[1] J.L. Abkowitz, S.N. Catlin, M.T. McCallie, and P. Guttorp, Evidence that the number of haematopoietic stem cells per animal is conserved in mammals, Blood 100 (2002), pp. 2665–2667.
[2] M. Adimy, F. Crauste, and A. El Abdllaoui, Discrete maturity-structured model of cell differentiation with applications to acute myelogenous leukaemia, J. Biol. Systems 16 (2008), pp. 395–424.
[3] E.K. Afenya and D.E. Bentil, Some perspectives on modeling leukaemia, Math. Biosci. 150 (1998), pp. 113– 130.
[4] R.P. Agarwal and D. O’Regan, An Introduction to Ordinary Differential Equations, Springer, Berlin, 2008.
[5] M. Albitar, T. Manshouri, and Y. Shen, Myelodysplastic syndrome is not merely ‘preleukaemia’, Blood 100 (2002), pp. 791– 798.
[6] L.K. Andersen and M.C. Mackey, Resonance in periodic chemotherapy: a case study of acute myelogenous leukaemia, J. Theor. Biol. 209 (2001), pp. 113–130.
[7] J.O. Armitage, P.P. Carbone, and J.M. Connors, Treatment related myelodysplasia and acute leukaemia in non-Hodgkin’s lymphoma patients, J. Clin. Oncol. 21 (2002), pp. 897– 906.
[8] A.L. Barabassi and Z.N. Oltvai, Network biology: understanding the cell’s functional organization, Nat. Rev. Genet. 5 (2004), pp. 101–113.
[9] R. Bhatia, M. Holtz, and N. Niu, Persistence of malignant haematopoietic progenitors in chronic myelogenous leukaemia patients in complete cytogenetic remission following imatinib mesylate treatment, Blood 101 (2003), pp. 4701– 4708.
[10] D. Bonnet, Normal and leukemic CD34 negative human haematopoietic stem cells, Rev. Clin. Exp. Hematol. 5 (2001), pp. 42 – 61.
[11] F. Brauer and C. Castillo-Cha´vez, Mathematical Models in Population Biology and Epidemiology, Springer, Berlin, 2001.
[12] L. Busque, R. Mio, J. Mattioli, E. Brais, N. Blais, Y. Lalonde, M. Maragh, and D.G. Gilliland, Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age, Blood 88 (1996), pp. 59 – 65.
[13] C.A. Clarke and S.L. Glaser, Acute myeloid leukaemia, N. Eng. J. Med. 342 (2000), pp. 358–361.
[14] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Tata McGrawHill, New Delhi, 1972.
[15] D.S. Coffey, Self-organization, complexity and chaos: The new biology for medicine, Nat. Med. 4 (1998), pp. 882– 885.
[16] C. Colijn and M.C. Mackey, A mathematical model of hematopoiesis-I. Periodic chronic myelogenous leukaemia, J. Theor. Biol. 237 (2005), pp. 117–132.
[17] J. Cortes and M.E. O’Dwyer, Clonal evolution in chronic myelogenous leukaemia, Hematol. Oncol. Clin. North Am. 18 (2004), pp. 671– 684.
[18] A. Cucuianu, Cell darwinism, apoptosis, free radicals and haematological malignancies, Med. Hypotheses 56 (2001), pp. 52 – 57.
[19] A. Cucuianu, Dominant and opportunistic leukemic clones: proposal for a pathogenesisoriented classification in acute myeloid leukaemia, Med. Hypotheses 65 (2005), pp. 107–113.
[20] O. Diekmann, R. Durrett, K.P. Hadeler, P. Maini, and H.L. Smith, Mathematics Inspired by Biology, Springer, Berlin, 1999.
[21] D. Dingli and F. Michor, Successful therapy must eradicate cancer stem cells, Stem Cells 24 (2006), pp. 2603– 2610.
[22] B. Djulbegovic´ and S. Svetina, Mathematical model of acute myeloblastic leukaemia: an investigation of the relevant kinetic parameters, Cell Proliferation 18 (1985), pp. 307– 319.
[23] C.J. Eaves, J.D. Cashman, H.J. Sutherland, T. Otsuka, R.K. Humphries, D.E. Hogge, P.L. Lansdorp, and A.C. Eaves, Molecular analysis of primitive haematopoietic cell proliferation control mechanisms, Ann. NY Acad. Sci. 628 (1991), pp. 298– 306.
[24] P.J. Fialkow, J.W. Singer, and W.H. Raskind, Clonal development, stem-cell differentiation and clinical remission in acute non-lymphocytic leukaemia, N. Eng. J. Med. 317 (1987), pp. 468–473.
[25] C. Foley and M.C. Mackey, Dynamic hematological disease: a review, J. Math. Biol. 58 (2009), pp. 285– 322.
[26] R. Gazit, I.L. Weissman, and D.J. Rossi, Haematopoietic stem cells and the aging haematopoietic system, Semin. Hematol. 45 (2008), pp. 218– 224.
[27] J. Griffin and B. Lowenberg, Clonogenic cells in acute myeloblastic leukaemia, Blood 68 (1986), pp. 1185– 1195.
[28] N.L. Harris, E.S. Jaffe, J. Diebold, G. Flandrin, H.K. Muller-Hermelink, J. Vardiman, T.A. Lister, and C.D. Bloomfield, The World Health Organization Classification of Neoplasms of the Haemopoietic and Lymphoid Tissues: report of the Clinical Advisory Comitee MeetingAirlie House, Virginia, November 1997, Hematol. J. 1 (2000), pp. 53 – 66.
[29] S.M. Hart and L. Foroni, Core binding factor genes and human leukaemia, Haematologica 87 (2002), pp. 1307– 1323.
[30] D.R. Head, Revised classification of acute leukaemias, Leukemia 10 (1996), pp. 1826– 1831.
[31] E. Jabbour, J.E. Cortes, and H.M. Kantarjian, Molecular monitoring in chronic myeloid leukaemia. Response to tyrosine kinase inhibitors and prognostic implications, Cancer 15 (2008), pp. 2112– 2118.
[32] H. Kaneko and N. Kondo, Clinical features of Bloom syndrome and function of the causative gene, BLM helicase, Expert Rev. Mol. Diagn. 4 (2004), pp. 393– 401.
[33] C.P. Leith, K.J. Kopecky, and J. Goodwin, Acute myeloid leukaemia in the elderly: assessment of multidrug resistance and cytogenetics distinguishes biologic subgroups with remarkable distinct responses to standard chemotherapy. A Southwest Oncology Group Study, Blood 89 (1997), pp. 3323– 3328.
[34] M.W. Lensch, R.K. Rathburn, and S.B. Olson, Selective pressure as an essential force in molecular evolution of myeloid leukemic clones: a view from the window of Fanconi anemia, Leukemia 13 (1999), pp. 1784– 1789.
[35] B. Lowenberg, Acute myeloid leukaemia: The challenge of capturing disease variety, Hematology Am. Soc. Hematol. Educ. Program (2008), pp. 1 –11.
[36] M.C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science 197 (1977), pp. 287– 289.
[37] K.F. McCarthy, Marrow frequency of long-term repopulating cells: evidence that marrow haematopoietic cell concentration may be inversely proportional to species body weight, Blood 101 (2003), pp. 3431– 3436.
[38] J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Springer, Berlin, 2003.
[39] R. Nash, R. Storb, and P. Neiman, Polyclonal reconstitution of human marrow after allogeneic bone marrow transplantation, Blood 72 (1988), pp. 2031– 2037.
[40] F. Nolte and W.K. Hofmann, Molecular pathogenesis and genomic changes, Ann. Hematol. 10 (2008), pp. 777– 795.
[41] C. Peschle, R. Botta, R. Muller, M. Valtieri, and B. Ziegler, Purification and functional assay of pluripotent haematopoietic stem cells, Rev. Clin. Exp. Hematol. 5 (2001), pp. 3 –14.
[42] S.I. Rubinow and J.L. Lebowitz, Model of cell kinetics with applications to the acute myeloblastic leukaemia state in man, Biosystems 8 (1977), p. 265.
[43] R.F. Schlenk, K. Dohner, J. Krauter, S. Fro¨hling, A. Corbacioglu, L. Bullinger, M. Habdank, D. Spath, M. Morgan, A. Benner, B. Schlegelberger, G. Heil, A. Ganser, H. Do¨hner and GermanAustrian Acute Myeloid Leukemia Study Group, Mutations and treatment outcomes in cytogenetically normal acute myeloid leukaemia, N. Engl. J. Med. 358 (2008), pp. 1909 –1918.
[44] S.I. Swierczek, N. Agarwal, R.H. Nussenzveig, G. Rothstein, A. Wilson, A. Artz, and J.T. Prchal, Haematopoiesis is not clonal in healthy elderly women, Blood 112 (2008), pp. 3186– 3193.
[45] I. Thornley, R. Sutherland, R. Wynn, R. Nayar, L. Sung, G. Corpus, T. Kiss, J. Lipton, J. Doyle, F. Saunders, S. Kamel-Reid, M. Freedman, and H. Messner, Early haematopoietic reconstitution after clinical stem cell transplantation: evidence for stochastic stem cell behavior and limited acceleration in telomere loss, Blood 99 (2002), pp. 2387– 2396.
[46] A. Wahlin, B. Markevarn, I. Golovleva, and M. Nilsson, Improved outcomes in AML are restricted to young patients and are related mostly to bone marrow transplantation therapy, Eur. J. Hematol. 68 (2002), pp. 232–239.