[1] U. Abel, O. Agratini, *Asymptotic behaviour of Jain operators*, Numer. Algor. 71 (2016), 553-565.

[2] O. Agratini, *Approximation properties of a class of linear operators,* Math. Meth. Appl. Sci. 36 (2013), 2353-2358.

[3] O. Agratini, *On an approximation process of integral type*, Appl. Math. Comp. 236 (2014), 195-201.

[4] O. Agratini, *Uniform approximation of some classes of linear positive operators expressed by series*, Applicable Analysis 94 (2015), No. 8, 1662-1669.

[5] G. Ba¸scanbaz-Tunca, M. Bodur, D. Soylemez, *On Lupas-Jain operators*, Stud. Univ. Babes-Bolyai Math. 63 (2018), No. 4, 525-537.

[6] J. Bustamante, L. Morales de la Cruz, *Korovkin type theorems for weighted approximation*, Int. Journal of Math. Analysis 1 (2007), No. 26, 1273-1283.

[7] J.S. Connor, *The statistical and strong p-Cesaro convergence of sequences*, Analysis 8 (1988), 47-63.

[8] E. Deniz, *Quantitative estimates for Jain-Kantorovich operators,* Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 65 (2016), No. 2, 121-132.

[9] A. Farcas, *An aymptotic formula for Jain’s operators,* Stud. Univ. Babes-Bolyai Math. 57 (2012), No. 4, 511-517.

[10] H. Fast, *Sur la convergence statistique*, Colloq. Math. 2 (1951), 241-244.

[11] J.A. Fridy, M.K. Khan, *Statistical extensions of some classical Tauberian theorems*, Proceedings of American Math. Soc. 128 (2000), No. 8, 2347-2355.

[12] J.A. Fridy, H.I. Miller, *A matrix characterization of statistical convergence*, Analysis 11 (1991), 59-66.

[13] A.D. Gadzhiev, *Theorems of Korovkin type,* Math. Notes 20 (1976), No. 5, 995-998.

[14] A.D. Gadjiev, C. Orhan, *Some approximation theorems via statistical convergence*, Rocky Mountain J. Math. 32 (2002), No. 1, 129-138.

[15] V. Gupta, R.P. Agarwal, *Convergence Estimates in Approximation Theory*, Springer, 2014.

[16] V. Gupta, M.A. Noor, *Convergence of derivatives for certain mixed Szasz-Beta operators*, J. Math. Anal. Appl. 321 (2006), 1-9.

[17] G.C. Jain, *Approximation of functions by a new class of linear operators*, J. Australian Math. Soc. 13 (1972), No. 3, 271-276.

[18] H. Johnen, *Inequalities connected with moduli of smoothness*, Matematicki Vesnik 9 (24) (1972), 289-303.

[19] A. Lupas, *The approximation by some positive linear operators, In: Proceedings of the International Dortmund Meeting on Approximation*

*Theory*, (M.W. Muller et al., eds.), Mathematical Research, Akademie Verlag, Berlin, 86 (1995), 201-229.

[20] S.M. Mazhar, V. Totik, *Approximation by modified Szasz operators*, Acta Sci. Math. 49 (1985), 257-269.

[21] G.M. Mirakjan, *Approximation of functions with the aid of polynomials*, Dokl. Akad. Nauk SSSR 31 (1941), 201-205 (in Russian).

[22] A. Olgun, F. Tasdelen, A. Erencin, *A generalization of Jain’s operator*s, Appl. Math. Comp. 266 (2015), 6-11.

[23] J. Peetre, *A Theory of Interpolation of Normed Spaces*, Notas de Matematica Instituto de Matematica Pura e Aplicada, Rio de Janeiro, 39 (1968), 1-86.

[24] R.S. Phillips, *An inversion formula for Laplace transforms and semigroups of linear operators,* Ann. Math. Second Ser. 59 (1954), 325-356.

[25] H. Steinhaus, *Sur la convergence ordinaire et la convergence asymptotique,* Colloq. Math. 2 (1951), 73-74.

[26] O. Szasz, *Generalization of S. Bernstein’s polynomials to the infinite interval*, J. Res. Nat. Bur. Standards 45 (1950), 239-245.

[27] S. Tarabie, *On Jain-Beta linear operators*, Appl. Math. Inf. Sci. 6 (2012), No. 2, 213-216.

[28] S. Umar, Q. Razi, *Approximation of function by generalized Szasz operators*, Commun. Fac. Sci. de l’Universite d’Ankara, Serie A1: Math´ematique 34 (1985), 45-52.