[1] U. Abel, O. Agratini, Asymptotic behaviour of Jain operators, Numer. Algor. 71 (2016), 553-565.
[2] O. Agratini, Approximation properties of a class of linear operators, Math. Meth. Appl. Sci. 36 (2013), 2353-2358.
[3] O. Agratini, On an approximation process of integral type, Appl. Math. Comp. 236 (2014), 195-201.
[4] O. Agratini, Uniform approximation of some classes of linear positive operators expressed by series, Applicable Analysis 94 (2015), No. 8, 1662-1669.
[5] G. Ba¸scanbaz-Tunca, M. Bodur, D. Soylemez, On Lupas-Jain operators, Stud. Univ. Babes-Bolyai Math. 63 (2018), No. 4, 525-537.
[6] J. Bustamante, L. Morales de la Cruz, Korovkin type theorems for weighted approximation, Int. Journal of Math. Analysis 1 (2007), No. 26, 1273-1283.
[7] J.S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988), 47-63.
[8] E. Deniz, Quantitative estimates for Jain-Kantorovich operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 65 (2016), No. 2, 121-132.
[9] A. Farcas, An aymptotic formula for Jain’s operators, Stud. Univ. Babes-Bolyai Math. 57 (2012), No. 4, 511-517.
[10] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
[11] J.A. Fridy, M.K. Khan, Statistical extensions of some classical Tauberian theorems, Proceedings of American Math. Soc. 128 (2000), No. 8, 2347-2355.
[12] J.A. Fridy, H.I. Miller, A matrix characterization of statistical convergence, Analysis 11 (1991), 59-66.
[13] A.D. Gadzhiev, Theorems of Korovkin type, Math. Notes 20 (1976), No. 5, 995-998.
[14] A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002), No. 1, 129-138.
[15] V. Gupta, R.P. Agarwal, Convergence Estimates in Approximation Theory, Springer, 2014.
[16] V. Gupta, M.A. Noor, Convergence of derivatives for certain mixed Szasz-Beta operators, J. Math. Anal. Appl. 321 (2006), 1-9.
[17] G.C. Jain, Approximation of functions by a new class of linear operators, J. Australian Math. Soc. 13 (1972), No. 3, 271-276.
[18] H. Johnen, Inequalities connected with moduli of smoothness, Matematicki Vesnik 9 (24) (1972), 289-303.
[19] A. Lupas, The approximation by some positive linear operators, In: Proceedings of the International Dortmund Meeting on Approximation
Theory, (M.W. Muller et al., eds.), Mathematical Research, Akademie Verlag, Berlin, 86 (1995), 201-229.
[20] S.M. Mazhar, V. Totik, Approximation by modified Szasz operators, Acta Sci. Math. 49 (1985), 257-269.
[21] G.M. Mirakjan, Approximation of functions with the aid of polynomials, Dokl. Akad. Nauk SSSR 31 (1941), 201-205 (in Russian).
[22] A. Olgun, F. Tasdelen, A. Erencin, A generalization of Jain’s operators, Appl. Math. Comp. 266 (2015), 6-11.
[23] J. Peetre, A Theory of Interpolation of Normed Spaces, Notas de Matematica Instituto de Matematica Pura e Aplicada, Rio de Janeiro, 39 (1968), 1-86.
[24] R.S. Phillips, An inversion formula for Laplace transforms and semigroups of linear operators, Ann. Math. Second Ser. 59 (1954), 325-356.
[25] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74.
[26] O. Szasz, Generalization of S. Bernstein’s polynomials to the infinite interval, J. Res. Nat. Bur. Standards 45 (1950), 239-245.
[27] S. Tarabie, On Jain-Beta linear operators, Appl. Math. Inf. Sci. 6 (2012), No. 2, 213-216.
[28] S. Umar, Q. Razi, Approximation of function by generalized Szasz operators, Commun. Fac. Sci. de l’Universite d’Ankara, Serie A1: Math´ematique 34 (1985), 45-52.