A mixed variational formulation of a contact problem with adhesion

Abstract

A mathematical model describing the contact between a viscoplastic body and a deformable foundation is analyzed under small deformation hypotheses. The process is quasistatic and in normal direction the contact is with adhesion, normal compliance, memory effects and unilateral constraint. We derive a mixed-variational formulation of the problem using Lagrange multipliers. Finally, we prove the unique weak solvability of the contact problem.

Authors

Flavius Patrulescu
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Keywords

variational formulation; frictional contact; normal compliance; unilateral constraint; adhesion

Cite this paper as

F. Pătrulescu, A mixed variational formulation of a contact problem with adhesion, Appl. Anal., vol. 97, no. 8(2018), pp. 1246-1260

PDF

About this paper

Journal

Applicable Analysis

Publisher Name

Taylor & Francis, Abingdon, Oxfordshire

Print ISSN

0003-6811

Online ISSN

1563-504X

MR

3806223

ZBL

1391.74172

Google Scholar

?

Paper (preprint) in HTML form

A mixed variational formulation of a contact problem with adhesion

Flavius Pătrulescu
Tiberiu Popoviciu Institute of Numerical Analysis,
Romanian Academy, Cluj-Napoca, Romania
Abstract

A mathematical model describing the contact between a viscoplastic body and a deformable foundation is analyzed under small deformation hypotheses. The process is quasistatic and in normal direction the contact is with adhesion, normal compliance, memory effects and unilateral constraint. We derive a mixed-variational formulation of the problem using Lagrange multipliers. Finally, we prove the unique weak solvability of the contact problem.

1. Introduction

Phenomena of contact between deformable bodies are important in industry and everyday life. Their mathematical analysis was developed in a large number of works. Thus, various existence and uniqueness results, examples, numerical analysis and mechanical interpretation in the study of contact problems can be found in [110][1-10]. To be accurate mathematical models need to take into consideration the additional phenomena as friction, heat generation, wear or adhesion. The analysis of such models leads to a weak formulation. In many cases, it is given in a form of a system which couples a time-dependent variational inequality and integral equations, as illustrated in [ 3,8,113,8,11 ]. Moreover, the weak form of a large number of contact problems with unilateral constraints can be cast in a mixed-variational formulation with Lagrange multipliers. Their study is based on arguments on saddle points theory, fixed point, and duality. We recall that the use of Lagrange multipliers represents a mathematical tool to remove the unilateral constraints. Concerning the literature in the field, see for instance [12-15] and recent papers [16,17].

In this paper, we analyze the weak solvability of a contact problem with adhesion and memory effects. The model was introduced in [11]. There, the contact in normal direction was modeled with normal compliance condition, unilateral constraint, and adhesion. In addition, memory effect of the surfaces was introduced. A similar contact condition was considered in [18] in the study of frictionless contact process without adhesion. A variational formulation of the problem was derived, in a form of the system which couples a history-dependent quasi-variational inequality for displacement field, and an integral equation for adhesion field. The unique solvability of the weak problem was proved in two steps, using arguments on history-dependent quasi-variational inequalities and fixed point.

In the current paper, we introduce two main novelties. The first one concerns the constitutive law since, in contrast with [11], the material’s behavior is modeled with a viscoplastic constitutive law. The second novelty consists in the fact that we derive a mixed-variational formulation of the problem. The unknowns are the displacement field, the stress field, the adhesion function, and the Lagrange multiplier. We define two history-dependent operators to obtain an equivalent formulation in which the unknowns are only the displacement field and the Lagrange multiplier. Next, we prove its unique solvability using an abstract result provided in [17].

The rest of the paper is structured as follows. In Section 2, we present the geometrical configuration of the contact problem. We also introduce some notations and function spaces and we recall some preliminary results as Green’s formula. In Section 3, we describe our mathematical model of contact and list the assumptions on the data. Then, in Section 4 we derive the mixed-variational formulation of the problem and state our main existence and uniqueness result in Theorem 4.1. In Section 5, we prove Theorem 4.1. The proof is provided through two steps. More exactly, in the first part an equivalence result, Lemma 5.1, is given. In the second part an existence and uniqueness result, Lemma 5.3, is proved.

2. Notations and preliminaries

In this section we present the notations, the geometrical configuration of the problem and some preliminary material. For a given rr\in\mathbb{R} we denote by r+r^{+}its positive part, i.e. r+=max{r,0}r^{+}=\max\{r,0\}. Let dd\in\mathbb{N}. Then, we denote by 𝕊d\mathbb{S}^{d} the space of second-order symmetric tensors on d\mathbb{R}^{d}. The inner product and norm on d\mathbb{R}^{d} and 𝕊d\mathbb{S}^{d} are defined by

𝒖𝒗=uivi,𝒗=(𝒗𝒗)12𝒖,𝒗d𝝈𝝉=σijτij,𝝉=(𝝉𝝉)12𝝈,𝝉𝕊d\begin{array}[]{lrrl}\boldsymbol{u}\cdot\boldsymbol{v}=u_{i}v_{i},&\|\boldsymbol{v}\|=(\boldsymbol{v}\cdot\boldsymbol{v})^{\frac{1}{2}}&\forall\boldsymbol{u},\boldsymbol{v}\in\mathbb{R}^{d}\\ \boldsymbol{\sigma}\cdot\boldsymbol{\tau}=\sigma_{ij}\tau_{ij},&\|\boldsymbol{\tau}\|=(\boldsymbol{\tau}\cdot\boldsymbol{\tau})^{\frac{1}{2}}&\forall\boldsymbol{\sigma},\boldsymbol{\tau}\in\mathbb{S}^{d}\end{array}

Here and below the indices i,j,ki,j,k, and ll run between 1 and dd and the summation convention over repeated indices is used. The physical setting of the contact problem is as follows. A viscoplastic body occupies in its reference configuration a bounded domain Ωd\Omega\in\mathbb{R}^{d} ( d=2,3d=2,3 in applications) with a Lipschitz-continuous boundary Γ\Gamma. Body forces of density 𝒇0\boldsymbol{f}_{0} act in Ω\Omega. The boundary Γ\Gamma is divided into three disjoint measurable parts Γ=Γ1Γ2Γ3\Gamma=\Gamma_{1}\cup\Gamma_{2}\cup\Gamma_{3}, such that meas (Γ1)>0\left(\Gamma_{1}\right)>0, see Figure 1 for more details. The body is fixed on Γ1\Gamma_{1} and surface tractions of density f2f_{2} act on Γ2\Gamma_{2}. On the part Γ3\Gamma_{3}, the body is in contact with a foundation. The foundation is assumed to be made of a hard material covered with a thin layer made of a soft adhesive material with thickness g>0g>0. It has a rigid adhesive viscoelastic behavior; its adhesive viscoelastic behavior is caused by the layer of the soft material while its rigid behavior is caused by the hard material. Thus, in normal direction the contact is modeled with normal compliance condition, unilateral constraint, memory effects, and adhesion.

We use the notation 𝒙=(xi)\boldsymbol{x}=\left(x_{i}\right) for a typical point in ΩΓ\Omega\cup\Gamma and we denote by 𝒗=(vi)\boldsymbol{v}=\left(v_{i}\right) the outward unit normal at Γ\Gamma. Also, an index that follows a comma represents the partial derivative with respect to the corresponding component of the spatial variable, e.g. ui,j=ui/xju_{i,j}=\partial u_{i}/\partial x_{j}. We use standard notations for the Lebesgue and Sobolev spaces associated to Ω\Omega and Γ\Gamma and, moreover, we consider the spaces

V={𝒗=(vi)H1(Ω)d:𝒗=𝟎 on Γ1},\displaystyle V=\left\{\boldsymbol{v}=\left(v_{i}\right)\in H^{1}(\Omega)^{d}:\boldsymbol{v}=\mathbf{0}\text{ on }\Gamma_{1}\right\},
Q={𝝉=(τij)L2(Ω)d×d:τij=τji}\displaystyle Q=\left\{\boldsymbol{\tau}=\left(\tau_{ij}\right)\in L^{2}(\Omega)^{d\times d}:\tau_{ij}=\tau_{ji}\right\}

These are real Hilbert spaces endowed with the inner products

(𝒖,𝒗)V=Ω𝜺(𝒖)𝜺(𝒗)dx,(𝝈,𝝉)Q=Ω𝝈𝝉dx(\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{\varepsilon}(\boldsymbol{u})\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})\mathrm{d}x,\quad(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q}=\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\tau}\mathrm{d}x (2.1)

and the associated norms V\|\cdot\|_{V} and Q\|\cdot\|_{Q}, respectively. Here 𝜺\boldsymbol{\varepsilon} represents the deformation operator given by

𝜺(𝒗)=(εij(𝒗)),εij(𝒗)=12(vi,j+vj,i)𝒗H1(Ω)d.\boldsymbol{\varepsilon}(\boldsymbol{v})=\left(\varepsilon_{ij}(\boldsymbol{v})\right),\quad\varepsilon_{ij}(\boldsymbol{v})=\frac{1}{2}\left(v_{i,j}+v_{j,i}\right)\quad\forall\boldsymbol{v}\in H^{1}(\Omega)^{d}. (2.2)

For an element 𝒗V\boldsymbol{v}\in V, we still write 𝒗\boldsymbol{v} for the trace of 𝒗\boldsymbol{v} on the boundary Γ\Gamma. The normal and tangential components of 𝒗\boldsymbol{v} on Γ\Gamma are defined by vν=𝒗𝒗,𝒗τ=𝒗vν𝒗v_{\nu}=\boldsymbol{v}\cdot\boldsymbol{v},\quad\boldsymbol{v}_{\tau}=\boldsymbol{v}-v_{\nu}\boldsymbol{v}. We introduce the following subset of the Hilbert space VV

U={𝒗V:vvg on Γ3}.U=\left\{\boldsymbol{v}\in V:v_{v}\leq g\text{ on }\Gamma_{3}\right\}. (2.3)

We note that UU is a closed, convex subset of VV such that 𝟎VU\mathbf{0}_{V}\in U. We recall that there exists a positive constant c0c_{0} which depends on Ω,Γ1\Omega,\Gamma_{1}, and Γ3\Gamma_{3} such that

𝒗L2(Γ3)dc0𝒗V𝒗V.\|\boldsymbol{v}\|_{L^{2}\left(\Gamma_{3}\right)^{d}}\leq c_{0}\|\boldsymbol{v}\|_{V}\quad\forall\boldsymbol{v}\in V. (2.4)

The previous inequality and the constant c0c_{0} will be used in Section 5.
As in [17] we consider the set

W={𝒘=𝒗|Γ3:𝒗V}H1/2(Γ3;d),W=\left\{\boldsymbol{w}=\left.\boldsymbol{v}\right|_{\Gamma_{3}}:\boldsymbol{v}\in V\right\}\subset H^{1/2}\left(\Gamma_{3};\mathbb{R}^{d}\right), (2.5)

where 𝒗|Γ3\left.\boldsymbol{v}\right|_{\Gamma_{3}} denotes the restriction of trace of the element 𝒗V\boldsymbol{v}\in V to Γ3\Gamma_{3}. We recall that WW can be organized as a Hilbert space. We denote by DD its dual and ,Γ3\langle\cdot,\cdot\rangle_{\Gamma_{3}} represents the duality pairing between DD and WW. For simplicity, we write 𝝁,𝒗Γ3\langle\boldsymbol{\mu},\boldsymbol{v}\rangle_{\Gamma_{3}} instead of 𝝁,𝒗|Γ3Γ3\left\langle\boldsymbol{\mu},\left.\boldsymbol{v}\right|_{\Gamma_{3}}\right\rangle_{\Gamma_{3}}, when 𝝁D\boldsymbol{\mu}\in D and 𝒗V\boldsymbol{v}\in V.

For a regular function σ:ΩΓ𝕊d\sigma:\Omega\cup\Gamma\rightarrow\mathbb{S}^{d} the normal and the tangential components of the vector 𝝈𝒗\boldsymbol{\sigma}\boldsymbol{v} on Γ\Gamma are given by σν=𝝈𝒗𝒗\sigma_{\nu}=\boldsymbol{\sigma}\boldsymbol{v}\cdot\boldsymbol{v} and 𝝈τ=𝝈𝒗σν𝒗\boldsymbol{\sigma}_{\tau}=\boldsymbol{\sigma}\boldsymbol{v}-\sigma_{\nu}\boldsymbol{v}.
We introduce the space of fourth-order tensor fields given by

𝐐={=(ijkl)ijkl=jikl=klijL(Ω),1i,j,k,ld}\mathbf{Q}_{\infty}=\left\{\mathcal{E}=\left(\mathcal{E}_{ijkl}\right)\mid\mathcal{E}_{ijkl}=\mathcal{E}_{jikl}=\mathcal{E}_{klij}\in L^{\infty}(\Omega),\quad 1\leq i,j,k,l\leq d\right\}

and we recall that 𝐐\mathbf{Q}_{\infty} is a real Banach space with the norm

𝐐=max1i,j,k,ldijklL(Ω).\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}=\max_{1\leq i,j,k,l\leq d}\left\|\mathcal{E}_{ijkl}\right\|_{L^{\infty}(\Omega)}.

Moreover,

𝝉Qd𝐐𝝉Q𝐐,𝝉Q.\|\mathcal{E}\boldsymbol{\tau}\|_{Q}\leq d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}\|\boldsymbol{\tau}\|_{Q}\quad\forall\mathcal{E}\in\mathbf{Q}_{\infty},\boldsymbol{\tau}\in Q. (2.6)

Finally, we recall the following Green’s formula

Ω𝝈𝜺(𝒗)dx+ΩDiv𝝈𝒗dx=Γ𝝈𝒗𝒗da𝒗V\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})\mathrm{d}x+\int_{\Omega}\operatorname{Div}\boldsymbol{\sigma}\cdot\boldsymbol{v}\mathrm{d}x=\int_{\Gamma}\boldsymbol{\sigma}\boldsymbol{v}\cdot\boldsymbol{v}\mathrm{d}a\quad\forall\boldsymbol{v}\in V (2.7)

where Div\operatorname{Div} denotes the divergence operator for tensor valued functions, i.e. Divσ=(σij,j)\operatorname{Div}\sigma=\left(\sigma_{ij,j}\right). The previous formula will be used to determine the mixed-weak formulation of our contact problem.

3. Problem statement

In this section, we derive the mathematical model which corresponds to the physical setting intro- duced in Section 2. More exactly, we precise the constitutive law of the material, the balance equation and the boundary and initial conditions, as well. Moreover, we define the evolution equation of adhesion field. To this end, we introduce the following notations. Thus, 𝒖\boldsymbol{u} denotes the displacement field, 𝜺(𝒖)\boldsymbol{\varepsilon}(\boldsymbol{u}) represents the linearized strain tensor, 𝝈\boldsymbol{\sigma} is the stress field, β\beta is the adhesion field, and t+=[0,+)t\in\mathbb{R}_{+}=[0,+\infty) represents the time variable.

We assume that the material’s behavior follows a viscoplastic constitutive law of the form

𝝈˙(t)=𝜺(𝒖˙(t))+𝒢(𝝈(t),𝜺(𝒖(t))).\dot{\boldsymbol{\sigma}}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\dot{\boldsymbol{u}}(t))+\mathcal{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))). (3.1)

In (3.1) and everywhere in this paper the dot above a variable represents derivative with respect to time variable tt. Here \mathcal{E} and 𝒢\mathcal{G} represent the elasticity tensor and a nonlinear constitutive function, respectively, and are assumed to satisfy the following conditions

{ (a) =(ijkl):Ω×𝕊d𝕊d. (b) ijkl=klij=jiklL(Ω),1i,j,k,ld. (c) There exists m>0 such that 𝝉𝝉m𝝉2𝝉𝕊d, a.e.in Ω.\displaystyle\left\{\begin{array}[]{l}\text{ (a) }\mathcal{E}=\left(\mathcal{E}_{ijkl}\right):\Omega\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}.\\ \text{ (b) }\mathcal{E}_{ijkl}=\mathcal{E}_{klij}=\mathcal{E}_{jikl}\in L^{\infty}(\Omega),1\leq i,j,k,l\leq d.\\ \text{ (c) There exists }m_{\mathcal{E}}>0\text{ such that }\\ \quad\mathcal{E}\boldsymbol{\tau}\cdot\boldsymbol{\tau}\geq m_{\mathcal{E}}\|\boldsymbol{\tau}\|^{2}\forall\boldsymbol{\tau}\in\mathbb{S}^{d},\text{ a.e.in }\Omega.\end{array}\right.
{ (a) 𝒢:Ω×𝕊d×𝕊d𝕊d. (b) There exists L𝒢>0 such that 𝒢(𝒙,𝝈1,𝜺1)𝒢(𝒙,𝝈2,𝜺2)L𝒢(𝝈1σ2+𝜺1𝜺2)𝝈1,𝝈2,𝜺1,𝜺2𝕊d, a.e. 𝒙Ω (c) The mapping 𝒙𝒢(𝒙,𝝈,𝜺) is measurable on Ω,𝝈,𝜺𝕊d (d) The mapping 𝒙𝒢(𝒙,𝟎,𝟎) belongs to Q\displaystyle\left\{\begin{array}[]{l}\text{ (a) }\mathcal{G}:\Omega\times\mathbb{S}^{d}\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}.\\ \text{ (b) There exists }L_{\mathcal{G}}>0\text{ such that }\\ \left\|\mathcal{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{1},\boldsymbol{\varepsilon}_{1}\right)-\mathcal{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{2}\right)\right\|\leq L_{\mathcal{G}}\left(\left\|\boldsymbol{\sigma}_{1}-\sigma_{2}\right\|+\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|\right)\\ \forall\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\text{ a.e. }\boldsymbol{x}\in\Omega\text{. }\\ \text{ (c) The mapping }\boldsymbol{x}\mapsto\mathcal{G}(\boldsymbol{x},\boldsymbol{\sigma},\boldsymbol{\varepsilon})\text{ is measurable on }\Omega,\forall\boldsymbol{\sigma},\boldsymbol{\varepsilon}\in\mathbb{S}^{d}\text{. }\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto\mathcal{G}(\boldsymbol{x},\mathbf{0},\mathbf{0})\text{ belongs to }Q\text{. }\end{array}\right. (3.2)

Note that in (3.1) and below, in order to simplify the notation, we do not indicate explicitly the dependence of various functions on the spatial variable 𝒙\boldsymbol{x}. To complete the constitutive law (3.1), we assume the following initial conditions

σ(0)=σ0,𝒖(0)=𝒖0 in Ω.\sigma(0)=\sigma_{0},\quad\boldsymbol{u}(0)=\boldsymbol{u}_{0}\text{ in }\Omega. (3.4)

In (3.4) 𝒖0\boldsymbol{u}_{0} and 𝝈0\boldsymbol{\sigma}_{0} denote the initial displacement and the initial stress field, respectively. We assume that

𝒖0U,𝝈0Q.\boldsymbol{u}_{0}\in U,\quad\boldsymbol{\sigma}_{0}\in Q. (3.5)

A general description of various constitutive relations in solid mechanics can be found in [3,8] or [9].
Integrating (3.1) with initial condition (3.4), we find that

𝝈(t)=𝜺(𝒖(t))+0t𝒢(𝝈(s),𝜺(𝒖(s)))ds+𝝈0𝜺(𝒖0)\boldsymbol{\sigma}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\int_{0}^{t}\mathcal{G}(\boldsymbol{\sigma}(s),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)))\mathrm{d}s+\boldsymbol{\sigma}_{0}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0}\right) (3.6)

Next, since the process is quasistatic, we use the equilibrium equation

Div𝝈(t)+𝒇0(t)=𝟎 in Ω\operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}\quad\text{ in }\Omega (3.7)

Moreover, taking into account the physical setting introduced in Section 2, we impose the following displacement-traction conditions:

𝒖(t)=𝟎 on Γ1,\displaystyle\boldsymbol{u}(t)=\mathbf{0}\quad\text{ on }\Gamma_{1}, (3.8)
𝝈(t)𝒗=𝒇2(t) on Γ2.\displaystyle\boldsymbol{\sigma}(t)\boldsymbol{v}=\boldsymbol{f}_{2}(t)\quad\text{ on }\Gamma_{2}. (3.9)

We assume that the densities of body forces and surface tractions have regularity

𝒇0C(+;L2(Ω)d),𝒇2C(+;L2(Γ2)d).\boldsymbol{f}_{0}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right),\quad\boldsymbol{f}_{2}\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{2}\right)^{d}\right). (3.10)

In addition, we use Riesz representation theorem to define the function f:+Vf:\mathbb{R}_{+}\rightarrow V by equality

(𝒇(t),𝒗)V=(𝒇0(t),𝒗)L2(Ω)d+(𝒇2(t),𝒗)L2(Γ2)d(\boldsymbol{f}(t),\boldsymbol{v})_{V}=\left(\boldsymbol{f}_{0}(t),\boldsymbol{v}\right)_{L^{2}(\Omega)^{d}}+\left(\boldsymbol{f}_{2}(t),\boldsymbol{v}\right)_{L^{2}\left(\Gamma_{2}\right)^{d}} (3.11)

for all 𝒗V\boldsymbol{v}\in V and t+t\in\mathbb{R}_{+}. It follows from (3.10) that this function has regularity

𝒇C(+;V)\boldsymbol{f}\in C\left(\mathbb{R}_{+};V\right) (3.12)

On the part Γ3\Gamma_{3}, the evolution of bonding field is governed by the differential equation

β˙(t)=(γνβ(t)[R(uν(t))]2εa)+ on Γ3\dot{\beta}(t)=-\left(\gamma_{\nu}\beta(t)\left[R\left(u_{\nu}(t)\right)\right]^{2}-\varepsilon_{a}\right)^{+}\quad\text{ on }\Gamma_{3} (3.13)

in which γν\gamma_{\nu} is the adhesion coefficient, εa\varepsilon_{a} represents the Dupré energy, and RR is the truncation operator given by

R(s)={L if s<Ls if LsLL if s>LR(s)=\begin{cases}-L&\text{ if }s<-L\\ s&\text{ if }-L\leq s\leq L\\ L&\text{ if }s>L\end{cases}

where L>0L>0. The initial condition for differential equation (3.13) is

β(0)=β0 on Γ3\beta(0)=\beta_{0}\text{ on }\Gamma_{3} (3.15)

and we assume that

γvL(Γ3),γv0,εaL(Γ3),εa0β0L2(Γ3),0β01 a.e. on Γ3\begin{array}[]{ll}\gamma_{v}\in L^{\infty}\left(\Gamma_{3}\right),&\gamma_{v}\geq 0,\quad\varepsilon_{a}\in L^{\infty}\left(\Gamma_{3}\right),\quad\varepsilon_{a}\geq 0\\ \beta_{0}\in L^{2}\left(\Gamma_{3}\right),&0\leq\beta_{0}\leq 1\quad\text{ a.e. on }\Gamma_{3}\end{array}

We note that (3.13) does not allow for rebonding, once debonding takes place, since β˙0\dot{\beta}\leq 0. Moreover, the values of bonding field are restricted to 0β10\leq\beta\leq 1. When β=0\beta=0 at a point of contact surface, there are no active bonds; when β=1\beta=1 the adhesion is complete and all the bonds are active; finally, when 0<β<10<\beta<1 partial adhesion takes place. A comprehensive treatment of several models for contact problems with adhesion can be found in [7-9,19-21], and, more recently, in [22]. An application of the theory to rocks and in the medical field was described in [23-25].

Finally, we introduce the normal and tangential conditions on the surface Γ3\Gamma_{3}. In the normal direction, we have the following contact condition with normal compliance, memory effect, unilateral
constraint, and adhesion.

{uv(t)g,σv(t)+pv(uv(t))+0tb(ts)uv+(s)dsγvβ2(t)R~(uv(t))0(uv(t)g)(σv(t)+pv(uv(t))+0tb(ts)uv+(s)dsγvβ2(t)R~(uv(t)))=0\left\{\begin{array}[]{l}u_{v}(t)\leq g,\sigma_{v}(t)+p_{v}\left(u_{v}(t)\right)+\int_{0}^{t}b(t-s)u_{v}^{+}(s)\mathrm{d}s-\gamma_{v}\beta^{2}(t)\widetilde{R}\left(u_{v}(t)\right)\leq 0\\ \left(u_{v}(t)-g\right)\left(\sigma_{v}(t)+p_{v}\left(u_{v}(t)\right)+\int_{0}^{t}b(t-s)u_{v}^{+}(s)\mathrm{d}s-\gamma_{v}\beta^{2}(t)\widetilde{R}\left(u_{v}(t)\right)\right)=0\end{array}\right.

It was introduced and justified in [11], and for this reason we give here only a short description. The condition was obtained by assuming an additive decomposition of the normal stress into four components, which describe the deformability, the rigidity, the adhesive, and the surface memory properties of the foundation. The first inequality in (3.18) shows that the penetration is limited by the bound gg and describes a condition with unilateral constraint. In the case 0<uν(t)<g0<u_{\nu}(t)<g, i.e. there is penetration which did not reach the bound gg, (3.18) yields

σν(t)=pν(uν(t))+0tb(ts)uν+(s)ds-\sigma_{\nu}(t)=p_{\nu}\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)\mathrm{d}s (3.19)

Here pvp_{v} and bb are given functions which satisfy

{ (a) pv:Γ3×+ (b) There exists Lv>0 such that |pv(𝒙,r1)pv(𝒙,r2)|Lv|r1r2|r1,r2, a.e. 𝒙Γ3. (c) (pv(𝒙,r1)pv(𝒙,r2))(r1r2)0r1,r2, a.e. 𝒙Γ3. (d) The mapping 𝒙pv(𝒙,r) is measurable on Γ3,r. (e) pv(𝒙,r)=0 for all r0, a.e. 𝒙Γ3.\displaystyle\left\{\begin{array}[]{l}\text{ (a) }p_{v}:\Gamma_{3}\times\mathbb{R}\rightarrow\mathbb{R}_{+}\cdot\\ \text{ (b) There exists }L_{v}>0\text{ such that }\\ \quad\left|p_{v}\left(\boldsymbol{x},r_{1}\right)-p_{v}\left(\boldsymbol{x},r_{2}\right)\right|\leq L_{v}\left|r_{1}-r_{2}\right|\\ \quad\forall r_{1},r_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (c) }\left(p_{v}\left(\boldsymbol{x},r_{1}\right)-p_{v}\left(\boldsymbol{x},r_{2}\right)\right)\left(r_{1}-r_{2}\right)\geq 0\\ \quad\forall r_{1},r_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto p_{v}(\boldsymbol{x},r)\text{ is measurable on }\Gamma_{3},\forall r\in\mathbb{R}.\\ \text{ (e) }p_{v}(\boldsymbol{x},r)=0\text{ for all }r\leq 0,\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\end{array}\right.
bC(+;L(Γ3)),b(t,𝒙)0 for all t+,a.e. 𝒙Γ3.\displaystyle b\in C\left(\mathbb{R}_{+};L^{\infty}\left(\Gamma_{3}\right)\right),\quad b(t,\boldsymbol{x})\geq 0\quad\text{ for all }t\in\mathbb{R}_{+},\text{a.e. }\boldsymbol{x}\in\Gamma_{3}.

Equality (3.19) shows that at the moment tt the reaction of foundation depends both on the current value of the penetration (represented by the term pv(uv(t))p_{v}\left(u_{v}(t)\right) ) and on the history of the penetration (represented by the integral term). The term pv(uv(t))p_{v}\left(u_{v}(t)\right) represents the so-called normal compliance condition and describes the deformability of foundation. It assigns a reactive normal pressure that depends on the interpenetration of the asperities on the bodys surface and those of the foundation. We recall that the normal compliance contact condition was first used in [26] and the term normal compliance was first introduced in [27,28]. A commonly example of the normal compliance function pνp_{\nu} is

pv(r)=cvr+p_{v}(r)=c_{v}r^{+} (3.22)

The constant cν>0c_{\nu}>0 is the surface stiffness coefficient. An idealization of the normal compliance condition, which is used often in engineering literature, and can also be found in mathematical publications, is the Signorini contact condition, in which the foundation is assumed to be perfectly rigid. This condition was first introduced in [29].

In the case uν(t)<0u_{\nu}(t)<0, i.e. there is separation between the body and the foundation, (3.18) yields

σν(t)=γνβ2(t)R~(uν(t))\sigma_{\nu}(t)=\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right) (3.23)

where the truncation operator R~\widetilde{R} is given by

R~(s)=(R(s))+\widetilde{R}(s)=(-R(s))^{+} (3.24)

The reaction of the foundation is nonnegative and depends on adhesion coefficient, on the square of intensity of adhesion and on the normal displacement, but as it does not exceed the bound length LL. The maximal normal traction is γνL\gamma_{\nu}L. Next, we recall a physical interpretation, given in [18], of the integral term in (3.18). More exactly, assume that in the time interval [0,t][0,t] there is only penetration (i.e. uν(s)0u_{\nu}(s)\geq 0 for all s[0,t]s\in[0,t] ). Then, taking into account assumption (3.21) we deduce that the reaction of the foundation is larger than that given by the term pν(uν(t))p_{\nu}\left(u_{\nu}(t)\right) and we conclude that equality (3.19) models the hardening phenomena of the surface. Also, if in the time interval [0,t][0,t] there is separation (i.e. uν(s)<0u_{\nu}(s)<0 for all s[0,t]s\in[0,t] ) then the integral term vanishes. Now, assume a situation in which uνu_{\nu} is positive in interval [0,t0]\left[0,t_{0}\right] and negative on the interval [t0,t]\left[t_{0},t\right]. Then,

0tb(ts)uν+(s)ds=0t0b(ts)uν+(s)ds\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)\mathrm{d}s=\int_{0}^{t_{0}}b(t-s)u_{\nu}^{+}(s)\mathrm{d}s (3.25)

In addition, the support of the function bb is included in the interval [0,δ][0,\delta] with δ>0\delta>0. Two possibilities arise. First, if tt0>δt-t_{0}>\delta it follows that b(ts)=0b(t-s)=0 for all s[0,t0]s\in\left[0,t_{0}\right] and (3.25) shows that the integral term vanishes. Second, if tt0δt-t_{0}\leq\delta (3.25) implies that a residual pressure exists at the moment tt on the body’s surface. In the rest of the paper, we assume that there are no cycles of contact and separation during time interval of interest.

In conclusion, condition (3.18) shows that when there is penetration the contact stress is given by a normal compliance condition with memory term of the form (3.19) but up to the limit gg. When the limit gg is reached, the stress is given by a Signorini-type unilateral condition. Moreover, adhesion takes place when there is separation.

As in [19] or [11], we assume that the tangential traction is given by

𝝈τ(t)=pτ(β(t))𝑹(𝒖τ(t)) on Γ3-\boldsymbol{\sigma}_{\tau}(t)=p_{\tau}(\beta(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right)\quad\text{ on }\Gamma_{3} (3.26)

where the truncation operator 𝑹\boldsymbol{R}^{*} is defined by

𝑹(𝒗)={𝒗 if 𝒗LL𝒗𝒗 if 𝒗L\boldsymbol{R}^{*}(\boldsymbol{v})=\begin{cases}\boldsymbol{v}&\text{ if }\|\boldsymbol{v}\|\leq L\\ \frac{L}{\|\boldsymbol{v}\|}\boldsymbol{v}&\text{ if }\|\boldsymbol{v}\|\geq L\end{cases}

and the function pτp_{\tau} satisfies

{ (a) pτ:Γ3×+.(b) There exists Lτ>0 such that |pτ(𝒙,β1)pτ(𝒙,β2)|Lτ|β1β2|β1,β2, a.e. 𝒙Γ3. (c) There exists Mτ>0 such that pτ(𝒙,β)Mτβ, a.e. 𝒙Γ3. (d) The mapping 𝒙pτ(𝒙,β) is measurable on Γ3,β. (e) pτ(𝒙,0)=0 a.e. 𝒙Γ3.\left\{\begin{array}[]{l}\text{ (a) }p_{\tau}:\Gamma_{3}\times\mathbb{R}\rightarrow\mathbb{R}_{+}.\\ \text{(b) There exists }L_{\tau}>0\text{ such that }\\ \quad\left|p_{\tau}\left(\boldsymbol{x},\beta_{1}\right)-p_{\tau}\left(\boldsymbol{x},\beta_{2}\right)\right|\leq L_{\tau}\left|\beta_{1}-\beta_{2}\right|\\ \quad\forall\beta_{1},\beta_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (c) There exists }M_{\tau}>0\text{ such that }p_{\tau}(\boldsymbol{x},\beta)\leq M_{\tau}\\ \quad\forall\beta\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto p_{\tau}(\boldsymbol{x},\beta)\text{ is measurable on }\Gamma_{3},\forall\beta\in\mathbb{R}.\\ \text{ (e) }p_{\tau}(\boldsymbol{x},0)=0\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\end{array}\right.

More exactly, (3.26) shows that the resistance to tangential motion is generated mainly by the glue, and frictional traction is neglected. In the particular case, when all the adhesive bonds are inactive the motion is frictionless. Definition (3.27) of operator 𝑹\boldsymbol{R}^{*} implies that the tangential traction depends on the tangential displacement, but only up to the bond length LL. Moreover, pτ(β)p_{\tau}(\beta) acts as the stiffness or spring constant, and the traction is in direction opposite to the displacement.

The classical formulation of the contact problem is the following.

Problem 𝒫\mathcal{P}. Find a displacement field 𝒖:Ω×+d\boldsymbol{u}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d}, a stress field σ:Ω×+𝕊d\sigma:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d}, and an adhesion field β:Γ3×+[0,1]\beta:\Gamma_{3}\times\mathbb{R}_{+}\rightarrow[0,1] such that

𝝈˙(t)=𝜺(𝒖˙(t))+𝒢(𝝈(t),𝜺(𝒖(t))) in Ω,Div𝝈(t)+𝒇0(t)=𝟎 in Ω,𝒖(t)=𝟎 on Γ1,𝝈(t)𝒗=𝒇2(t) on Γ2,uv(t)g,σv(t)+pv(uv(t))+0tb(ts)uv+(s)𝑑sγvβ2(t)R~(uv(t))0,(uv(t)g)(σv(t)+pv(uv(t))+0tb(ts)uv+(s)dsγvβ2(t)R~(uv(t)))=0} on Γ3,στ(t)=pτ(β(t))𝑹(𝒖τ(t)) on Γ3,β˙(t)=(γvβ(t)[R(uv(t))]2εa)+on Γ3,β(0)=β0 in Γ3,𝝈(0)=𝝈0,𝒖(0)=𝒖0 in Ω.\begin{array}[]{r}\dot{\boldsymbol{\sigma}}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\dot{\boldsymbol{u}}(t))+\mathcal{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))\text{ in }\Omega,\\ \operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}\text{ in }\Omega,\\ \boldsymbol{u}(t)=\mathbf{0}\text{ on }\Gamma_{1},\\ \left.\begin{array}[]{r}\boldsymbol{\sigma}(t)\boldsymbol{v}=\boldsymbol{f}_{2}(t)\text{ on }\Gamma_{2},\\ u_{v}(t)\leq g,\sigma_{v}(t)+p_{v}\left(u_{v}(t)\right)\\ +\int_{0}^{t}b(t-s)u_{v}^{+}(s)ds-\gamma_{v}\beta^{2}(t)\widetilde{R}\left(u_{v}(t)\right)\leq 0,\\ \left(u_{v}(t)-g\right)\left(\sigma_{v}(t)+p_{v}\left(u_{v}(t)\right)\right.\\ \left.+\int_{0}^{t}b(t-s)u_{v}^{+}(s)ds-\gamma_{v}\beta^{2}(t)\widetilde{R}\left(u_{v}(t)\right)\right)=0\end{array}\right\}\text{ on }\Gamma_{3},\\ -\sigma_{\tau}(t)=p_{\tau}(\beta(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right)\text{ on }\Gamma_{3},\\ \dot{\beta}(t)=-\left(\gamma_{v}\beta(t)\left[R\left(u_{v}(t)\right)\right]^{2}-\varepsilon_{a}\right)^{+}\text{on }\Gamma_{3},\\ \beta(0)=\beta_{0}\text{ in }\Gamma_{3},\\ \boldsymbol{\sigma}(0)=\boldsymbol{\sigma}_{0},\quad\boldsymbol{u}(0)=\boldsymbol{u}_{0}\text{ in }\Omega^{\prime}.\end{array}

We end this section with the following assumption. More exactly, we assume that there exists

𝜽~V such that θ~v=𝜽~𝒗=1 a.e. on Γ3\widetilde{\boldsymbol{\theta}}\in V\text{ such that }\widetilde{\theta}_{v}=\widetilde{\boldsymbol{\theta}}\cdot\boldsymbol{v}=1\text{ a.e. on }\Gamma_{3} (3.38)

This additional assumption concerns only the geometry of the problem and was introduced in [30]. Examples in two- and three-dimensional cases are presented in [31].

4. Mixed variational formulation

In this section, we derive a mixed-variational formulation of problem 𝒫\mathcal{P}. To this end, we assume in what follows that ( 𝝈,𝒖,β\boldsymbol{\sigma},\boldsymbol{u},\beta ) represents a triple of sufficiently regular functions which satisfies (3.29)(3.37). We define the sets KVK\subset V and ΛD\Lambda\subset D in the following way

K={𝒗V:vv0 a.e. on Γ3}\displaystyle K=\left\{\boldsymbol{v}\in V:v_{v}\leq 0\text{ a.e. on }\Gamma_{3}\right\} (4.1)
Λ={𝝁D:𝝁,𝒗Γ30𝒗K}\displaystyle\Lambda=\left\{\boldsymbol{\mu}\in D:\langle\boldsymbol{\mu},\boldsymbol{v}\rangle_{\Gamma_{3}}\leq 0\quad\forall\boldsymbol{v}\in K\right\} (4.2)

and we introduce the set of admissible bonding fields

Z={ωL2(Γ3):0ω1 a.e. on Γ3}Z=\left\{\omega\in L^{2}\left(\Gamma_{3}\right):0\leq\omega\leq 1\quad\text{ a.e. on }\quad\Gamma_{3}\right\} (4.3)

Let t+,𝒗Vt\in\mathbb{R}_{+},\boldsymbol{v}\in V, and 𝝁Λ\boldsymbol{\mu}\in\Lambda. We integrate (3.35) with initial condition (3.36) to find that

β(t)=β00t(γνβ(s)[R(uν(s))]2εa)+ds on Γ3\beta(t)=\beta_{0}-\int_{0}^{t}\left(\gamma_{\nu}\beta(s)\left[R\left(u_{\nu}(s)\right)\right]^{2}-\varepsilon_{a}\right)^{+}\mathrm{d}s\quad\text{ on }\Gamma_{3} (4.4)

The assumptions (3.16) and (3.17) combined with (4.3) yield

β(t)Z\beta(t)\in Z (4.5)

see [9,19] or [11] for more details. Next, we introduce the bilinear form b~:V×D\widetilde{b}:V\times D\rightarrow\mathbb{R} by

b~(𝒗,𝝁)=𝝁,𝒗Γ3𝒗V,𝝁D.\widetilde{b}(\boldsymbol{v},\boldsymbol{\mu})=\langle\boldsymbol{\mu},\boldsymbol{v}\rangle_{\Gamma_{3}}\quad\forall\boldsymbol{v}\in V,\boldsymbol{\mu}\in D. (4.6)

We use Green formula (2.7), equilibrium equation (3.30), boundary conditions (3.31), and (3.32), definition (3.11) and

𝝈(t)𝒗𝒗=σν(t)vν+𝝈τ(t)𝒗τ on Γ3,\boldsymbol{\sigma}(t)\boldsymbol{v}\cdot\boldsymbol{v}=\sigma_{\nu}(t)v_{\nu}+\boldsymbol{\sigma}_{\tau}(t)\cdot\boldsymbol{v}_{\tau}\text{ on }\Gamma_{3},

to obtain that

(𝝈(t),𝜺(𝒗))Q=(𝒇(t),𝒗)V+Γ3(σν(t)vν+𝝈τ(t)𝒗τ)da𝒗V(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}=(\boldsymbol{f}(t),\boldsymbol{v})_{V}+\int_{\Gamma_{3}}\left(\sigma_{\nu}(t)v_{\nu}+\boldsymbol{\sigma}_{\tau}(t)\cdot\boldsymbol{v}_{\tau}\right)\mathrm{d}a\quad\forall\boldsymbol{v}\in V (4.7)

Let λ(t)D\lambda(t)\in D be the Lagrange multiplier given by

λ(t),𝒘Γ3=\displaystyle\langle\lambda(t),\boldsymbol{w}\rangle_{\Gamma_{3}}= Γ3(σν(t)+pν(uν(t))\displaystyle-\int_{\Gamma_{3}}\left(\sigma_{\nu}(t)+p_{\nu}\left(u_{\nu}(t)\right)\right.
+0tb(ts)uν+(s)dsγνβ2(t)R~(uν(t)))wνda𝒘W\displaystyle\left.+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)\mathrm{d}s-\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)\right)w_{\nu}\mathrm{d}a\quad\forall\boldsymbol{w}\in W (4.8)

Using (3.33), (4.1), and (4.2) we deduce that λ(t)Λ\lambda(t)\in\Lambda.
Taking into account (4.6), we can write

Γ3σν(t)vνda=\displaystyle\int_{\Gamma_{3}}\sigma_{\nu}(t)v_{\nu}\mathrm{d}a= b~(𝒗,λ(t))Γ3pν(uν(t))vνda\displaystyle-\widetilde{b}(\boldsymbol{v},\lambda(t))-\int_{\Gamma_{3}}p_{\nu}\left(u_{\nu}(t)\right)v_{\nu}\mathrm{d}a
Γ3(0tb(ts)uν+(s)ds)vνda+Γ3γνβ2(t)R~(uν(t))vνda𝒗V\displaystyle-\int_{\Gamma_{3}}\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)\mathrm{d}s\right)v_{\nu}\mathrm{d}a+\int_{\Gamma_{3}}\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)v_{\nu}\mathrm{d}a\quad\forall\boldsymbol{v}\in V (4.9)

and, combining this equality with (4.7) and tangential condition (3.34) we obtain that

(𝝈(t),𝜺(𝒗))Q+Γ3pv(uv(t))vvda+b~(𝒗,𝝀(t))Γ3γvβ2(t)R~(uv(t))vvda\displaystyle(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\int_{\Gamma_{3}}p_{v}\left(u_{v}(t)\right)v_{v}\mathrm{~d}a+\widetilde{b}(\boldsymbol{v},\boldsymbol{\lambda}(t))-\int_{\Gamma_{3}}\gamma_{v}\beta^{2}(t)\widetilde{R}\left(u_{v}(t)\right)v_{v}\mathrm{~d}a
+Γ3pτ(β(t))𝑹(𝒖τ(t))𝒗τda+Γ3(0tb(ts)uv+(s)ds)vvda=(𝒇(t),𝒗)V\displaystyle\quad+\int_{\Gamma_{3}}p_{\tau}(\beta(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right)\cdot\boldsymbol{v}_{\tau}\mathrm{d}a+\int_{\Gamma_{3}}\left(\int_{0}^{t}b(t-s)u_{v}^{+}(s)\mathrm{d}s\right)v_{v}\mathrm{~d}a=(\boldsymbol{f}(t),\boldsymbol{v})_{V} (4.10)

for all 𝒗V\boldsymbol{v}\in V. The previous equality shows the importance of Lagrange multiplier λ(t)\lambda(t) defined by duality in (4.8). More exactly, it removes the unilateral constraint and concerning the test functions we can use the entire space VV. In this case, it plays the role of a normal force.

We introduce the element 𝒉V\boldsymbol{h}\in V by

𝒉=g𝜽~\boldsymbol{h}=g\widetilde{\boldsymbol{\theta}} (4.11)

Using assumption (3.38), definitions (4.1), (4.2), (4.6), and contact condition (3.33) we deduce that

b~(𝒖(t),𝝁λ(t))b~(g𝜽~,𝝁λ(t))𝝁Λ.\widetilde{b}(\boldsymbol{u}(t),\boldsymbol{\mu}-\lambda(t))\leq\widetilde{b}(g\widetilde{\boldsymbol{\theta}},\boldsymbol{\mu}-\lambda(t))\quad\forall\boldsymbol{\mu}\in\Lambda. (4.12)

We gather equalities (3.6), (4.4) and (4.10) and inequality (4.12) to obtain the following mixed variational formulation of problem 𝒫\mathcal{P}.

Problem 𝒫V\mathcal{P}^{V}. Find a stress field 𝝈:+Q\boldsymbol{\sigma}:\mathbb{R}_{+}\rightarrow Q, a displacement field 𝒖:+V\boldsymbol{u}:\mathbb{R}_{+}\rightarrow V, a bonding field β:+Z\beta:\mathbb{R}_{+}\rightarrow Z and a Lagrange multiplier λ:+Λ\lambda:\mathbb{R}_{+}\rightarrow\Lambda such that

𝝈(t)=\displaystyle\boldsymbol{\sigma}(t)= 𝜺(𝒖(t))+0t𝒢(𝝈(s),𝜺(𝒖(s)))ds+𝝈0𝜺(𝒖0)\displaystyle\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\int_{0}^{t}\mathcal{G}(\boldsymbol{\sigma}(s),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)))\mathrm{d}s+\boldsymbol{\sigma}_{0}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0}\right) (4.13)
β(t)=\displaystyle\beta(t)= β00t(γvβ(s)[R(uv(s))]2εa)+ds\displaystyle\beta_{0}-\int_{0}^{t}\left(\gamma_{v}\beta(s)\left[R\left(u_{v}(s)\right)\right]^{2}-\varepsilon_{a}\right)^{+}\mathrm{d}s (4.14)
(𝝈(t),𝜺(𝒗))Q+Γ3pv(uv(t))vvda+b~(𝒗,𝝀(t))+Γ3(0tb(ts)uv+(s)ds)vvda\displaystyle(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\int_{\Gamma_{3}}p_{v}\left(u_{v}(t)\right)v_{v}\mathrm{~d}a+\tilde{b}(\boldsymbol{v},\boldsymbol{\lambda}(t))+\int_{\Gamma_{3}}\left(\int_{0}^{t}b(t-s)u_{v}^{+}(s)\mathrm{d}s\right)v_{v}\mathrm{~d}a
Γ3γvβ2(t)R~(uv(t))vvda+Γ3pτ(β(t))𝑹(𝒖τ(t))𝒗τda=(𝒇(t),𝒗)V\displaystyle-\int_{\Gamma_{3}}\gamma_{v}\beta^{2}(t)\widetilde{R}\left(u_{v}(t)\right)v_{v}\mathrm{~d}a+\int_{\Gamma_{3}}p_{\tau}(\beta(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right)\cdot\boldsymbol{v}_{\tau}\mathrm{d}a=(\boldsymbol{f}(t),\boldsymbol{v})_{V} (4.15)
b~(𝒖(t),𝝁λ(t))b~(g𝜽~,𝝁λ(t))\displaystyle\tilde{b}(\boldsymbol{u}(t),\boldsymbol{\mu}-\lambda(t))\leq\tilde{b}(g\tilde{\boldsymbol{\theta}},\boldsymbol{\mu}-\lambda(t)) (4.16)

for all 𝝁Λ,𝒗V,t+\boldsymbol{\mu}\in\Lambda,\boldsymbol{v}\in V,t\in\mathbb{R}_{+}.
Problem 𝒫V\mathcal{P}^{V} represents a mixed-variational formulation which includes two implicit integral equations for the stress field and bonding field, respectively. A history-dependent variational equation for displacement field and a first-order time-dependent variational inequality for the Lagrange multiplier complete the problem.

We have the following existence and uniqueness result.
Theorem 4.1: Assume that (3.2), (3.3), (3.5), (3.10), (3.16), (3.17), (3.20), (3.21), and (3.28) hold. There exists e0>0e_{0}>0 which depends only on ,pv,Ω,Γ1\mathcal{E},p_{v},\Omega,\Gamma_{1}, and Γ3\Gamma_{3} such that if

Mτ+γνL(Γ3)<e0M_{\tau}+\left\|\gamma_{\nu}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}<e_{0} (4.17)

then Problem 𝒫V\mathcal{P}^{V} has a unique solution ( 𝝈,𝒖,β,𝝀\boldsymbol{\sigma},\boldsymbol{u},\beta,\boldsymbol{\lambda} ). Moreover, the solution satisfies

𝝈C(+;Q),𝒖C(+;V),βC(+;Z),𝝀C(+;Λ).\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q\right),\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\beta\in C\left(\mathbb{R}_{+};Z\right),\boldsymbol{\lambda}\in C\left(\mathbb{R}_{+};\Lambda\right). (4.18)

For the convenience of the readers, we recall that MτM_{\tau} is the constant introduced in (3.28) (c). The proof of Theorem 4.1 will be carried out in two steps in the next section. In the first step, an equivalence result, Lemma 5.1, is established. Second step includes an existence and uniqueness result for an intermediate problem, Lemma 5.3.

5. Proof of Theorem 4.1

In this section, we present the proof of Theorem 4.1. To this end, in what follows we assume that (3.2), (3.3), (3.5), (3.10), (3.16), (3.17) (3.20), (3.21), and (3.28) hold.

In order to provide an equivalence form of Problem 𝒫V\mathcal{P}^{V}, we introduce two history-dependent operators. More exactly, we define operator 𝒮1:C(+;V)C(+;Q)\mathcal{S}_{1}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};Q\right) by

𝒮1𝒖(t)=0t𝒢(𝒮1𝒖(s)+𝜺(𝒖(s)),𝜺(𝒖(s)))ds+σ0𝜺(𝒖0),\mathcal{S}_{1}\boldsymbol{u}(t)=\int_{0}^{t}\mathcal{G}\left(\mathcal{S}_{1}\boldsymbol{u}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s))\right)\mathrm{d}s+\sigma_{0}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0}\right), (5.1)

for all t+t\in\mathbb{R}_{+}. The unique existence of 𝒮1\mathcal{S}_{1} was proved in [32] using assumptions (3.2), (3.3), (3.5), and fixed point arguments.

We use Riesz’s representation theorem to define operator 𝒮2:C(+;V)C(+;V)\mathcal{S}_{2}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};V\right) by

(𝒮2𝒖(t),𝒗)V=(0tb(ts)uv+(s)ds,vv)L2(Γ3)𝒖C(+;V),𝒗V.\left(\mathcal{S}_{2}\boldsymbol{u}(t),\boldsymbol{v}\right)_{V}=\left(\int_{0}^{t}b(t-s)u_{v}^{+}(s)\mathrm{d}s,v_{v}\right)_{L^{2}\left(\Gamma_{3}\right)}\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\boldsymbol{v}\in V. (5.2)

Finally, let 𝒮:C(+;V)C(+;V)\mathcal{S}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};V\right) be the operator defined by

(𝒮𝒖(t),𝒗)V=(𝒮1𝒖(t),𝜺(𝒗))Q+(𝒮2𝒖(t),𝒗)V𝒖C(+;V),𝒗V.(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v})_{V}=\left(\mathcal{S}_{1}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q}+\left(\mathcal{S}_{2}\boldsymbol{u}(t),\boldsymbol{v}\right)_{V}\quad\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\boldsymbol{v}\in V. (5.3)

In [33] was proved that 𝒮\mathcal{S} is a history-dependent operator, i.e. n\forall n\in\mathbb{N} there exists sn>0s_{n}>0 such that

𝒮𝒖(t)𝒮𝒗(t)Vsn0t𝒖(s)𝒗(s)Vds\displaystyle\|\mathcal{S}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{v}(t)\|_{V}\leq s_{n}\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}\mathrm{~d}s
𝒖,𝒗C(+;V),t[0,n]\displaystyle\forall\boldsymbol{u},\boldsymbol{v}\in C\left(\mathbb{R}_{+};V\right),\quad t\in[0,n] (5.4)

In addition, in [11,19][11,19] it was proved that there exists an operator :C(+;V)C(+;Z)\mathcal{B}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};Z\right) such that

𝒖(t)=β00t(γv𝒖(s)[R(uv(s))]2εa)+ds on Γ3.\mathcal{B}\boldsymbol{u}(t)=\beta_{0}-\int_{0}^{t}\left(\gamma_{v}\mathcal{B}\boldsymbol{u}(s)\left[R\left(u_{v}(s)\right)\right]^{2}-\varepsilon_{a}\right)^{+}\mathrm{d}s\quad\text{ on }\Gamma_{3}. (5.5)

Moreover, \mathcal{B} is a history-dependent operator, i.e. n\forall n\in\mathbb{N} there exists bn>0b_{n}>0 such that

𝒖(t)𝒗(t)L2(Γ3)bn0t𝒖(s)𝒗(s)Vds\displaystyle\|\mathcal{B}\boldsymbol{u}(t)-\mathcal{B}\boldsymbol{v}(t)\|_{L^{2}\left(\Gamma_{3}\right)}\leq b_{n}\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}\mathrm{~d}s
𝒖,𝒗C(+;V),t[0,n]\displaystyle\forall\boldsymbol{u},\boldsymbol{v}\in C\left(\mathbb{R}_{+};V\right),\quad t\in[0,n] (5.6)

Using previous notations, we have the following equivalence result.
Lemma 5.1: Let ( 𝝈,𝒖,β,𝝀\boldsymbol{\sigma},\boldsymbol{u},\beta,\boldsymbol{\lambda} ) with regularity (4.18). Then ( 𝝈,𝒖,β,𝝀\boldsymbol{\sigma},\boldsymbol{u},\beta,\boldsymbol{\lambda} ) is a solution of Problem 𝒫V\mathcal{P}^{V} if and only if

𝝈(t)=𝜺(𝒖(t))+𝒮1𝒖(t)\displaystyle\boldsymbol{\sigma}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\mathcal{S}_{1}\boldsymbol{u}(t) (5.7)
β(t)=𝒖(t)\displaystyle\beta(t)=\mathcal{B}\boldsymbol{u}(t) (5.8)
(𝜺(𝒖(t)),𝜺(𝒗))Q+Γ3pv(uv(t))vvda+(𝒮𝒖(t),𝒗)VΓ3γv[𝒖(t)]2R~(uv(t))vvda\displaystyle(\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\int_{\Gamma_{3}}p_{v}\left(u_{v}(t)\right)v_{v}\mathrm{~d}a+(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v})_{V}-\int_{\Gamma_{3}}\gamma_{v}[\mathcal{B}\boldsymbol{u}(t)]^{2}\widetilde{R}\left(u_{v}(t)\right)v_{v}\mathrm{~d}a
+Γ3pτ(𝒖(t))𝑹(𝒖τ(t))𝒗τda+b~(𝒗,𝝀(t))=(𝒇(t),𝒗)V𝒗V\displaystyle\quad+\int_{\Gamma_{3}}p_{\tau}(\mathcal{B}\boldsymbol{u}(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right)\cdot\boldsymbol{v}_{\tau}\mathrm{d}a+\widetilde{b}(\boldsymbol{v},\boldsymbol{\lambda}(t))=(\boldsymbol{f}(t),\boldsymbol{v})_{V}\quad\forall\boldsymbol{v}\in V (5.9)
b~(𝒖(t),𝝁𝝀(t))b~(g𝜽~,𝝁𝝀(t))𝝁Λ\displaystyle\widetilde{b}(\boldsymbol{u}(t),\boldsymbol{\mu}-\boldsymbol{\lambda}(t))\leq\widetilde{b}(g\widetilde{\boldsymbol{\theta}},\boldsymbol{\mu}-\boldsymbol{\lambda}(t))\quad\forall\boldsymbol{\mu}\in\Lambda (5.10)

for all t+t\in\mathbb{R}_{+}.
Proof: Let t+t\in\mathbb{R}_{+}and we assume that ( 𝝈,𝒖,β,𝝀\boldsymbol{\sigma},\boldsymbol{u},\beta,\boldsymbol{\lambda} ) is solution of Problem 𝒫V\mathcal{P}^{V}. Taking into account (3.6), (4.4), and definitions of operators 𝒮1\mathcal{S}_{1} and \mathcal{B} we deduce that (5.7) and (5.8) hold. We combine (4.15), (5.2), (5.3), (5.7), and (5.8) to obtain (5.9). Finally, (5.10) is a direct consequence of (4.16).

Conversely, we assume that ( 𝝈,𝒖,β,𝝀\boldsymbol{\sigma},\boldsymbol{u},\beta,\boldsymbol{\lambda} ) verifies (5.7)-(5.10). Definitions (5.1), (5.5), and (5.7), (5.8) imply that (4.13) and (4.14) hold. Moreover, combining (5.9) with (5.7) and (5.8) we find that (4.15) holds. Finally, (4.16) is a direct consequence of (5.10).

The previous lemma shows that proving the unique solvability of Problem 𝒫V\mathcal{P}^{V} is equivalent to prove that there exists a unique couple of functions ( 𝒖,𝝀\boldsymbol{u},\boldsymbol{\lambda} ), which satisfies (5.9) and (5.10) for all t+t\in\mathbb{R}_{+}. To this end, we use the following existence and uniqueness result for an abstract historydependent mixed variational problem.

Let (X,(,)X,X)\left(X,(\cdot,\cdot)_{X},\|\cdot\|_{X}\right) and (Y,(,)Y,Y)\left(Y,(\cdot,\cdot)_{Y},\|\cdot\|_{Y}\right) be two real Hilbert spaces and C(+;X),C(+;Y)C\left(\mathbb{R}_{+};X\right),C\left(\mathbb{R}_{+};Y\right) the spaces of continuous functions defined on +\mathbb{R}_{+}with values in XX and YY, respectively. We consider two operators A:XX,:C(+;X)×C(+;Y)C(+;X)A:X\rightarrow X,\mathcal{R}:C\left(\mathbb{R}_{+};X\right)\times C\left(\mathbb{R}_{+};Y\right)\rightarrow C\left(\mathbb{R}_{+};X\right), a bilinear form b~:X×Y\tilde{b}:X\times Y\rightarrow\mathbb{R}, two functions f,h:+Xf,h:\mathbb{R}_{+}\rightarrow X and a set ΛYY\Lambda_{Y}\subset Y. We suppose that these data satisfy the following
assumptions. More exactly, the operator AA is strongly monotone and Lipschitz continuous, i.e.

{ (a) There exists mA>0 such that (Au1Au2,u1u2)XmAu1u2X2u1,u2X. (b) There exists MA>0 such that Au1Au2XMAu1u2Xu1,u2X.\left\{\begin{array}[]{l}\text{ (a) There exists }m_{A}>0\text{ such that }\\ \quad\left(Au_{1}-Au_{2},u_{1}-u_{2}\right)_{X}\geq m_{A}\left\|u_{1}-u_{2}\right\|_{X}^{2}\quad\forall u_{1},u_{2}\in X.\\ \text{ (b) There exists }M_{A}>0\text{ such that }\\ \quad\left\|Au_{1}-Au_{2}\right\|_{X}\leq M_{A}\left\|u_{1}-u_{2}\right\|_{X}\quad\forall u_{1},u_{2}\in X.\end{array}\right.

The operator \mathcal{R} verifies

{ For each n there exist dn0 and rn0 such that (u1,λ1)(t)(u2,λ2)(t)Xdn(u1(t)u2(t)X+λ1(t)λ2(t)Y)+rn0t(u1(s)u2(s)X+λ1(s)λ2(s)Y)dsu1,u2C(+;X),λ1,λ2C(+;Y),t[0,n].\left\{\begin{array}[]{l}\text{ For each }n\in\mathbb{N}\text{ there exist }d_{n}\geq 0\text{ and }r_{n}\geq 0\text{ such that }\\ \left\|\mathcal{R}\left(u_{1},\lambda_{1}\right)(t)-\mathcal{R}\left(u_{2},\lambda_{2}\right)(t)\right\|_{X}\leq d_{n}\left(\left\|u_{1}(t)-u_{2}(t)\right\|_{X}\right.\\ \left.+\left\|\lambda_{1}(t)-\lambda_{2}(t)\right\|_{Y}\right)+r_{n}\int_{0}^{t}\left(\left\|u_{1}(s)-u_{2}(s)\right\|_{X}+\left\|\lambda_{1}(s)-\lambda_{2}(s)\right\|_{Y}\right)\mathrm{d}s\\ \quad\forall u_{1},u_{2}\in C\left(\mathbb{R}_{+};X\right),\lambda_{1},\lambda_{2}\in C\left(\mathbb{R}_{+};Y\right),t\in[0,n].\end{array}\right.

The bilinear form b~\widetilde{b} is continuous and verifies an inf-sup condition, i.e.

{ (a) There exists Mb>0 such that |b~(v,μ)|MbvXμYvX,μY. (b) There exists αb>0 such that infμY,μ0YsupvX,v0Xb~(v,μ)vXμYαb.\left\{\begin{array}[]{l}\text{ (a) There exists }M_{b}>0\text{ such that }\\ |\widetilde{b}(v,\mu)|\leq M_{b}\|v\|_{X}\|\mu\|_{Y}\quad\forall v\in X,\mu\in Y.\\ \text{ (b) There exists }\alpha_{b}>0\text{ such that }\\ \inf_{\mu\in Y,\mu\neq 0_{Y}}\sup_{v\in X,v\neq 0_{X}}\frac{\widetilde{b}(v,\mu)}{\|v\|_{X}\|\mu\|_{Y}}\geq\alpha_{b}.\end{array}\right.

More details concerning the inf-sup condition can be found in [34]. Finally, we assume that

fC(+;X),hC(+;X)f\in C\left(\mathbb{R}_{+};X\right),\quad h\in C\left(\mathbb{R}_{+};X\right) (5.14)

and

ΛY is a closed, convex, unbounded subset of Y and 0YΛY\Lambda_{Y}\text{ is a closed, convex, unbounded subset of }Y\text{ and }0_{Y}\in\Lambda_{Y}\text{. } (5.15)

With these data, we introduce the following abstract evolutionary problem.
Problem 𝒫a\mathcal{P}_{a}. Find the functions u:+Xu:\mathbb{R}_{+}\rightarrow X and λ:+ΛY\lambda:\mathbb{R}_{+}\rightarrow\Lambda_{Y} such that

(Au(t),v)X+((u,λ)(t),v)X+b~(v,λ(t))=(f(t),v)XvX,\displaystyle(Au(t),v)_{X}+(\mathcal{R}(u,\lambda)(t),v)_{X}+\widetilde{b}(v,\lambda(t))=(f(t),v)_{X}\quad\forall v\in X, (5.16)
b~(u(t),μλ(t))b~(h(t),μλ(t))μΛY,t+.\displaystyle\widetilde{b}(u(t),\mu-\lambda(t))\leq\widetilde{b}(h(t),\mu-\lambda(t))\quad\forall\mu\in\Lambda_{Y},t\in\mathbb{R}_{+}. (5.17)

We have the following existence and uniqueness result.
Theorem 5.2: Assume (5.11)-(5.15). There exists d0>0d_{0}>0 which depends only on AA and b~\tilde{b} such that if dn<d0d_{n}<d_{0} for all nn\in\mathbb{N} then Problem 𝒫a\mathcal{P}_{a} has a unique solution ( u,λu,\lambda ). Moreover,

uC(+;X) and λC(+;ΛY).u\in C\left(\mathbb{R}_{+};X\right)\text{ and }\lambda\in C\left(\mathbb{R}_{+};\Lambda_{Y}\right).

Theorem 5.2 was proved in [17] using results on generalized saddle point problems combined with fixed point arguments. We use it to prove the following existence and uniqueness result.
Lemma 5.3: Assume that (3.2), (3.5), (3.10), (3.16), (3.20), (3.21), and (3.28) hold. There exists e0>0e_{0}>0 which depends only on ,pv,Ω,Γ1\mathcal{E},p_{v},\Omega,\Gamma_{1} and Γ3\Gamma_{3} such that if

Mτ+γνL(Γ3)<e0M_{\tau}+\left\|\gamma_{\nu}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}<e_{0} (5.18)

then there exists a unique couple of functions ( 𝒖,𝝀\boldsymbol{u},\boldsymbol{\lambda} ) which satisfies (5.9) and (5.10) for all t+t\in\mathbb{R}_{+}. Moreover,

𝒖C(+;V) and 𝝀C(+;Λ).\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right)\quad\text{ and }\quad\boldsymbol{\lambda}\in C\left(\mathbb{R}_{+};\Lambda\right). (5.19)

Proof: We use the Riesz’s representation theorem to define operators A:VVA:V\rightarrow V and 𝒮~\widetilde{\mathcal{S}} : C(+;V)C(+;V)C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};V\right) by equalities

(A𝒖,𝒗)V=(𝜺(𝒖),𝜺(𝒗))Q+Γ3pv(uv)vvda𝒖,𝒗V(A\boldsymbol{u},\boldsymbol{v})_{V}=(\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\int_{\Gamma_{3}}p_{v}\left(u_{v}\right)v_{v}\mathrm{~d}a\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (5.20)

and

(𝒮~𝒖(t),𝒗)V=\displaystyle(\widetilde{\mathcal{S}}\boldsymbol{u}(t),\boldsymbol{v})_{V}= (𝒮𝒖(t),𝒗)VΓ3γν[𝒖(t)]2R~(uν(t))vνda\displaystyle(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v})_{V}-\int_{\Gamma_{3}}\gamma_{\nu}[\mathcal{B}\boldsymbol{u}(t)]^{2}\widetilde{R}\left(u_{\nu}(t)\right)v_{\nu}\mathrm{d}a
+Γ3pτ(𝒖(t))𝑹(𝒖τ(t))𝒗τda𝒖C(+;V),𝒗V,t+\displaystyle+\int_{\Gamma_{3}}p_{\tau}(\mathcal{B}\boldsymbol{u}(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right)\cdot\boldsymbol{v}_{\tau}\mathrm{d}a\quad\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\boldsymbol{v}\in V,t\in\mathbb{R}_{+} (5.21)

It is easy to see that (5.9) is equivalent with the following equality

(A𝒖(t),𝒗)V+(𝒮~𝒖(t),𝒗)V+b~(𝒗,𝝀(t))=(𝒇(t),𝒗)V𝒗V.(A\boldsymbol{u}(t),\boldsymbol{v})_{V}+(\widetilde{\mathcal{S}}\boldsymbol{u}(t),\boldsymbol{v})_{V}+\widetilde{b}(\boldsymbol{v},\boldsymbol{\lambda}(t))=(\boldsymbol{f}(t),\boldsymbol{v})_{V}\quad\forall\boldsymbol{v}\in V. (5.22)

Moreover, using definition (4.11) we deduce that inequality (5.10) is equivalent with

b~(𝒖(t),𝝁λ(t))b~(𝒉,𝝁λ(t))𝝁Λ.\widetilde{b}(\boldsymbol{u}(t),\boldsymbol{\mu}-\lambda(t))\leq\widetilde{b}(\boldsymbol{h},\boldsymbol{\mu}-\lambda(t))\quad\forall\boldsymbol{\mu}\in\Lambda. (5.23)

Therefore, the proof resumes to show that there exists a unique couple of functions ( 𝒖,𝝀\boldsymbol{u},\boldsymbol{\lambda} ) which verifies (5.22)-(5.23) with regularity (5.19). To this end, we apply Theorem 5.2 with X=V,Y=DX=V,Y=D, ΛY=Λ\Lambda_{Y}=\Lambda and :C(+;V)×C(+;D)C(+;V)\mathcal{R}:C\left(\mathbb{R}_{+};V\right)\times C\left(\mathbb{R}_{+};D\right)\rightarrow C\left(\mathbb{R}_{+};V\right) given by

(𝒖(t),λ(t))=𝒮~𝒖(t)(𝒖,λ)C(+;V×D),t+\mathcal{R}(\boldsymbol{u}(t),\lambda(t))=\widetilde{\mathcal{S}}\boldsymbol{u}(t)\quad\forall(\boldsymbol{u},\lambda)\in C\left(\mathbb{R}_{+};V\times D\right),t\in\mathbb{R}_{+} (5.24)

Using definition (5.20) inequalities (2.4), (2.6) and assumptions (3.2), (3.20) we deduce that operator AA verifies (5.11) with constants mA=mm_{A}=m_{\mathcal{E}} and MA=d𝐐+c02LνM_{A}=d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}+c_{0}^{2}L_{\nu}, respectively.

Next, as it was shown in [16], definition (4.6) implies that the bilinear form b~(,)\widetilde{b}(\cdot,\cdot) satisfies (5.13), i.e. there exist Mb>0M_{b}>0 and αb>0\alpha_{b}>0 such that

|b~(𝒗,𝝁)|Mb𝒗V𝝁D𝒗V,𝝁D|\widetilde{b}(\boldsymbol{v},\boldsymbol{\mu})|\leq M_{b}\|\boldsymbol{v}\|_{V}\|\boldsymbol{\mu}\|_{D}\quad\forall\boldsymbol{v}\in V,\boldsymbol{\mu}\in D (5.25)

and

inf𝝁D,𝝁𝟎Dsup𝒗V,𝒗𝟎Vb~(𝒗,𝝁)𝒗V𝝁Dαb\inf_{\boldsymbol{\mu}\in D,\boldsymbol{\mu}\neq\mathbf{0}_{D}}\sup_{\boldsymbol{v}\in V,\boldsymbol{v}\neq\mathbf{0}_{V}}\frac{\widetilde{b}(\boldsymbol{v},\boldsymbol{\mu})}{\|\boldsymbol{v}\|_{V}\|\boldsymbol{\mu}\|_{D}}\geq\alpha_{b} (5.26)

Taking into account definitions (3.11), (4.11), and assumptions (3.10), (3.38) we conclude that 𝒇\boldsymbol{f} and 𝒉\boldsymbol{h} verify (5.14), i.e.

𝒇C(+;V) and 𝒉C(+;V).\boldsymbol{f}\in C\left(\mathbb{R}_{+};V\right)\text{ and }\boldsymbol{h}\in C\left(\mathbb{R}_{+};V\right). (5.27)

We show that the operator 𝒮~\widetilde{\mathcal{S}} satisfies (5.12). To this end, let nn\in\mathbb{N}^{*} and t[0,n]t\in[0,n]. Using definition (5.21), inequality (2.4), assumptions (3.16), (3.28), definitions (3.24), (3.27), estimates (5.4), (5.6) and properties of operators R~,𝑹\widetilde{R},\boldsymbol{R}^{*} (see Lemma 4.9 in [9]) we obtain

𝒮~𝒖1(t)𝒮~𝒖2(t)V\displaystyle\left\|\widetilde{\mathcal{S}}\boldsymbol{u}_{1}(t)-\widetilde{\mathcal{S}}\boldsymbol{u}_{2}(t)\right\|_{V}\leq c02(Mτ+γνL(Γ3))𝒖1(t)𝒖2(t)V\displaystyle c_{0}^{2}\left(M_{\tau}+\left\|\gamma_{\nu}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)\left\|\boldsymbol{u}_{1}(t)-\boldsymbol{u}_{2}(t)\right\|_{V}
+(sn+c0L(Lτ+2γνL(Γ3))bn)0t𝒖1(s)𝒖2(s)Vds\displaystyle+\left(s_{n}+c_{0}L\left(L_{\tau}+2\left\|\gamma_{\nu}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)b_{n}\right)\int_{0}^{t}\left\|\boldsymbol{u}_{1}(s)-\boldsymbol{u}_{2}(s)\right\|_{V}\mathrm{~d}s (5.28)

for all 𝒖1,𝒖2C(+;V)\boldsymbol{u}_{1},\boldsymbol{u}_{2}\in C\left(\mathbb{R}_{+};V\right). Thus, the previous inequality implies that operator 𝒮~\widetilde{\mathcal{S}} satisfies (5.12) with

dn=c02(Mτ+γνL(Γ3))d_{n}=c_{0}^{2}\left(M_{\tau}+\left\|\gamma_{\nu}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)

and

rn=sn+c0L(Lτ+2γνL(Γ3))bn.r_{n}=s_{n}+c_{0}L\left(L_{\tau}+2\left\|\gamma_{\nu}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)b_{n}.

Finally, definition (4.2) implies that Λ\Lambda verifies (5.15). We conclude that hypotheses of Theorem 5.2 are verified. We deduce that there exists d0>0d_{0}>0 which depends only on AA and b~\widetilde{b} such that if dn<d0d_{n}<d_{0} for all nn\in\mathbb{N}^{*} then there exists a unique couple of functions ( 𝒖,𝝀\boldsymbol{u},\boldsymbol{\lambda} ) C(+;V×Λ)\in C\left(\mathbb{R}_{+};V\times\Lambda\right) which verifies (5.22) and (5.23) for all t+t\in\mathbb{R}_{+}. We define

e0=d0c02e_{0}=d_{0}c_{0}^{-2} (5.29)

where c0c_{0} is given in (2.4). Definitions (4.6) and (5.20) of bilinear form b~\widetilde{b} and operator AA, respectively, and inequality (2.4) imply that e0e_{0} depends on ,pν,Ω,Γ1\mathcal{E},p_{\nu},\Omega,\Gamma_{1}, and Γ3\Gamma_{3}. We note that dn<d0d_{n}<d_{0} iff Mτ+γνL(Γ3)<e0M_{\tau}+\left\|\gamma_{\nu}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}<e_{0} which concludes the proof.

We use the previous results to prove Theorem 4.1.
Proof: Let e0e_{0} be given by (5.29) and assume that Mτ+γνL(Γ3)<e0M_{\tau}+\left\|\gamma_{\nu}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}<e_{0}. Lemma 5.3 implies that there exists a unique couple of functions ( 𝒖,𝝀\boldsymbol{u},\boldsymbol{\lambda} ) which verifies (5.9)-(5.10) for all t+t\in\mathbb{R}_{+}with regularity (5.19). We deduce that there exists ( 𝝈,𝒖,β,λ\boldsymbol{\sigma},\boldsymbol{u},\beta,\lambda ) solution of problem (5.7)-(5.10) with regularity (4.18). Lemma 5.1 implies the existence part of Theorem 4.1. Finally, we combine Lemma 5.1 with the uniqueness of the solution of system (5.9) and (5.10), guaranteed by Lemma 5.3, to deduce the uniqueness part of Theorem 4.1.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The work of the author has been partially supported by projects LEA Math Mode 2014/2015 and POSDRU/159/1.5/S/ 132400: Young successful researchers-professional development in an international and interdisciplinary environment at Babeş-Bolyai University.

References

[1] Bonetti E, Bonfanti G, Rossi R. Analysis of a unilateral contact problem taking into account adhesion and friction. J. Differ. Equ. 2012;253:438-462.
[2] Drozdov AD. Finite elasticity and viscoelasticity: a course in the nonlinear mechanics of solids. Singapore: World Scientific Publishing Co Inc.; 1996.
[3] Han W, Sofonea M. Quasistatic contact problems in viscoelasticity and viscoplasticity. Vol. 30, Studies in advanced mathematics. Somerville: American Mathematical Society-International Press; 2002.
[4] Kikuchi N, Oden JT. Contact problems in elasticity: a study of variational inequalities and finite element methods. Philadelphia: SIAM; 1988.
[5] Nassar SA, Andrews KT, Kruk S, et al. Modelling and simulations of a bonded rod. Math. Comput. Model. 2002;42:553-572.
[6] Pătrulescu F, Ramadan A. Convergence results for contact problems with memory term. Math. Rep. 2015;17: 24-41.
[7] Raous M, Cangémi L, Cocu M. A consistent model coupling adhesion, friction and unilateral contact. Comput. Methods Appl. Mech. Eng. 1999;177:383-399.
[8] Shillor M, Sofonea M, Telega JJ. Models and analysis of quasistatic contact. Vol. 655, Lecture notes in physics. Berlin: Springer-Verlag; 2004.
[9] Sofonea M, Han W, Shillor M. Analysis and approximation of contact problems with adhesion or damage. Vol. 276, Pure and applied mathematics. New York (NY): Chapman-Hall/CRC Press; 2006.
[10] Wriggers P. Computational contact mechanics. Chichester: Wiley; 2002.
[11] Sofonea M, Pătrulescu F. A viscoelastic contact problem with adhesion and surface memory effects. Math. Model. Anal. 2014;19:607-626.
[12] Céa J. Optimization. Théorie et algorithmes. Paris: Dunond Gauthier-Villars; 1971.
[13] Ekeland I, Temam R. Convex analysis and variational problems. Vol. 28, Classics in applied mathematics. Philadelphia (PA): SIAM; 1999.
[14] Hueber S, Matei A, Wohlmuth B. A mixed variational formulation and optimal a priori error estimate for a frictional contact problem in elasto-piezoelectricity. Bull. Math. Soc. Sci. Math. Roumanie (N.S.). 2005;48:209232.
[15] Lions J-L, Glowinski R, Trémolières R. Numerical analysis of variational inegalities. Amsterdam: North-Holland; 1981.
[16] Matei A, Ciurcea R. Contact problems for nonlinearly elastic materials: weak solvability involving dual Lagrange multipliers. ANZIAM J. 2010;52:160-178.
[17] Sofonea M, Matei A. History-dependent mixed variational problems in contact mechanics. J. Glob. Optim. 2015;61:591-614.
[18] Sofonea M, Pătrulescu F. Analysis of a history-dependent frictionless contact problem. Math. Mech. Solids. 2013;18:409-430.
[19] Chau O, Fernández JR, Shillor M, et al. Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion. J. Comput. Appl. Math. 2003;159:431-465.
[20] Cocu M, Rocca R. Existence results for unilateral quasistatic contact problems with friction and adhesion. ESAIM Math. Model Numer. Anal. 2000;34:981-1001.
[21] Frémond M. Non-smooth thermomechanics. Berlin: Springer-Verlag; 2002.
[22] Han J, Li Y, Migorski S. Analysis of an adhesive contact problem for viscoelastic materials with long memory. J. Math. Anal. Appl. 2015;427:646-668.
[23] Dumont Y, Goeleven D, Rochdi M, et al. A dynamic model with friction and adhesion with applications to rocks. J. Math. Anal. Appl. 2000;247:87-109.
[24] Rojek J, Telega JJ. Contact problems with friction, adhesion and wear in orthopaedic biomechanics. Part I: general developments. J. Theor. Appl. Mech. 2001;39:655-677.
[25] Rojek J, Telega JJ, Stupkiewicz S. Contact problems with friction, adhesion and wear in orthopaedic biomechanics. Part II: numerical implementation and application to implanted knee joints. J. Theor. Appl. Mech. 2001;39:679706.
[26] Oden JT, Martins JAC. Models and computational methods for dynamic friction phenomena. Comput. Methods Appl. Mech. Eng. 1985;52:527-634.
[27] Klarbring A, Mikelič A, Shillor M. Frictional contact problems with normal compliance. Int. J. Eng. Sci. 1988;26:811-832.
[28] Klarbring A, Mikelič A, Shillor M. On friction problems with normal compliance. Nonlinear Anal. 1989;13:935955.
[29] Signorini A. Sopra alcune questioni di elastostatica, Atti della Società Italiana per il Progresso delle Scienze; 1933.
[30] Barboteu M, Matei A, Sofonea M. On the behavior of the solution of a viscoplastic contact problem. Quart. Appl. Math. 2014;72:625-647.
[31] Sofonea M, Danan D, Zheng C. Primal and dual variational formulation of a frictional contact problem. Mediterr. J. Math. 2014. doi: 10.1007/s00009-014-0504-0.
[32] Barboteu M, Matei A, Sofonea M. Analysis of quasistatic viscoplastic contact problems with normal compliance. Q. J. Mech. Appl. Math. 2012;65:555-579.
[33] Barboteu M, Pătrulescu F, Ramadan A, et al. History-dependent contact models for viscoplastic materials. IMA J. Appl. Math. 2014;79:1180-1200.
[34] Ciarlet PhG. Linear and nonlinear functional analysis with applications. Philadelphia: SIAM; 2013.

2018

Related Posts