A nonconvex vector minimization problem




A.B. Nemeth
Institutul de Matematica, Cluj-Napoca, Romania (ICTP)


Ordered regular vector spaces; nonconvex vector minimization; axiom of choice


See the expanding block below.

Paper coordinates

A.B. Nemeth, A nonconvex vector minimization problem, Nonlinear Analysis: Theory, Methods & Applications, 10 (1986) no. 7, pp. 669-678,
doi: 10.1016/0362-546X(86)90126-4



About this paper


Nonlinear Analysis: Theory, Methods & Applications

Publisher Name

Science Direct

Print ISSN


Online ISSN


Google Scholar Profile


[1] ONOVSKIJ M. JA., BOLTJANSKIJ V. G. & SARYMSAKOV T. E. Topological Sem@ei& Izd. SamGU, Tashkent (1960). (In Russian.)
[2] BRB~STED A., Fiied points and partia1 orders, Proc. Am. math. Sot. 60, 365-366 (1976).
[3] DAY M. M., Nomed Linear Spuces, Springer, Berlin (1973).
[4] D~ORD N. & SCHWARTZ J. T., Linear Operators I, Interscience, New York (1958).
[5] E~SE~JFELD J.& LAKSHMIKAMHAM V., Comparison principle and nonlinear contractions in abstract spaces, 1. math. Analysis Appk. 49, 504-511 (1975).
[6] EISE~LD J. & LAKSHMIKA~M V., Fixed point theorems through abstract cones, J. math. Analysis Appfic. 52, 25-35 (1975).
[7] EISENFELD J. & LAKSHMIKAN?HAM V., Fixed point theorems on closed sets through abstract cones, Technical Report NO. 39, University of Texas at Arlington (March 1976).
[8] EKELAM) I., Nonconvex minimization problems, Bull. Am. math. Sot. (NJ.) 1, 44-74 (1979).
[9] ISBELL J. R., Uniform Spaces, Am. Math. Sot. Surveys No. 12, Providence, RI (1964).
[10] KIRK W. A. & CARISTI J., Mapping theorems in metric and Banach spaces, BUN. Acad. PO/on. Sci. Ser. Math. 23, 891-894 (1975).
[11] KRASNOSEL’SKIJ M. A., Positive Solutions of Operator Equations, Nordhoff, Groningen (1964).
[12] MCAR~UR C. W., In what spaces is every closed normal cone regular ?. Proc. Edinb. Moth. Sot. 17 (Series II),121-12s (1970).
[13] NAMES A. B., Nonconvdx minimization principle in ordered regular Banach spaces, Mathematics (Cfuj) 23 (46), 43-48 (1981).
[14] NEMETH A. B., Summation criteria for regular cones with applications, “Babes-Bolyai” Univ. Faculty of Math. Research Semin., preprint No. 4, pp. 99-124 (1981).
[15] N~METH A. B., Normal cone valued metrics and nonconvex vector minimization principle, “Babe3-Bolyai” Univ. Faculty of Math. Research Semin., preprint No. 1 (1983).
[16] N~METH A. B., Nonconvex vector minimization principles with and without the axiom of choice, “Babe%-Bolyai” Univ. Faculty of Math. Research Semin., preprint No. 1 (1983).
[17] PERESSI~JI A. L., Ordered Topological Vector Spaces, Harper & Row, New York (1967).


Related Posts