 ( 0 , 1 ) v , w L G H 0 1 ( 0 , 1 ) u , u L H 0 1 ( 0 , 1 ) v,w_(L)^(**)in GH_(0)^(1)(0,1)Longrightarrow u,u_(L)^(**)inH_(0)^(1)(0,1)v, w_{L}^{*} \in G H_{0}^{1}(0,1) \Longrightarrow u, u_{L}^{*} \in H_{0}^{1}(0,1)v,wLGH01(0,1)u,uLH01(0,1) so that v ( y ) = u ( g ( y ) ) , w L ( y ) = u L ( g ( y ) ) v ( y ) = ( y ) u ( g ( y ) ) , w L ( y ) = J ( y ) u L ( g ( y ) ) 1 J ( t ) [ w L ( y ) v ( y ) ] = J ( y ) [ u L ( g ( y ) ) u ( g ( y ) ) ] v ( y ) = u ( g ( y ) ) , w L ( y ) = u L ( g ( y ) ) v ( y ) = ( y ) u ( g ( y ) ) , w L ( y ) = J ( y ) u L ( g ( y ) ) 1 J ( t ) w L ( y ) v ( y ) = J ( y ) u L ( g ( y ) ) u ( g ( y ) ) v(y)=u(g(y)),w_(L)^(**)(y)=u_(L)^(**)(g(y))Longrightarrowv^(')(y)=(y)u^(')(g(y)),w_(L)^(**')(y)=J(y)u_(L)^(**')(g(y))Longrightarrow(1)/(J(t))[w_(L)^(**')(y)-v^(')(y)]=J(y)[u_(L)^(**)(g(y))-u^(')(g(y))]v(y)=u(g(y)), w_{L}^{*}(y)=u_{L}^{*}(g(y)) \Longrightarrow v^{\prime}(y)= (y) u^{\prime}(g(y)), w_{L}^{* \prime}(y)=J(y) u_{L}^{* \prime}(g(y)) \Longrightarrow \frac{1}{J(t)}\left[w_{L}^{* \prime}(y)-v^{\prime}(y)\right]=J(y)\left[u_{L}^{*}(g(y))-u^{\prime}(g(y))\right]v(y)=u(g(y)),wL(y)=uL(g(y))v(y)=(y)u(g(y)),wL(y)=J(y)uL(g(y))1J(t)[wL(y)v(y)]=J(y)[uL(g(y))u(g(y))]
= y j y j + 1 ( 1 J ( t ) w L ( t ) ) [ w L ( t ) v ( t ) ] d t + y j y j + 1 [ 1 J ( t ) v ( t ) ] [ w L ( t ) v ( t ) ] d t = = y j y j + 1 1 J ( t ) w L ( t ) w L ( t ) v ( t ) d t + y j y j + 1 1 J ( t ) v ( t ) w L ( t ) v ( t ) d t = =-int_(y_(j))^(y_(j+1))((1)/(J(t))w_(L)^(**')(t))[w_(L)^(**)(t)-v(t)]dt+int_(y_(j))^(y_(j+1))[(1)/(J(t))v^(')(t)]^(')[w_(L)^(**)(t)-v(t)]dt==-\int_{y_{j}}^{y_{j+1}}\left(\frac{1}{J(t)} w_{L}^{* \prime}(t)\right)\left[w_{L}^{*}(t)-v(t)\right] d t+\int_{y_{j}}^{y_{j+1}}\left[\frac{1}{J(t)} v^{\prime}(t)\right]^{\prime}\left[w_{L}^{*}(t)-v(t)\right] d t==yjyj+1(1J(t)wL(t))[wL(t)v(t)]dt+yjyj+1[1J(t)v(t)][wL(t)v(t)]dt=
(5) y j y j + 1 v ( t ) J ( t ) ε [ w L ( t ) v ( t ) ] d t | y j y j + 1 v ( t ) J ( t ) ε d t | w L v L | y j , y j + 1 | (5) y j y j + 1 v ( t ) J ( t ) ε w L ( t ) v ( t ) d t y j y j + 1 v ( t ) J ( t ) ε d t w L v L y j , y j + 1 {:(5)int_(y_(j))^(y_(j)+1)(v^(')(t)-J(t))/(epsi)[w_(L)^(**)(t)-v(t)]dt <= |int_(y_(j))^(y_(j+1))(v^(')(t)-J(t))/(epsi)dt|||w_(L)^(**)-v||_(L^(oo)|y_(j),y_(j+1)|):}\begin{equation*} \int_{y_{j}}^{y_{j}+1} \frac{v^{\prime}(t)-J(t)}{\varepsilon}\left[w_{L}^{*}(t)-v(t)\right] d t \leq\left|\int_{y_{j}}^{y_{j+1}} \frac{v^{\prime}(t)-J(t)}{\varepsilon} d t\right|\left\|w_{L}^{*}-v\right\|_{L^{\infty}\left|y_{j}, y_{j+1}\right|} \tag{5} \end{equation*}(5)yjyj+1v(t)J(t)ε[wL(t)v(t)]dt|yjyj+1v(t)J(t)εdt|wLvL|yj,yj+1|
For y [ y j , y j + 1 ] , 0 j 2 L 1 y y j , y j + 1 , 0 j 2 L 1 AA y in[y_(j),y_(j+1)],0 <= j <= 2^(L)-1\forall y \in\left[y_{j}, y_{j+1}\right], 0 \leq j \leq 2^{L}-1y[yj,yj+1],0j2L1, we have :
w L ( y ) ι ( y ) = y j y j + 1 [ w L ( t ) v ( t ) ] d t = y j y j + 1 J ( t ) 1 J ( t ) [ w L ( t ) v ( t ) ] d t ( y j y j + 1 J ( t ) d t ) 1 2 { y j y j + 1 1 J ( t ) [ w L ( t ) v ( t ) ] 2 } 1 2 w L v L [ y j , y j + 1 ] { y j y j + 1 J ( t ) d t } 1 2 { y j y j + 1 1 J ( t ) [ w L ( t ) v ( t ) ] 2 d t } 1 2 w L ( y ) ι ( y ) = y j y j + 1 w L ( t ) v ( t ) d t = y j y j + 1 J ( t ) 1 J ( t ) w L ( t ) v ( t ) d t y j y j + 1 J ( t ) d t 1 2 y j y j + 1 1 J ( t ) w L ( t ) v ( t ) 2 1 2 w L v L y j , y j + 1 y j y j + 1 J ( t ) d t 1 2 y j y j + 1 1 J ( t ) w L ( t ) v ( t ) 2 d t 1 2 {:[w_(L)^(**)(y)-iota^(')(y)=int_(y_(j))^(y_(j+1))[w_(L)^(**')(t)-v^(')(t)]dt=int_(y_(j))^(y_(j+1))sqrt(J(t))(1)/(sqrt(J(t)))[w_(L)^(**')(t)-v^(')(t)]dt <= ],[ <= (int_(y_(j))^(y_(j+1))J(t)dt)^((1)/(2)){int_(y_(j))^(y_(j+1))(1)/(J(t))[w_(L)^(**')(t)-v^(')(t)]^(2)}^((1)/(2))],[Longrightarrow||w_(L)^(**)-v||_(L^(oo)[y_(j),y_(j+1)]) <= {int_(y_(j))^(y_(j+1))J(t)dt}^((1)/(2)){int_(y_(j))^(y_(j+1))(1)/(J(t))[w_(L)^(**')(t)-v^(')(t)]^(2)dt}^((1)/(2))]:}\begin{aligned} w_{L}^{*}(y)-\iota^{\prime}(y) & =\int_{y_{j}}^{y_{j+1}}\left[w_{L}^{* \prime}(t)-v^{\prime}(t)\right] d t=\int_{y_{j}}^{y_{j+1}} \sqrt{J(t)} \frac{1}{\sqrt{J(t)}}\left[w_{L}^{* \prime}(t)-v^{\prime}(t)\right] d t \leq \\ & \leq\left(\int_{y_{j}}^{y_{j+1}} J(t) d t\right)^{\frac{1}{2}}\left\{\int_{y_{j}}^{y_{j+1}} \frac{1}{J(t)}\left[w_{L}^{* \prime}(t)-v^{\prime}(t)\right]^{2}\right\}^{\frac{1}{2}} \\ \Longrightarrow & \left\|w_{L}^{*}-v\right\|_{L^{\infty}\left[y_{j}, y_{j+1}\right]} \leq\left\{\int_{y_{j}}^{y_{j+1}} J(t) d t\right\}^{\frac{1}{2}}\left\{\int_{y_{j}}^{y_{j+1}} \frac{1}{J(t)}\left[w_{L}^{* \prime}(t)-v^{\prime}(t)\right]^{2} d t\right\}^{\frac{1}{2}} \end{aligned}wL(y)ι(y)=yjyj+1[wL(t)v(t)]dt=yjyj+1J(t)1J(t)[wL(t)v(t)]dt(yjyj+1J(t)dt)12{yjyj+11J(t)[wL(t)v(t)]2}12wLvL[yj,yj+1]{yjyj+1J(t)dt}12{yjyj+11J(t)[wL(t)v(t)]2dt}12
Using this and inequality (5), we obtain:
w L | L | y j , y j + 1 | ( y j y j + 1 J ( t ) d t ) | y j y j + 1 v ( t ) J ( t ) ε d t | = h g ( ξ j ) | y j y j + 1 u ( x ) d x w L L y j , y j + 1 y j y j + 1 J ( t ) d t y j y j + 1 v ( t ) J ( t ) ε d t = h g ξ j y j y j + 1 u ( x ) d x ||w_(L)^(**)-|||_(L^(oo)|y_(j),y_(j+1)|) <= (int_(y_(j))^(y_(j+1))J(t)dt)|int_(y_(j))^(y_(j+1))(v^(')(t)-J(t))/(epsi)dt|=hg^(')(xi_(j))|int_(y_(j))^(y_(j+1))u^('')(x)dx:}\left\|w_{L}^{*}-\left|\|_{L^{\infty}\left|y_{j}, y_{j+1}\right|} \leq\left(\int_{y_{j}}^{y_{j+1}} J(t) d t\right)\right| \int_{y_{j}}^{y_{j+1}} \frac{v^{\prime}(t)-J(t)}{\varepsilon} d t\left|=h g^{\prime}\left(\xi_{j}\right)\right| \int_{y_{j}}^{y_{j+1}} u^{\prime \prime}(x) d x\right.wL|L|yj,yj+1|(yjyj+1J(t)dt)|yjyj+1v(t)J(t)εdt|=hg(ξj)|yjyj+1u(x)dx
where h = 1 2 L , ξ j ( y j , y j + 1 ) h = 1 2 L , ξ j y j , y j + 1 h=(1)/(2^(L)),xi_(j)in(y_(j),y_(j+1))h=\frac{1}{2^{L}}, \xi_{j} \in\left(y_{j}, y_{j+1}\right)h=12L,ξj(yj,yj+1) and x j = g ( y j ) x j = g y j x_(j)=g(y_(j))x_{j}=g\left(y_{j}\right)xj=g(yj) for 0 j 2 L 1 0 j 2 L 1 0 <= j <= 2^(L)-10 \leq j \leq 2^{L}-10j2L1.
Let w L ( g ( y ) ) = w L ( y ) w L ( g ( y ) ) = w L ( y ) w_(L)(g(y))=w_(L)^(**)(y)w_{L}(g(y))=w_{L}^{*}(y)wL(g(y))=wL(y) for y [ y j , y j + 1 ] y y j , y j + 1 AA y in[y_(j),y_(j+1)]\forall y \in\left[y_{j}, y_{j+1}\right]y[yj,yj+1]; then, we have
u ( x ) w L ( x ) = u ( g ( y ) ) w L ( g ( y ) ) = v ( y ) w L ( y ) | u ( x ) w L ( x ) | = | v ( y ) w L ( y ) | v w L L [ y j , y j + 1 ] max x { | x j , x j + 1 | | u ( x ) w L ( x ) | v w L L [ y j , y j + 1 ] h g ( ξ j ) | y j y j + 1 u ( x ) d x | u ( x ) w L ( x ) = u ( g ( y ) ) w L ( g ( y ) ) = v ( y ) w L ( y ) u ( x ) w L ( x ) = v ( y ) w L ( y ) v w L L y j , y j + 1 max x x j , x j + 1 u ( x ) w L ( x ) v w L L y j , y j + 1 h g ξ j y j y j + 1 u ( x ) d x {:[u(x)-w_(L)(x)=u(g(y))-w_(L)(g(y))=v(y)-w_(L)^(**)(y)],[Longrightarrow|u(x)-w_(L)(x)|=|v(y)-w_(L)^(**)(y)| <= ||v-w_(L)^(**)||_(L^(oo)[y_(j),y_(j+1)])],[Longrightarrowmax_(x in{|x_(j),x_(j+1)|:})|u(x)-w_(L)(x)| <= ||v-w_(L)^(**)||_(L^(oo)[y_(j),y_(j+1)]) <= hg^(')(xi_(j))|int_(y_(j))^(y_(j+1))u^('')(x)dx|]:}\begin{gathered} u(x)-w_{L}(x)=u(g(y))-w_{L}(g(y))=v(y)-w_{L}^{*}(y) \\ \Longrightarrow\left|u(x)-w_{L}(x)\right|=\left|v(y)-w_{L}^{*}(y)\right| \leq\left\|v-w_{L}^{*}\right\|_{L^{\infty}\left[y_{j}, y_{j+1}\right]} \\ \Longrightarrow \max _{x \in\left\{\left|x_{j}, x_{j+1}\right|\right.}\left|u(x)-w_{L}(x)\right| \leq\left\|v-w_{L}^{*}\right\|_{L^{\infty}\left[y_{j}, y_{j+1}\right]} \leq h g^{\prime}\left(\xi_{j}\right)\left|\int_{y_{j}}^{y_{j+1}} u^{\prime \prime}(x) d x\right| \end{gathered}u(x)wL(x)=u(g(y))wL(g(y))=v(y)wL(y)|u(x)wL(x)|=|v(y)wL(y)|vwLL[yj,yj+1]maxx{|xj,xj+1||u(x)wL(x)|vwLL[yj,yj+1]hg(ξj)|yjyj+1u(x)dx|
and, therefore,
u w L L [ x j , x j + 1 ] h g ( ξ j ) | y j y j + 1 u ( x ) d x | .q.e.d. u w L L x j , x j + 1 h g ξ j y j y j + 1 u ( x ) d x .q.e.d.  ||u-w_(L)||_(L^(oo)[x_(j),x_(j+1)]) <= hg^(')(xi_(j))|int_(y_(j))^(y_(j+1))u^('')(x)dx|".q.e.d. "\left\|u-w_{L}\right\|_{L^{\infty}\left[x_{j}, x_{j+1}\right]} \leq h g^{\prime}\left(\xi_{j}\right)\left|\int_{y_{j}}^{y_{j+1}} u^{\prime \prime}(x) d x\right| \text {.q.e.d. }uwLL[xj,xj+1]hg(ξj)|yjyj+1u(x)dx|.q.e.d. 
With a view to obtain an evaluation of approximation error by Galerkin method, we will compare Galerkin approximation to the approximation by V L V L V^(L)V^{L}VL - interpolant of solution of problem (P2).
Theorem 3 Let v v vvv be the solution of problem (P2), let w L # w L # w_(L)^(#)w_{L}^{\#}wL# be the Galerkin approximation of it, and w L w L w_(L)^(**)w_{L}^{*}wL its interpolant in space V L V L V^(L)V^{L}VL. Then, the following inequalities
w L # v L [ 0 , 1 ] 2 w L v L [ 0 , 1 ] w L # v L [ 0 , 1 ] 2 w L v L [ 0 , 1 ] ||w_(L)^(#)-v||_(L^(oo)[0,1]) <= 2||w_(L)^(**)-v||_(L^(oo)[0,1])\left\|w_{L}^{\#}-v\right\|_{L^{\infty}[0,1]} \leq 2\left\|w_{L}^{*}-v\right\|_{L^{\infty}[0,1]}wL#vL[0,1]2wLvL[0,1]
holds.
Proof. We will use the fact that on every interval ( y j , y j + 1 ) , 0 j 2 L 1 y j , y j + 1 , 0 j 2 L 1 (y_(j),y_(j+1)),0 <= j <= 2^(L)-1\left(y_{j}, y_{j+1}\right), 0 \leq j \leq 2^{L}-1(yj,yj+1),0j2L1, the functions from V L V L V^(L)V^{L}VL satisfy the differential equation
( 1 J ( y ) w L ( y ) ) = 0 1 J ( y ) w L ( y ) = 0 ((1)/(J(y))w_(L)^(**')(y))^(')=0\left(\frac{1}{J(y)} w_{L}^{* \prime}(y)\right)^{\prime}=0(1J(y)wL(y))=0
Let M k = 0 1 { 1 J ( y ) w L ( y ) Φ L , k ( y ) + w L ( y ) Φ L , k ( y ) F ( y ) J ( y ) Φ L , k ( y ) } d y , 1 k 2 L M k = 0 1 1 J ( y ) w L ( y ) Φ L , k ( y ) + w L ( y ) Φ L , k ( y ) F ( y ) J ( y ) Φ L , k ( y ) d y , 1 k 2 L M_(k)=int_(0)^(1){(1)/(J(y))w_(L)^(**')(y)Phi_(L,k)^(')(y)+w_(L)^(**')(y)Phi_(L,k)(y)-F(y)J(y)Phi_(L,k)(y)}dy,1 <= k <= 2^(L)M_{k}=\int_{\mathbf{0}}^{1}\left\{\frac{1}{J(y)} w_{L}^{* \prime}(y) \Phi_{L, k}^{\prime}(y)+w_{L}^{* \prime}(y) \Phi_{L, k}(y)-F(y) J(y) \Phi_{L, k}(y)\right\} d y, 1 \leq k \leq 2^{L}Mk=01{1J(y)wL(y)ΦL,k(y)+wL(y)ΦL,k(y)F(y)J(y)ΦL,k(y)}dy,1k2L. -1 . Because
0 1 { 1 J ( y ) v ( y ) Φ L , k ( y ) + v ( y ) Φ L , k ( y ) F ( y ) J ( y ) Φ L , k ( y ˙ ) } d y = 0 , 1 k 2 L 0 1 1 J ( y ) v ( y ) Φ L , k ( y ) + v ( y ) Φ L , k ( y ) F ( y ) J ( y ) Φ L , k ( y ˙ ) d y = 0 , 1 k 2 L int_(0)^(1){(1)/(J(y))v^(')(y)Phi_(L,k)^(')(y)+v^(')(y)Phi_(L,k)(y)-F(y)J(y)Phi_(L,k)((y^(˙)))}dy=0,1 <= k <= 2^(L)-\int_{0}^{1}\left\{\frac{1}{J(y)} v^{\prime}(y) \Phi_{L, k}^{\prime}(y)+v^{\prime}(y) \Phi_{L, k}(y)-F(y) J(y) \Phi_{L, k}(\dot{y})\right\} d y=0,1 \leq k \leq 2^{L}-01{1J(y)v(y)ΦL,k(y)+v(y)ΦL,k(y)F(y)J(y)ΦL,k(y˙)}dy=0,1k2L
it results that
(6) M k = 0 1 { 1 J ( y ) [ w L ( y ) v ( y ) ] Φ L , k ( y ) + [ w L ( y ) v ( y ) ] Φ L , k ( y ) } d y M k = 0 1 1 J ( y ) w L ( y ) v ( y ) Φ L , k ( y ) + w L ( y ) v ( y ) Φ L , k ( y ) d y quadM_(k)=int_(0)^(1){(1)/(J(y))[w_(L)^(**')(y)-v^(')(y)]Phi_(L,k)^(')(y)+[w_(L)^(**')(y)-v^(')(y)]Phi_(L,k)(y)}dy\quad M_{k}=\int_{0}^{1}\left\{\frac{1}{J(y)}\left[w_{L}^{* \prime}(y)-v^{\prime}(y)\right] \Phi_{L, k}^{\prime}(y)+\left[w_{L}^{* \prime}(y)-v^{\prime}(y)\right] \Phi_{L, k}(y)\right\} d yMk=01{1J(y)[wL(y)v(y)]ΦL,k(y)+[wL(y)v(y)]ΦL,k(y)}dy.
Similarly, we have
0 1 { 1 J ( y ) w L # ( y ) Φ L , k ( y ) + w L # ( y ) Φ L , k ( y ) F ( y ) J ( y ) Φ L , k ( y ) } d y = 0 0 1 1 J ( y ) w L # ( y ) Φ L , k ( y ) + w L # ( y ) Φ L , k ( y ) F ( y ) J ( y ) Φ L , k ( y ) d y = 0 int_(0)^(1){(1)/(J(y))w_(L)^(#')(y)Phi_(L,k)^(')(y)+w_(L)^(#')(y)Phi_(L,k)(y)-F(y)J(y)Phi_(L,k)(y)}dy=0\int_{0}^{1}\left\{\frac{1}{J(y)} w_{L}^{\# \prime}(y) \Phi_{L, k}^{\prime}(y)+w_{L}^{\# \prime}(y) \Phi_{L, k}(y)-F(y) J(y) \Phi_{L, k}(y)\right\} d y=001{1J(y)wL#(y)ΦL,k(y)+wL#(y)ΦL,k(y)F(y)J(y)ΦL,k(y)}dy=0
thus
(7) M k = 0 1 { 1 J ( y ) [ w L ( y ) w L # ( y ) ] Φ L , k ( y ) + [ w L ( y ) w L # ( y ) ] Φ L , k ( y ) } d y M k = 0 1 1 J ( y ) w L ( y ) w L # ( y ) Φ L , k ( y ) + w L ( y ) w L # ( y ) Φ L , k ( y ) d y M_(k)=int_(0)^(1){(1)/(J(y))[w_(L)^(**')(y)-w_(L)^(#')(y)]Phi_(L,k)^(')(y)+[w_(L)^(**')(y)-w_(L)^(#')(y)]Phi_(L,k)(y)}dyM_{k}=\int_{0}^{1}\left\{\frac{1}{J(y)}\left[w_{L}^{* \prime}(y)-w_{L}^{\# \prime}(y)\right] \Phi_{L, k}^{\prime}(y)+\left[w_{L}^{* \prime}(y)-w_{L}^{\# \prime}(y)\right] \Phi_{L, k}(y)\right\} d yMk=01{1J(y)[wL(y)wL#(y)]ΦL,k(y)+[wL(y)wL#(y)]ΦL,k(y)}dy.
We also have
0 1 1 J ( y ) [ w L ( y ) v ( y ) ] Φ L , k ( y ) d y = = 0 1 1 J ( y ) [ w L ( y ) v ( y ) ] [ J ( y ) χ L , k ( y ) 0 1 J ( s ) χ L , k ( s ) d s J ( y ) χ L , k + 1 ( y ) 0 1 J ( s ) χ L , k + 1 ( s ) d s ] d y = = k 1 2 L k 2 L [ w L ( y ) v ( y ) ] d y k 1 2 L k 2 L J ( s ) d s k 2 L k + 1 2 L [ w L ( y ) v ( y ) ] d y k 2 L k + 1 2 L J ( s ) d s = = [ w L ( y ) v ( y ) ] | k 1 2 L k 2 L [ w L ( y ) v ( y ) ] | k 2 L k + 1 2 L k 1 2 L k 2 L J ( s ) d s = 0 k 2 L k + 1 2 L J ( s ) d s 0 1 1 J ( y ) w L ( y ) v ( y ) Φ L , k ( y ) d y = = 0 1 1 J ( y ) w L ( y ) v ( y ) J ( y ) χ L , k ( y ) 0 1 J ( s ) χ L , k ( s ) d s J ( y ) χ L , k + 1 ( y ) 0 1 J ( s ) χ L , k + 1 ( s ) d s d y = = k 1 2 L k 2 L w L ( y ) v ( y ) d y k 1 2 L k 2 L J ( s ) d s k 2 L k + 1 2 L w L ( y ) v ( y ) d y k 2 L k + 1 2 L J ( s ) d s = = w L ( y ) v ( y ) k 1 2 L k 2 L w L ( y ) v ( y ) k 2 L k + 1 2 L k 1 2 L k 2 L J ( s ) d s = 0 k 2 L k + 1 2 L J ( s ) d s {:[int_(0)^(1)(1)/(J(y))[w_(L)^(**')(y)-v^(')(y)]Phi_(L,k)^(')(y)dy=],[=int_(0)^(1)(1)/(J(y))[w_(L)^(**')(y)-v^(')(y)][(J(y)chi_(L,k)(y))/(int_(0)^(1)J(s)chi_(L,k)(s)ds)-(J(y)chi_(L,k+1)(y))/(int_(0)^(1)J(s)chi_(L,k+1)(s)ds)]dy=],[=(int_((k-1)/(2L))^((k)/(2L))[w_(L)^(**')(y)-v^(')(y)]dy)/(int_((k-1)/(2L))^((k)/(2L))J(s)ds)-(int_((k)/(2L))^((k+1)/(2L))[w_(L)^(**')(y)-v^(')(y)]dy)/(int_((k)/(2L))^((k+1)/(2L))J(s)ds)=],[=([w_(L)^(**)(y)-v(y)]|_((k-1)/(2L))^((k)/(2L))-([w_(L)^(**)(y)-v(y)]|_((k)/(2L))^((k+1)/(2L)))/(int_((k-1)/(2L))^((k)/(2L))J(s)ds)=0)/(int_((k)/(2L))^((k+1)/(2L))J(s)ds)]:}\begin{gathered} \int_{0}^{1} \frac{1}{J(y)}\left[w_{L}^{* \prime}(y)-v^{\prime}(y)\right] \Phi_{L, k}^{\prime}(y) d y= \\ =\int_{0}^{1} \frac{1}{J(y)}\left[w_{L}^{* \prime}(y)-v^{\prime}(y)\right]\left[\frac{J(y) \chi_{L, k}(y)}{\int_{0}^{1} J(s) \chi_{L, k}(s) d s}-\frac{J(y) \chi_{L, k+1}(y)}{\int_{0}^{1} J(s) \chi_{L, k+1}(s) d s}\right] d y= \\ =\frac{\int_{\frac{k-1}{2 L}}^{\frac{k}{2 L}}\left[w_{L}^{* \prime}(y)-v^{\prime}(y)\right] d y}{\int_{\frac{k-1}{2 L}}^{\frac{k}{2 L}} J(s) d s}-\frac{\int_{\frac{k}{2 L}}^{\frac{k+1}{2 L}}\left[w_{L}^{* \prime}(y)-v^{\prime}(y)\right] d y}{\int_{\frac{k}{2 L}}^{\frac{k+1}{2 L}} J(s) d s}= \\ =\frac{\left.\left[w_{L}^{*}(y)-v(y)\right]\right|_{\frac{k-1}{2 L}} ^{\frac{k}{2 L}}-\frac{\left.\left[w_{L}^{*}(y)-v(y)\right]\right|_{\frac{k}{2 L}} ^{\frac{k+1}{2 L}}}{\int_{\frac{k-1}{2 L}}^{\frac{k}{2 L}} J(s) d s}=0}{\int_{\frac{k}{2 L}}^{\frac{k+1}{2 L}} J(s) d s} \end{gathered}011J(y)[wL(y)v(y)]ΦL,k(y)dy==011J(y)[wL(y)v(y)][J(y)χL,k(y)01J(s)χL,k(s)dsJ(y)χL,k+1(y)01J(s)χL,k+1(s)ds]dy==k12Lk2L[wL(y)v(y)]dyk12Lk2LJ(s)dsk2Lk+12L[wL(y)v(y)]dyk2Lk+12LJ(s)ds==[wL(y)v(y)]|k12Lk2L[wL(y)v(y)]|k2Lk+12Lk12Lk2LJ(s)ds=0k2Lk+12LJ(s)ds
and using this in (6), we obtain
(8) M k = 0 1 [ w L ( y ) v ( y ) ] Φ L , k ( y ) d y  (8)  M k = 0 1 w L ( y ) v ( y ) Φ L , k ( y ) d y " (8) "M_(k)=int_(0)^(1)[w_(L)^(**')(y)-v^(')(y)]Phi_(L,k)(y)dy\text { (8) } M_{k}=\int_{0}^{1}\left[w_{L}^{* \prime}(y)-v^{\prime}(y)\right] \Phi_{L, k}(y) d y (8) Mk=01[wL(y)v(y)]ΦL,k(y)dy
Considering w L = k = 1 2 L 1 u k Φ L , k w L = k = 1 2 L 1 u k Φ L , k w_(L)^(**)=sum_(k=1)^(2^(L)-1)u_(k)^(**)Phi_(L,k)w_{L}^{*}=\sum_{k=1}^{2^{L}-1} u_{k}^{*} \Phi_{L, k}wL=k=12L1ukΦL,k, and w L # = k = 1 2 L 1 u k # Φ L , k w L # = k = 1 2 L 1 u k # Φ L , k w_(L)^(#)=sum_(k=1)^(2^(L)-1)u_(k)^(#)Phi_(L,k)w_{L}^{\#}=\sum_{k=1}^{2^{L}-1} u_{k}^{\#} \Phi_{L, k}wL#=k=12L1uk#ΦL,k, from (8) we obtain :
k = 1 2 L 1 ( u k u k # ) M k = k = 1 2 L 1 ( u k u k # ) 0 1 [ w L ( y ) v ( y ) ] Φ L , k ( y ) d y = = 0 1 k = 1 2 L 1 ( u k u k # ) [ w L ( y ) v ( y ) ] Φ L , k ( y ) d y = 0 1 [ w L ( y ) w L # ( y ) ] [ w L ( y ) v ( y ) ] d y k = 1 2 L 1 u k u k # M k = k = 1 2 L 1 u k u k # 0 1 w L ( y ) v ( y ) Φ L , k ( y ) d y = = 0 1 k = 1 2 L 1 u k u k # w L ( y ) v ( y ) Φ L , k ( y ) d y = 0 1 w L ( y ) w L # ( y ) w L ( y ) v ( y ) d y {:[sum_(k=1)^(2^(L)-1)(u_(k)^(**)-u_(k)^(#))M_(k)=sum_(k=1)^(2^(L)-1)(u_(k)^(**)-u_(k)^(#))int_(0)^(1)[w_(L)^(**')(y)-v^(')(y)]Phi_(L,k)(y)dy=],[=int_(0)^(1)sum_(k=1)^(2^(L)-1)(u_(k)^(**)-u_(k)^(#))[w_(L)^(**')(y)-v^(')(y)]Phi_(L,k)(y)dy=int_(0)^(1)[w_(L)^(**)(y)-w_(L)^(#)(y)][w_(L)^(**')(y)-v^(')(y)]dy]:}\begin{gathered} \sum_{k=1}^{2^{L}-1}\left(u_{k}^{*}-u_{k}^{\#}\right) M_{k}=\sum_{k=1}^{2^{L}-1}\left(u_{k}^{*}-u_{k}^{\#}\right) \int_{0}^{1}\left[w_{L}^{* \prime}(y)-v^{\prime}(y)\right] \Phi_{L, k}(y) d y= \\ =\int_{0}^{1} \sum_{k=1}^{2^{L}-1}\left(u_{k}^{*}-u_{k}^{\#}\right)\left[w_{L}^{* \prime}(y)-v^{\prime}(y)\right] \Phi_{L, k}(y) d y=\int_{0}^{1}\left[w_{L}^{*}(y)-w_{L}^{\#}(y)\right]\left[w_{L}^{* \prime}(y)-v^{\prime}(y)\right] d y \end{gathered}k=12L1(ukuk#)Mk=k=12L1(ukuk#)01[wL(y)v(y)]ΦL,k(y)dy==01k=12L1(ukuk#)[wL(y)v(y)]ΦL,k(y)dy=01[wL(y)wL#(y)][wL(y)v(y)]dy
ıd similarly, using (7)
(9) k = 1 2 L 1 ( u k u k # ) M k =  (9)  k = 1 2 L 1 u k u k # M k = " (9) "sum_(k=1)^(2^(L)-1)(u_(k)^(**)-u_(k)^(#))M_(k)=\text { (9) } \sum_{k=1}^{2^{L}-1}\left(u_{k}^{*}-u_{k}^{\#}\right) M_{k}= (9) k=12L1(ukuk#)Mk=
e find
k = 1 2 L 1 ( u k u k # ) 0 1 { 1 J ( y ) [ w L ( y ) w L # ( y ) ] Φ L , k ( y ) + [ w L ( y ) v ( y ) ] Φ L , k ( y ) } d y = = 0 1 { 1 J ( y ) [ w L ( y ) w L # ( y ) ] 2 + [ w L ( y ) v ( y ) ] [ w L ( y ) w L # ( y ) ] } d y k = 1 2 L 1 u k u k # 0 1 1 J ( y ) w L ( y ) w L # ( y ) Φ L , k ( y ) + w L ( y ) v ( y ) Φ L , k ( y ) d y = = 0 1 1 J ( y ) w L ( y ) w L # ( y ) 2 + w L ( y ) v ( y ) w L ( y ) w L # ( y ) d y {:[sum_(k=1)^(2^(L)-1)(u_(k)^(**)-u_(k)^(#))int_(0)^(1){(1)/(J(y))[w_(L)^(**')(y)-w_(L)^(#')(y)]Phi_(L,k)^(')(y)+[w_(L)^(**')(y)-v^(')(y)]Phi_(L,k)(y)}dy=],[=int_(0)^(1){(1)/(J(y))[w_(L)^(**')(y)-w_(L)^(#')(y)]^(2)+[w_(L)^(**')(y)-v^(')(y)][w_(L)^(**)(y)-w_(L)^(#)(y)]}dy]:}\begin{aligned} & \sum_{k=1}^{2^{L}-1}\left(u_{k}^{*}-u_{k}^{\#}\right) \int_{0}^{1}\left\{\frac{1}{J(y)}\left[w_{L}^{* \prime}(y)-w_{L}^{\# \prime}(y)\right] \Phi_{L, k}^{\prime}(y)+\left[w_{L}^{* \prime}(y)-v^{\prime}(y)\right] \Phi_{L, k}(y)\right\} d y= \\ & =\int_{0}^{1}\left\{\frac{1}{J(y)}\left[w_{L}^{* \prime}(y)-w_{L}^{\# \prime}(y)\right]^{2}+\left[w_{L}^{* \prime}(y)-v^{\prime}(y)\right]\left[w_{L}^{*}(y)-w_{L}^{\#}(y)\right]\right\} d y \end{aligned}k=12L1(ukuk#)01{1J(y)[wL(y)wL#(y)]ΦL,k(y)+[wL(y)v(y)]ΦL,k(y)}dy==01{1J(y)[wL(y)wL#(y)]2+[wL(y)v(y)][wL(y)wL#(y)]}dy
From (8) and (9) it results :
0 1 [ w L ( y ) w L # ( y ) ] [ w L ( y ) v ( y ) ] d y = = 0 1 1 J ( y ) [ w L ( y ) w L # ( y ) ] 2 d y + 0 1 [ w L ( y ) w L # ( y ) ] [ w L ( y ) w L # ( y ) ] d y but 0 1 [ w L ( y ) w L # ( y ) ] [ w L ( y ) w L # ( y ) ] d y = 1 2 w L ( y ) w L # ( y ) | 0 1 = 0 0 1 [ w L ( y ) w L # ( y ) ] [ w L ( y ) v ( y ) ] d y = 0 1 1 J ( y ) [ w L ( y ) w L # ( y ) ] 2 d y ⟹∣ w L w L # G H 0 1 2 = 0 1 [ w L ( y ) w L # ( y ) ] [ w L ( y ) v ( y ) ] d y = [ w L ( y ) w L # ( y ) ] [ w L ( y ) v ( y ) ] | 0 1 0 1 [ w L ( y ) w L # ( y ) ] [ w L ( y ) v ( y ) ] d y = 0 1 [ w L # ( y ) w L ( y ) ] [ w L ( y ) v ( y ) ] d y ( 0 1 [ w L # ( y ) w L ( y ) ] 2 ) 1 2 ( 0 1 [ u L ( y ) v ( y ) ] 2 d y ) 0 1 w L ( y ) w L # ( y ) w L ( y ) v ( y ) d y = = 0 1 1 J ( y ) w L ( y ) w L # ( y ) 2 d y + 0 1 w L ( y ) w L # ( y ) w L ( y ) w L # ( y ) d y  but  0 1 w L ( y ) w L # ( y ) w L ( y ) w L # ( y ) d y = 1 2 w L ( y ) w L # ( y ) 0 1 = 0 0 1 w L ( y ) w L # ( y ) w L ( y ) v ( y ) d y = 0 1 1 J ( y ) w L ( y ) w L # ( y ) 2 d y ⟹∣ w L w L # G H 0 1 2 = 0 1 w L ( y ) w L # ( y ) w L ( y ) v ( y ) d y = w L ( y ) w L # ( y ) w L ( y ) v ( y ) 0 1 0 1 w L ( y ) w L # ( y ) w L ( y ) v ( y ) d y = 0 1 w L # ( y ) w L ( y ) w L ( y ) v ( y ) d y 0 1 w L # ( y ) w L ( y ) 2 1 2 0 1 u L ( y ) v ( y ) 2 d y {:[qquadint_(0)^(1)[w_(L)^(**)(y)-w_(L)^(#)(y)][w_(L)^(**')(y)-v^(')(y)]dy=],[=int_(0)^(1)(1)/(J(y))[w_(L)^(**')(y)-w_(L)^(#')(y)]^(2)dy+int_(0)^(1)[w_(L)^(**')(y)-w_(L)^(#')(y)][w_(L)^(**)(y)-w_(L)^(#)(y)]dy],[" but "],[qquadint_(0)^(1)[w_(L)^(**)(y)-w_(L)^(#)(y)][w_(L)^(**')(y)-w_(L)^(#')(y)]dy=(1)/(2)w_(L)^(**)(y)-w_(L)^(#)(y)|_(0)^(1)=0],[ Longrightarrowint_(0)^(1)[w_(L)^(**)(y)-w_(L)^(#)(y)][w_(L)^(**')(y)-v^(')(y)]dy=int_(0)^(1)(1)/(J(y))[w_(L)^(**')(y)-w_(L)^(#')(y)]^(2)dy],[quad Longrightarrow ∣w_(L)^(**)-w_(L)^(#)||_(GH_(0)^(1))^(2)=int_(0)^(1)[w_(L)^(**)(y)-w_(L)^(#)(y)][w_(L)^(**')(y)-v^(')(y)]dy=],[[w_(L)^(**)(y)-w_(L)^(#)(y)][w_(L)^(**)(y)-v(y)]|_(0)^(1)-int_(0)^(1)[w_(L)^(**')(y)-w_(L)^(#')(y)][w_(L)^(**)(y)-v(y)]dy=],[int_(0)^(1)[w_(L)^(#')(y)-w_(L)^(**')(y)][w_(L)^(**)(y)-v(y)]dy <= (int_(0)^(1)[w_(L)^(#')(y)-w_(L)^(**')(y)]^(2))^((1)/(2))(int_(0)^(1)[u_(L)^(**)(y)-v(y)]^(2)dy)]:}\begin{aligned} & \qquad \int_{0}^{1}\left[w_{L}^{*}(y)-w_{L}^{\#}(y)\right]\left[w_{L}^{* \prime}(y)-v^{\prime}(y)\right] d y= \\ & =\int_{0}^{1} \frac{1}{J(y)}\left[w_{L}^{* \prime}(y)-w_{L}^{\# \prime}(y)\right]^{2} d y+\int_{0}^{1}\left[w_{L}^{* \prime}(y)-w_{L}^{\# \prime}(y)\right]\left[w_{L}^{*}(y)-w_{L}^{\#}(y)\right] d y \\ & \text { but } \\ & \qquad \int_{0}^{1}\left[w_{L}^{*}(y)-w_{L}^{\#}(y)\right]\left[w_{L}^{* \prime}(y)-w_{L}^{\# \prime}(y)\right] d y=\frac{1}{2} w_{L}^{*}(y)-\left.w_{L}^{\#}(y)\right|_{0} ^{1}=0 \\ & \Longrightarrow \int_{0}^{1}\left[w_{L}^{*}(y)-w_{L}^{\#}(y)\right]\left[w_{L}^{* \prime}(y)-v^{\prime}(y)\right] d y=\int_{0}^{1} \frac{1}{J(y)}\left[w_{L}^{* \prime}(y)-w_{L}^{\# \prime}(y)\right]^{2} d y \\ & \quad \Longrightarrow \mid w_{L}^{*}-w_{L}^{\#} \|_{G H_{0}^{1}}^{2}=\int_{0}^{1}\left[w_{L}^{*}(y)-w_{L}^{\#}(y)\right]\left[w_{L}^{* \prime}(y)-v^{\prime}(y)\right] d y= \\ & {\left.\left[w_{L}^{*}(y)-w_{L}^{\#}(y)\right]\left[w_{L}^{*}(y)-v(y)\right]\right|_{0} ^{1}-\int_{0}^{1}\left[w_{L}^{* \prime}(y)-w_{L}^{\# \prime}(y)\right]\left[w_{L}^{*}(y)-v(y)\right] d y=} \\ & \int_{0}^{1}\left[w_{L}^{\# \prime}(y)-w_{L}^{* \prime}(y)\right]\left[w_{L}^{*}(y)-v(y)\right] d y \leq\left(\int_{0}^{1}\left[w_{L}^{\# \prime}(y)-w_{L}^{* \prime}(y)\right]^{2}\right)^{\frac{1}{2}}\left(\int_{0}^{1}\left[u_{L}^{*}(y)-v(y)\right]^{2} d y\right) \end{aligned}01[wL(y)wL#(y)][wL(y)v(y)]dy==011J(y)[wL(y)wL#(y)]2dy+01[wL(y)wL#(y)][wL(y)wL#(y)]dy but 01[wL(y)wL#(y)][wL(y)wL#(y)]dy=12wL(y)wL#(y)|01=001[wL(y)wL#(y)][wL(y)v(y)]dy=011J(y)[wL(y)wL#(y)]2dy⟹∣wLwL#GH012=01[wL(y)wL#(y)][wL(y)v(y)]dy=[wL(y)wL#(y)][wL(y)v(y)]|0101[wL(y)wL#(y)][wL(y)v(y)]dy=01[wL#(y)wL(y)][wL(y)v(y)]dy(01[wL#(y)wL(y)]2)12(01[uL(y)v(y)]2dy)
= ( 0 1 J ( y ) 1 J ( y ) [ w L # ( y ) w L ( y ) ] 2 ) 1 2 w L v L L 2 [ 0 , 1 ] ( 0 1 J ( y ) d y ) 1 2 ( 0 1 1 J ( y ) [ w L # ( y ) w L ( y ) ] 2 ) 1 2 w L v L L 2 [ 0 , 1 ] = = w L # w L G H 0 1 w L v L L 2 [ 0 , 1 ] w L # w L G H 0 1 w L v L L 2 [ 0 , 1 ] = 0 1 J ( y ) 1 J ( y ) w L # ( y ) w L ( y ) 2 1 2 w L v L L 2 [ 0 , 1 ] 0 1 J ( y ) d y 1 2 0 1 1 J ( y ) w L # ( y ) w L ( y ) 2 1 2 w L v L L 2 [ 0 , 1 ] = = w L # w L G H 0 1 w L v L L 2 [ 0 , 1 ] w L # w L G H 0 1 w L v L L 2 [ 0 , 1 ] {:[=(int_(0)^(1)J(y)(1)/(J(y))[w_(L)^(#')(y)-w_(L)^(**')(y)]^(2))^((1)/(2))||w_(L)^(**)-v_(L)||_(L^(2)[0,1]) <= ],[ <= (int_(0)^(1)J(y)dy)^((1)/(2))(int_(0)^(1)(1)/(J(y))[w_(L)^(#')(y)-w_(L)^(**')(y)]^(2))^((1)/(2))||w_(L)^(**)-v_(L)||_(L^(2)[0,1])=],[=||w_(L)^(#)-w_(L)^(**)||_(GH_(0)^(1))||w_(L)^(**)-v_(L)||_(L^(2)[0,1])],[Longrightarrow||w_(L)^(#)-w_(L)^(**)||_(GH_(0)^(1)) <= ||w_(L)^(**)-v_(L)||_(L^(2)[0,1])]:}\begin{gathered} =\left(\int_{0}^{1} J(y) \frac{1}{J(y)}\left[w_{L}^{\# \prime}(y)-w_{L}^{* \prime}(y)\right]^{2}\right)^{\frac{1}{2}}\left\|w_{L}^{*}-v_{L}\right\|_{L^{2}[0,1]} \leq \\ \leq\left(\int_{0}^{1} J(y) d y\right)^{\frac{1}{2}}\left(\int_{0}^{1} \frac{1}{J(y)}\left[w_{L}^{\# \prime}(y)-w_{L}^{* \prime}(y)\right]^{2}\right)^{\frac{1}{2}}\left\|w_{L}^{*}-v_{L}\right\|_{L^{2}[0,1]}= \\ =\left\|w_{L}^{\#}-w_{L}^{*}\right\|_{G H_{0}^{1}}\left\|w_{L}^{*}-v_{L}\right\|_{L^{2}[0,1]} \\ \Longrightarrow\left\|w_{L}^{\#}-w_{L}^{*}\right\|_{G H_{0}^{1}} \leq\left\|w_{L}^{*}-v_{L}\right\|_{L^{2}[0,1]} \end{gathered}=(01J(y)1J(y)[wL#(y)wL(y)]2)12wLvLL2[0,1](01J(y)dy)12(011J(y)[wL#(y)wL(y)]2)12wLvLL2[0,1]==wL#wLGH01wLvLL2[0,1]wL#wLGH01wLvLL2[0,1]
We have
w L v L L 2 [ 0 , 1 ] w L v L L [ 0 , 1 ] w L # v L [ 0 , 1 ] w L # w L L [ 0 , 1 ] + w L v L [ 0 , 1 ] w L # w L G H 0 1 + w L v L α w L v L L 2 [ 0 , 1 ] + w L v L [ 0 , 1 ] 2 w L v L [ 0 , 1 ] . q.e.d. w L v L L 2 [ 0 , 1 ] w L v L L [ 0 , 1 ] w L # v L [ 0 , 1 ] w L # w L L [ 0 , 1 ] + w L v L [ 0 , 1 ] w L # w L G H 0 1 + w L v L α w L v L L 2 [ 0 , 1 ] + w L v L [ 0 , 1 ] 2 w L v L [ 0 , 1 ] .  q.e.d.  {:[||w_(L)^(**)-v_(L)||_(L^(2)[0,1]) <= ||w_(L)^(**)-v_(L)||_(L^(oo)[0,1])],[=>||w_(L)^(#)-v||_(L^(oo)[0,1]) <= ||w_(L)^(#)-w_(L)^(**)||_(L^(oo)[0,1])+||w_(L)^(**)-v||_(L^(oo)[0,1]) <= ||w_(L)^(#)-w_(L)^(**)||_(GH_(0)^(1))+||w_(L)^(**)-v||_(L^(alpha))],[ <= ||w_(L)^(**)-v_(L)||_(L^(2)[0,1])+||w_(L)^(**)-v||_(L^(oo)[0,1]) <= 2||w_(L)^(**)-v||_(L^(oo)[0,1])." q.e.d. "]:}\begin{gathered} \left\|w_{L}^{*}-v_{L}\right\|_{L^{2}[0,1]} \leq\left\|w_{L}^{*}-v_{L}\right\|_{L^{\infty}[0,1]} \\ \Rightarrow\left\|w_{L}^{\#}-v\right\|_{L^{\infty}[0,1]} \leq\left\|w_{L}^{\#}-w_{L}^{*}\right\|_{L^{\infty}[0,1]}+\left\|w_{L}^{*}-v\right\|_{L^{\infty}[0,1]} \leq\left\|w_{L}^{\#}-w_{L}^{*}\right\|_{G H_{0}^{1}}+\left\|w_{L}^{*}-v\right\|_{L^{\alpha}} \\ \leq\left\|w_{L}^{*}-v_{L}\right\|_{L^{2}[0,1]}+\left\|w_{L}^{*}-v\right\|_{L^{\infty}[0,1]} \leq 2\left\|w_{L}^{*}-v\right\|_{L^{\infty}[0,1]} . \text { q.e.d. } \end{gathered}wLvLL2[0,1]wLvLL[0,1]wL#vL[0,1]wL#wLL[0,1]+wLvL[0,1]wL#wLGH01+wLvLαwLvLL2[0,1]+wLvL[0,1]2wLvL[0,1]. q.e.d. 
We similarly define space V L 1 V L 1 V_(L-1)V_{L-1}VL1, and within this space { Φ L 1 , k } k = 1 2 L 1 1 Φ L 1 , k k = 1 2 L 1 1 {Phi_(L-1,k)}_(k=1)^(2^(L-1)-1)\left\{\Phi_{L-1, k}\right\}_{k=1}^{2^{L-1}-1}{ΦL1,k}k=12L11 is วase, where
Φ L 1 , k ( y ) = 0 y J ( s ) χ L 1 , k 1 ( s ) d s 0 1 J ( s ) χ L 1 , k 1 ( s ) d s 0 y J ( s ) χ L 1 , k ( s ) d s 0 1 J ( s ) χ L 1 , k ( s ) d s Φ L 1 , k ( y ) = 0 y J ( s ) χ L 1 , k 1 ( s ) d s 0 1 J ( s ) χ L 1 , k 1 ( s ) d s 0 y J ( s ) χ L 1 , k ( s ) d s 0 1 J ( s ) χ L 1 , k ( s ) d s Phi_(L-1,k)(y)=(int_(0)^(y)J(s)chi_(L-1,k-1)(s)ds)/(int_(0)^(1)J(s)chi_(L-1,k-1)(s)ds)-(int_(0)^(y)J(s)chi_(L-1,k)(s)ds)/(int_(0)^(1)J(s)chi_(L-1,k)(s)ds)\Phi_{L-1, k}(y)=\frac{\int_{0}^{y} J(s) \chi_{L-1, k-1}(s) d s}{\int_{0}^{1} J(s) \chi_{L-1, k-1}(s) d s}-\frac{\int_{0}^{y} J(s) \chi_{L-1, k}(s) d s}{\int_{0}^{1} J(s) \chi_{L-1, k}(s) d s}ΦL1,k(y)=0yJ(s)χL1,k1(s)ds01J(s)χL1,k1(s)ds0yJ(s)χL1,k(s)ds01J(s)χL1,k(s)ds
We have :
Φ L 1 , k ( y ) = H 0 L 1 , k Φ L , 2 k 1 ( y ) + H 1 L 1 , k Φ L , 2 k ( y ) + H 2 L 1 , k Φ L , 2 k + 1 ( y ) Φ L 1 , k ( y ) = H 0 L 1 , k Φ L , 2 k 1 ( y ) + H 1 L 1 , k Φ L , 2 k ( y ) + H 2 L 1 , k Φ L , 2 k + 1 ( y ) Phi_(L-1,k)(y)=H_(0)^(L-1,k)Phi_(L,2k-1)(y)+H_(1)^(L-1,k)Phi_(L,2k)(y)+H_(2)^(L-1,k)Phi_(L,2k+1)(y)\Phi_{L-1, k}(y)=H_{0}^{L-1, k} \Phi_{L, 2 k-1}(y)+H_{1}^{L-1, k} \Phi_{L, 2 k}(y)+H_{2}^{L-1, k} \Phi_{L, 2 k+1}(y)ΦL1,k(y)=H0L1,kΦL,2k1(y)+H1L1,kΦL,2k(y)+H2L1,kΦL,2k+1(y)
where
Obviously V L 1 V L V L 1 V L V^(L-1)subV^(L)V^{L-1} \subset V^{L}VL1VL.
Let Ψ L 1 , k ( y ) = Φ L , 2 k 1 ( y ) , k = 1 , , 2 L 1 Ψ L 1 , k ( y ) = Φ L , 2 k 1 ( y ) , k = 1 , , 2 L 1 Psi_(L-1,k)(y)=Phi_(L,2k-1)(y),k=1,dots,2^(L-1)\Psi_{L-1, k}(y)=\Phi_{L, 2 k-1}(y), k=1, \ldots, 2^{L-1}ΨL1,k(y)=ΦL,2k1(y),k=1,,2L1 and
W L 1 = span { Ψ L 1 , k / k = 1 , , 2 L 1 } . W L 1 = span Ψ L 1 , k / k = 1 , , 2 L 1 . W^(L-1)=span{Psi_(L-1,k)//k=1,dots,2^(L-1)}.W^{L-1}=\operatorname{span}\left\{\Psi_{L-1, k} / k=1, \ldots, 2^{L-1}\right\} .WL1=span{ΨL1,k/k=1,,2L1}.
Functions Ψ L 1 , k ( y ) Ψ L 1 , k ( y ) Psi_(L-1,k)(y)\Psi_{L-1, k}(y)ΨL1,k(y) have as support the interval [ 2 k 2 2 L , 2 k 2 L ] 2 k 2 2 L , 2 k 2 L [(2k-2)/(2^(L)),(2k)/(2^(L))]\left[\frac{2 k-2}{2^{L}}, \frac{2 k}{2^{L}}\right][2k22L,2k2L] and obviously supp Ψ L 1 , k supp Ψ L 1 , l = Φ supp Ψ L 1 , k supp Ψ L 1 , l = Φ suppPsi_(L-1,k)nnn suppPsi_(L-1,l)=Phi\operatorname{supp} \Psi_{L-1, k} \bigcap \operatorname{supp} \Psi_{L-1, l}=\PhisuppΨL1,ksuppΨL1,l=Φ if k l k l k!=lk \neq lkl. System { Ψ L 1 , k } k = 1 2 L 1 Ψ L 1 , k k = 1 2 L 1 {Psi_(L-1,k)}_(k=1)^(2L-1)\left\{\Psi_{L-1, k}\right\}_{k=1}^{2 L-1}{ΨL1,k}k=12L1 forms a base of space W L 1 W L 1 W^(L-1)W^{L-1}WL1 and we also have W L 1 V L 1 W L 1 V L 1 W^(L-1)subV^(L-1)W^{L-1} \subset V^{L-1}WL1VL1.
We will show that V L 1 W L 1 = V L V L 1 W L 1 = V L V^(L-1)o+W^(L-1)=V^(L)V^{L-1} \oplus W^{L-1}=V^{L}VL1WL1=VL. The fact that V L 1 + W L 1 = I 1 V L 1 + W L 1 = I 1 V^(L-1)+W^(L-1)=I^(-1)V^{L-1}+W^{L-1}=I^{-1}VL1+WL1=I1. is obvious; we will further prove that
V L 1 W L 1 . V L 1 W L 1 . V^(L-1)_|_W^(L-1).V^{L-1} \perp W^{L-1} .VL1WL1.
We have
0 1 1 J ( y ) Ψ L 1 , k ( y ) Φ L 1 , k ( y ) d y = k 1 2 L 1 k 1 2 2 L 1 J ( y ) k 1 2 L 1 k 1 2 1 J ( s ) d s k 2 L 1 k 2 L 1 J ( s ) d s k 1 2 L 1 k 2 L 1 J ( y ) k 2 2 L 1 k 2 L 1 J ( s ) d s k 1 2 L 1 k 2 L 1 J ( s ) d s d y = = 1 k 1 2 L 1 k 2 L 1 J ( s ) d s 1 k 1 2 L 1 k 2 L 1 J ( s ) d s = 0 0 1 1 J ( y ) Ψ L 1 , k ( y ) Φ L 1 , k ( y ) d y = k 1 2 L 1 k 1 2 2 L 1 J ( y ) k 1 2 L 1 k 1 2 1 J ( s ) d s k 2 L 1 k 2 L 1 J ( s ) d s k 1 2 L 1 k 2 L 1 J ( y ) k 2 2 L 1 k 2 L 1 J ( s ) d s k 1 2 L 1 k 2 L 1 J ( s ) d s d y = = 1 k 1 2 L 1 k 2 L 1 J ( s ) d s 1 k 1 2 L 1 k 2 L 1 J ( s ) d s = 0 {:[int_(0)^(1)(1)/(J(y))Psi_(L-1,k)^(')(y)Phi_(L-1,k)^(')(y)dy=int_((k-1)/(2L-1))^((k-(1)/(2))/(2L-1))(J(y))/(int_((k-1)/(2L-1))^((k-1)/(2)-1))J(s)dsint_((k)/(2L-1))^((k)/(2L-1))J(s)ds],[-int_((k-1)/(2L-1))^((k)/(2L-1))(J(y))/(int_((k-2)/(2L-1))^((k)/(2L-1))J(s)dsint_((k-1)/(2L-1))^((k)/(2L-1))J(s)ds)dy=],[=(1)/(int_((k-1)/(2L-1))^((k)/(2L-1))J(s)ds)-(1)/(int_((k-1)/(2L-1))^((k)/(2L-1))J(s)ds)=0]:}\begin{gathered} \int_{0}^{1} \frac{1}{J(y)} \Psi_{L-1, k}^{\prime}(y) \Phi_{L-1, k}^{\prime}(y) d y=\int_{\frac{k-1}{2 L-1}}^{\frac{k-\frac{1}{2}}{2 L-1}} \frac{J(y)}{\int_{\frac{k-1}{2 L-1}}^{\frac{k-1}{2}-1}} J(s) d s \int_{\frac{k}{2 L-1}}^{\frac{k}{2 L-1}} J(s) d s \\ -\int_{\frac{k-1}{2 L-1}}^{\frac{k}{2 L-1}} \frac{J(y)}{\int_{\frac{k-2}{2 L-1}}^{\frac{k}{2 L-1}} J(s) d s \int_{\frac{k-1}{2 L-1}}^{\frac{k}{2 L-1}} J(s) d s} d y= \\ =\frac{1}{\int_{\frac{k-1}{2 L-1}}^{\frac{k}{2 L-1}} J(s) d s}-\frac{1}{\int_{\frac{k-1}{2 L-1}}^{\frac{k}{2 L-1}} J(s) d s}=0 \end{gathered}011J(y)ΨL1,k(y)ΦL1,k(y)dy=k12L1k122L1J(y)k12L1k121J(s)dsk2L1k2L1J(s)dsk12L1k2L1J(y)k22L1k2L1J(s)dsk12L1k2L1J(s)dsdy==1k12L1k2L1J(s)ds1k12L1k2L1J(s)ds=0
Similarly,
0 1 1 J ( y ) Ψ L 1 , k + 1 ( y ) Φ L 1 , k ( y ) d y = 0 0 1 1 J ( y ) Ψ L 1 , k + 1 ( y ) Φ L 1 , k ( y ) d y = 0 int_(0)^(1)(1)/(J(y))Psi_(L-1,k+1)^(')(y)Phi_(L-1,k)^(')(y)dy=0\int_{0}^{1} \frac{1}{J(y)} \Psi_{L-1, k+1}^{\prime}(y) \Phi_{L-1, k}^{\prime}(y) d y=0011J(y)ΨL1,k+1(y)ΦL1,k(y)dy=0
Consequently, subspaces V L 1 V L 1 V^(L-1)V^{L-1}VL1 and W L 1 W L 1 W^(L-1)W^{L-1}WL1 are orthogonal related to the scalar product,
( f , g ) G H 0 1 := 0 1 1 J ( y ) f ( y ) g ( y ) d y ( f , g ) G H 0 1 := 0 1 1 J ( y ) f ( y ) g ( y ) d y (f,g)_(GH_(0)^(1)):=int_(0)^(1)(1)/(J(y))f^(')(y)g^(')(y)dy(f, g)_{G H_{0}^{1}}:=\int_{0}^{1} \frac{1}{J(y)} f^{\prime}(y) g^{\prime}(y) d y(f,g)GH01:=011J(y)f(y)g(y)dy
which means that the sum is direct..
The procedure can continue, leading finally to decomposition of space V L V L V^(L)V^{L}VL, so that :
V L = V 1 W 1 W 2 W L 1 V L = V 1 W 1 W 2 W L 1 V^(L)=V^(1)bigoplusW^(1)bigoplusW^(2)bigoplus dots bigoplusW^(L-1)V^{L}=V^{1} \bigoplus W^{1} \bigoplus W^{2} \bigoplus \ldots \bigoplus W^{L-1}VL=V1W1W2WL1
This decomposition allows the consideration of another base in space V L V L V^(L)V^{L}VL, namely :
{ Ψ j k } k = 1 , 2 j 1 j = 0 , L 1 Ψ j k k = 1 , 2 j 1 j = 0 , L 1 {Psi_(jk)}_({:[k=1","2^(j)-1],[j=0","L-1]:})\left\{\Psi_{j k}\right\}_{\substack{k=1,2^{j}-1 \\ j=0, L-1}}{Ψjk}k=1,2j1j=0,L1
where Ψ j k ( y ) = Φ j + 1 , 2 k 1 ( y ) Ψ j k ( y ) = Φ j + 1 , 2 k 1 ( y ) Psi_(jk)(y)=Phi_(j+1,2k-1)(y)\Psi_{j k}(y)=\Phi_{j+1,2 k-1}(y)Ψjk(y)=Φj+1,2k1(y).
We also have
Ψ j k ( y ) = { k 1 2 j y J ( s ) ψ j k ( s ) d s k 1 2 2 j J ( s ) ψ j k ( s ) d s , if y [ k 1 2 j , k 1 2 2 j ] k 1 2 j y k 2 j J ( s ) ψ j k ( s ) d s , if y [ k 1 2 2 j , k 2 j ] k 1 2 2 j J ( s ) ψ j k ( s ) d s , in rest Ψ j k ( y ) = k 1 2 j y J ( s ) ψ j k ( s ) d s k 1 2 2 j J ( s ) ψ j k ( s ) d s ,  if  y k 1 2 j , k 1 2 2 j k 1 2 j y k 2 j J ( s ) ψ j k ( s ) d s ,  if  y k 1 2 2 j , k 2 j k 1 2 2 j J ( s ) ψ j k ( s ) d s ,  in rest  Psi_(jk)(y)={[(int_((k-1)/(2^(j)))^(y)J(s)psi_(jk)(s)ds)/((k-(1)/(2))/(2^(j))J(s)psi_(jk)(s)ds)","" if "y in[(k-1)/(2^(j)),(k-(1)/(2))/(2^(j))]],[(int_((k-1)/(2^(j))))/(int_(y)^((k)/(2^(j)))J(s)psi_(jk)(s)ds)","" if "y in[(k-(1)/(2))/(2^(j)),(k)/(2^(j))]],[int_((k-(1)/(2))/(2^(j))J(s)psi_(jk)(s)ds)","" in rest "]:}\Psi_{j k}(y)=\left\{\begin{array}{l} \frac{\int_{\frac{k-1}{2^{j}}}^{y} J(s) \psi_{j k}(s) d s}{\frac{k-\frac{1}{2}}{2^{j}} J(s) \psi_{j k}(s) d s}, \text { if } y \in\left[\frac{k-1}{2^{j}}, \frac{k-\frac{1}{2}}{2^{j}}\right] \\ \frac{\int_{\frac{k-1}{2^{j}}}}{\int_{y}^{\frac{k}{2^{j}}} J(s) \psi_{j k}(s) d s}, \text { if } y \in\left[\frac{k-\frac{1}{2}}{2^{j}}, \frac{k}{2^{j}}\right] \\ \int_{\frac{k-\frac{1}{2}}{2^{j}} J(s) \psi_{j k}(s) d s}, \text { in rest } \end{array}\right.Ψjk(y)={k12jyJ(s)ψjk(s)dsk122jJ(s)ψjk(s)ds, if y[k12j,k122j]k12jyk2jJ(s)ψjk(s)ds, if y[k122j,k2j]k122jJ(s)ψjk(s)ds, in rest 
where ψ j k ( y ) = 2 j ψ ( 2 j y k ) ψ j k ( y ) = 2 j ψ 2 j y k psi_(jk)(y)=sqrt(2^(j))psi(2^(j)y-k)\psi_{j k}(y)=\sqrt{2^{j}} \psi\left(2^{j} y-k\right)ψjk(y)=2jψ(2jyk) and ψ ψ psi\psiψ is Haar's function
ψ ( x ) = { 1 if 0 x < 1 2 1 if 1 2 x < 1 0 otherwise ψ ( x ) = 1  if  0 x < 1 2 1  if  1 2 x < 1 0  otherwise  psi(x)={[1" if "0 <= x < (1)/(2)],[-1" if "(1)/(2) <= x < 1],[0" otherwise "]:}\psi(x)=\left\{\begin{array}{c} 1 \text { if } 0 \leq x<\frac{1}{2} \\ -1 \text { if } \frac{1}{2} \leq x<1 \\ 0 \text { otherwise } \end{array}\right.ψ(x)={1 if 0x<121 if 12x<10 otherwise 

Numerical example.

We consider the following problem :
ε u ( x ) + u ( x ) = 1 , for x ( 0 , 1 ) u ( 0 ) = u ( 1 ) = 0 . ε u ( x ) + u ( x ) = 1 ,  for  x ( 0 , 1 ) u ( 0 ) = u ( 1 ) = 0 . {:[-epsiu^('')(x)+u^(')(x)=1","" for "x in(0","1)],[u(0)=u(1)=0.]:}\begin{aligned} -\varepsilon u^{\prime \prime}(x)+u^{\prime}(x) & =1, \text { for } x \in(0,1) \\ u(0) & =u(1)=0 . \end{aligned}εu(x)+u(x)=1, for x(0,1)u(0)=u(1)=0.
which have the solution u ( x ) = exp ( x ε ) exp ( 1 ε ) 1 exp ( 1 ε ) + x 1 u ( x ) = exp x ε exp 1 ε 1 exp 1 ε + x 1 u(x)=(exp((x)/( epsi))-exp((1)/(epsi)))/(1-exp((1)/(epsi)))+x-1u(x)=\frac{\exp \left(\frac{x}{\varepsilon}\right)-\exp \left(\frac{1}{\varepsilon}\right)}{1-\exp \left(\frac{1}{\varepsilon}\right)}+x-1u(x)=exp(xε)exp(1ε)1exp(1ε)+x1.
We do the change of variable x = g ( y ) x = g ( y ) x=g(y)x=g(y)x=g(y) where g ( y ) = 1 ( 1 y ) p + 1 g ( y ) = 1 ( 1 y ) p + 1 g(y)=1-(1-y)^(p+1)g(y)=1-(1-y)^{p+1}g(y)=1(1y)p+1.
In the Figures 1., 2., 3. the exact solution and the approximate solution are presented for p = 0 , p = 2 , p = 4 p = 0 , p = 2 , p = 4 p=0,p=2,p=4p=0, p=2, p=4p=0,p=2,p=4 and N = 4 , ε = 0.0001 N = 4 , ε = 0.0001 N=4,epsi=0.0001N=4, \varepsilon=0.0001N=4,ε=0.0001.
Figure 1:
Figure 2:
Figure 3:

Bibliography

[1] I. Daubechies, Orthonormal bases of compactly supported wavelets. Comm. pure Appl. Math. 41 (1998), pp. 909-996.
[2] R. Glowinski, W.N. Lawton, M. Ravachol, E. Tenenbaum, Wavelets solution of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension. In: R. Glowinski, A. Lichnewsky, ads., Computing Methods in Applied Sciences and Engineering, SIAM, Philadelphia (1990), pp. 55-120.
[3] P.W. Hemker, A numerical study of stiff two-point boundary problems, Amsterdam, 1997.
[4] J.-C. Xu, W.-C. Shann, Galerkin - wavelet methods for two point boundary value problems. Numer. Math., 63 (1992), pp. 123-142.
[5] H. Yserentant, On the multi - level splitting of finite element spaces. Numer. Math. 49 (1986), pp. 379-412.

Received: 15.10.1999

Universitatea de Nord Baia Mare Facultatea de Ştiinţe Catedra de Matematică şi Informatică Victoriei 76, 4800 Baia Mare ROMANIA imustata@icttp.math.ubbcluj.ro

  1. *Supportet by ANSTI Grant GR/4122 (1998)
1999

Related Posts