A penalized viscoplastic contact problem with unilateral constraints

Abstract

In this paper we study a mathematical model which describes the quasistatic contact between a viscoplastic body and a foundation. The contact is frictionless and is modelled with a new and nonstandard condition which involves both normal compliance, unilateral constraint and memory effects. We present a penalization method in the study of this problem. We start by introducing the penalized problem, then we prove its unique solvability as well as the convergence of its solution to the solution of the original problem, as the penalization parameter converges to zero

Authors

Flavius Patrulescu
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Anca Farcaş
(Babeş-Bolyai University Faculty of Mathematics and Computer Sciences)

Ahmad Ramadan
(Laboratoire de Mathématiques et Physique, Université de Perpignan)

Keywords

viscoplastic material; frictionless contact; unilateral constraint; weak solution

Cite this paper as:

F. Pătrulescu, A. Farcaş, A Ramadan, A penalized viscoplastic contact problem with unilateral constraints, Annals of the University of Bucharest – mathematical series, vol. 4 (LXII), no. 1 (2013), pp. 213-227

PDF

About this paper

Publisher Name

Editura Universitatii din Bucuresti, Bucuresti

Print ISSN

2067-9009

Online ISSN

MR

3093541

ZBL

1324.74023

[1] Barboteu, A. Matei, M. Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance, Quarterly Jnl. of Mechanics and App. Maths. . ?????
[2] Barboteu,F. Patrulescu, A. Ramadan, M. Sofonea, History-dependent contact models for viscoplastic materials, IMA J. Appl. Math., 79, no. 6 (2014), 1180-1200
[3] Barboteu, A. Ramadan, M. Sofonea,  F. Patrulescu, An elastic contact problem with normal compliance and memory term, Machine Dynamics Research,  36, no. 1 (2012), 15-[4] Corduneanu,Problemes globaux dans la theorie des equations integrales de Volterra, Ann. Math. Pure Appl., 67  (1965), 349-363.
[5] Farcas, F. Patrulescu,M. Sofonea, A history-dependent contact problem with unilateral constraint,  Ann. Acad. Rom. Sci. Ser. Math. Appl.,  4, no. 1 (2012), 90-96.
[6] Han, M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics, 30, American Mathematical Society–International Press, Sommerville, MA (2002).
[7] Jarusek, M. Sofonea, On the solvability of  dynamic elastic-visco-plastic contact problems, Zeitschrift fur Angewandte Matematik und Mechanik  (ZAMM), 88 (2008), 3-22.
[8] J. Massera, J.J. Schaffer, Linear Differential Equations and Function Spaces, Academic Press, New York-London (1966).
[9] Shillor, M. Sofonea, J.J. Telega, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics, 655, Springer, Berlin (2004).
[10] Sofonea, A. Matei. History-dependent quasivariational inequalities arising in Contact Mechanics, Eur. J. Appl. Math., 22 (2011), 471-491.
[11] Sofonea, A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, 398, Cambridge University Press, Cambridge (2012).
[12] Sofonea, F. Patrulescu, Analysis of a history-dependent frictionless contact problem, Mathematics and Mechanics of Solids, 18, no.4 (2013), 409-430.

Paper (preprint) in HTML form

A penalized viscoplastic contact problem with unilateral constraints

F. Patrulescu, A. Farcaş and A. Ramadan
Abstract

In this paper we study a mathematical model which describes the quasistatic contact between a viscoplastic body and a foundation. The contact is frictionless and is modelled with a new and nonstandard condition which involves both normal compliance, unilateral constraint and memory effects. We present a penalization method in the study of this problem. We start by introducing the penalized problem, then we prove its unique solvability as well as the convergence of its solution to the solution of the original problem, as the penalization parameter converges to zero. Moreover, we provide a numerical validation of this convergence result.

Key words and phrases : viscoplastic material, frictionless contact, unilateral constraint, weak solution, finite element, numerical simulations

Mathematics Subject Classification (2010) : 74G25, 74G30, 74M15, 74505

1 Introduction

The aim of this paper is to study a frictionless contact problem for rate-type viscoplastic materials within the framework of the Mathematical Theory of Contact Mechanics. We model the the material’s behavior with a constitutive law of the form

𝝈˙(t)=ε(𝒖˙(t))+𝒢(𝝈(t),𝜺(𝒖(t))),\dot{\boldsymbol{\sigma}}(t)=\mathcal{E}\varepsilon(\dot{\boldsymbol{u}}(t))+\mathcal{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))), (1)

where 𝒖\boldsymbol{u} denotes the displacement field, 𝝈\boldsymbol{\sigma} represents the stress tensor and ε(𝒖)\varepsilon(\boldsymbol{u}) is the linearized strain tensor. Here \mathcal{E} is a linear operator which describes the elastic properties of the material and 𝒢\mathcal{G} is a nonlinear constitutive function which describes its viscoplastic behavior. In (1) and everywhere in this paper the dot above a variable represents the derivative with respect to the time variable tt. Quasistatic frictionless contact problems for materials of the form (11) have been considered in [1,2,6, 9, 11] and the references therein. In [6, 9] the contact was modelled with both the Signorini and the normal compliance condition which describe a rigid and an elastic foundation, respectively. In 1, 11 the contact was modelled with normal compliance and unilateral constraint. This condition, introduced for the first time in [7], models an elastic-rigid behavior of the foundation.

The present paper represents a continuation of the short note [5]. There, a model which involves a contact condition with normal compliance, unilateral constraint and memory term was considered. This condition takes into account both the deformability, the rigidity, and the memory effects of the foundation. An existence and uniqueness result was proved and the contact process was studied on an unbounded interval of time which implies the use of the framework of Fréchet spaces of continuous functions, instead of that of the classical Banach spaces of continuous functions defined on a bounded interval of time. The aim of this work is to provide a penalization method in the study of the contact model in 5. Penalization methods in the study of contact problems were used by many authors, mainly for numerical reasons. The main ingredient of these methods arises in the fact that they remove the constraints by considering penalized problems defined on the whole space; these approximative problems have a unique solution which converges to the solution of the original problem, as the penalization parameter converges to zero.

The rest of the paper is structured as follows. In Section 2 we present the notation we shall use as well as some preliminary material. In Section 3 we describe the model of the contact process, list the assumptions on the data and derive the variational formulation of the problem. Then we state an existence and uniqueness result, Theorem 3.1, proved in [5]. In Section 4 we present the weak solvability of the penalized problem then we state and prove our main convergence result.

2 Notations and Preliminaries

Everywhere in this paper we use the notation \mathbb{N}^{*} for the set of positive integers and +\mathbb{R}_{+}will represent the set of nonnegative real numbers, i.e. +=[0,+)\mathbb{R}_{+}=[0,+\infty). For a given rr\in\mathbb{R} we denote by r+r^{+}its positive part, i.e. r=max{r,0}r=\max\{r,0\}. Let Ω\Omega be a bounded domain Ωd(d=1,2,3)\Omega\subset\mathbb{R}^{d}(d=1,2,3) with a Lipschitz continuous boundary Γ\Gamma and let Γ1\Gamma_{1} be a measurable part of Γ\Gamma such that meas (Γ1)>0\left(\Gamma_{1}\right)>0. We use the notation 𝒙=(xi)\boldsymbol{x}=\left(x_{i}\right) for a typical point in ΩΓ\Omega\cup\Gamma and we denote by 𝝂=(νi)\boldsymbol{\nu}=\left(\nu_{i}\right) the outward unit normal at Γ\Gamma. Here and below the indices i,j,k,li,j,k,l run between 1 and dd and, unless stated otherwise, the summation convention over repeated indices is used. An index that follows a comma represents the partial derivative with respect to the corresponding component of the spatial variable, e.g. ui,j=ui/xju_{i,j}=\partial u_{i}/\partial x_{j}. We denote by 𝕊d\mathbb{S}^{d} the space of second order symmetric tensors on d\mathbb{R}^{d} or, equivalently, the space of symmetric matrices of order dd. The inner product and norm on d\mathbb{R}^{d} and 𝕊d\mathbb{S}^{d} are defined by

𝒖𝒗=uivi,𝒗=(𝒗𝒗)12𝒖,𝒗d𝝈𝝉=σijτij,𝝉=(𝝉𝝉)12𝝈,𝝉𝕊d\begin{array}[]{llrl}\boldsymbol{u}\cdot\boldsymbol{v}=u_{i}v_{i},&\|\boldsymbol{v}\|=(\boldsymbol{v}\cdot\boldsymbol{v})^{\frac{1}{2}}&\forall\boldsymbol{u},\boldsymbol{v}\in\mathbb{R}^{d}\\ \boldsymbol{\sigma}\cdot\boldsymbol{\tau}=\sigma_{ij}\tau_{ij},&\|\boldsymbol{\tau}\|=(\boldsymbol{\tau}\cdot\boldsymbol{\tau})^{\frac{1}{2}}&\forall\boldsymbol{\sigma},\boldsymbol{\tau}\in\mathbb{S}^{d}\end{array}

In addition, we use standard notation for the Lebesgue and Sobolev spaces associated to Ω\Omega and Γ\Gamma and, moreover, we consider the spaces

V={𝒗H1(Ω)d:𝒗=𝟎 on Γ1},Q={𝝉=(τij)L2(Ω)d×d:τij=τji}.V=\left\{\boldsymbol{v}\in H^{1}(\Omega)^{d}:\boldsymbol{v}=\mathbf{0}\text{ on }\Gamma_{1}\right\},Q=\left\{\boldsymbol{\tau}=\left(\tau_{ij}\right)\in L^{2}(\Omega)^{d\times d}:\tau_{ij}=\tau_{ji}\right\}.

These are real Hilbert spaces endowed with the inner products

(𝒖,𝒗)V=Ωε(𝒖)ε(𝒗)𝑑x,(𝝈,𝝉)Q=Ω𝝈𝝉𝑑x(\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Omega}\varepsilon(\boldsymbol{u})\cdot\varepsilon(\boldsymbol{v})dx,\quad(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q}=\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\tau}dx

and the associated norms V\|\cdot\|_{V} and Q\|\cdot\|_{Q}, respectively. Here ε\varepsilon represents the deformation operator given by

ε(𝒗)=(εij(𝒗)),εij(𝒗)=12(vi,j+vj,i)𝒗H1(Ω)d.\varepsilon(\boldsymbol{v})=\left(\varepsilon_{ij}(\boldsymbol{v})\right),\quad\varepsilon_{ij}(\boldsymbol{v})=\frac{1}{2}\left(v_{i,j}+v_{j,i}\right)\quad\forall\boldsymbol{v}\in H^{1}(\Omega)^{d}.

Completeness of the space ( V,VV,\|\cdot\|_{V} ) follows from the assumption meas (Γ1)>\left(\Gamma_{1}\right)> 0 , which allows the use of Korn’s inequality.

For an element 𝒗V\boldsymbol{v}\in V we still write 𝒗\boldsymbol{v} for the trace of 𝒗\boldsymbol{v} on the boundary and we denote by vνv_{\nu} and 𝒗τ\boldsymbol{v}_{\tau} the normal and tangential components of 𝒗\boldsymbol{v} on Γ\Gamma, given by vν=𝒗𝝂,𝒗τ=𝒗vν𝝂v_{\nu}=\boldsymbol{v}\cdot\boldsymbol{\nu},\boldsymbol{v}_{\tau}=\boldsymbol{v}-v_{\nu}\boldsymbol{\nu}. Let Γ3\Gamma_{3} be a measurable part of Γ\Gamma. Then, by the Sobolev trace theorem, there exists a positive constant c0c_{0} which depends on Ω,Γ1\Omega,\Gamma_{1} and Γ3\Gamma_{3} such that

𝒗L2(Γ3)dc0𝒗V𝒗V.\|\boldsymbol{v}\|_{L^{2}\left(\Gamma_{3}\right)^{d}}\leq c_{0}\|\boldsymbol{v}\|_{V}\quad\forall\boldsymbol{v}\in V. (2)

Also, for a regular function 𝝈Q\boldsymbol{\sigma}\in Q we use the notation σν\sigma_{\nu} and 𝝈τ\boldsymbol{\sigma}_{\tau} for the normal and the tangential traces, i.e. σν=(𝝈𝝂)𝝂\sigma_{\nu}=(\boldsymbol{\sigma}\boldsymbol{\nu})\cdot\boldsymbol{\nu} and 𝝈τ=𝝈𝝂σν𝝂\boldsymbol{\sigma}_{\tau}=\boldsymbol{\sigma}\boldsymbol{\nu}-\sigma_{\nu}\boldsymbol{\nu}. Moreover, we recall that the divergence operator is defined by the equality Div𝝈=(σij,j)\operatorname{Div}\boldsymbol{\sigma}=\left(\sigma_{ij,j}\right) and, finally, the following Green’s formula holds:

Ω𝝈𝜺(𝒗)𝑑x+ΩDiv𝝈𝒗dx=Γ𝝈𝝂𝒗𝑑a𝒗V\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx+\int_{\Omega}\operatorname{Div}\boldsymbol{\sigma}\cdot\boldsymbol{v}dx=\int_{\Gamma}\boldsymbol{\sigma}\boldsymbol{\nu}\cdot\boldsymbol{v}da\quad\forall\boldsymbol{v}\in V (3)

Finally, we consider the space of fourth order tensor fields

𝐐={=(ijkl):ijkl=jikl=klijL(Ω),1i,j,k,ld}\mathbf{Q}_{\infty}=\left\{\mathcal{E}=\left(\mathcal{E}_{ijkl}\right):\mathcal{E}_{ijkl}=\mathcal{E}_{jikl}=\mathcal{E}_{klij}\in L^{\infty}(\Omega),\quad 1\leq i,j,k,l\leq d\right\}

This is a real Banach space with the norm 𝐐=max1i,j,k,ldijklL(Ω)\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}=\max_{1\leq i,j,k,l\leq d}\left\|\mathcal{E}_{ijkl}\right\|_{L^{\infty}(\Omega)}. Moreover, a simple calculation shows that

𝝉Qd𝐐𝝉Q𝐐,𝝉Q.\|\mathcal{E}\boldsymbol{\tau}\|_{Q}\leq d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}\|\boldsymbol{\tau}\|_{Q}\quad\forall\mathcal{E}\in\mathbf{Q}_{\infty},\boldsymbol{\tau}\in Q. (4)

For each Banach space XX we use the notation C(+;X)C\left(\mathbb{R}_{+};X\right) for the space of continuous functions defined on +\mathbb{R}_{+}with values in XX. For a subset KXK\subset X we still use the symbol C(+;K)C\left(\mathbb{R}_{+};K\right) for the set of continuous functions defined on +\mathbb{R}_{+}with values in KK. It is well known that C(+;X)C\left(\mathbb{R}_{+};X\right) can be organized in a canonical way as a Fréchet space, i.e. as a complete metric space in which
the corresponding topology is induced by a countable family of seminorms. Details can be found in [4] and [8], for instance. Here we restrict ourseleves to recall that the convergence of a sequence (xk)k\left(x_{k}\right)_{k} to the element xx, in the space C(+;X)C\left(\mathbb{R}_{+};X\right), can be described as follows:

{xkx in C(+;X) as k if and only if maxr[0,n]xk(r)x(r)X0 as k, for all n\left\{\begin{array}[]{l}x_{k}\rightarrow x\text{ in }C\left(\mathbb{R}_{+};X\right)\text{ as }k\rightarrow\infty\text{ if and only if }\\ \max_{r\in[0,n]}\left\|x_{k}(r)-x(r)\right\|_{X}\rightarrow 0\text{ as }k\rightarrow\infty,\text{ for all }n\in\mathbb{N}^{*}\end{array}\right.

3 Problem statement

The physical setting is as follows. A viscoplastic body occupies a bounded domain Ωd(d=1,2,3)\Omega\subset\mathbb{R}^{d}(d=1,2,3) with a Lipschitz continuous boundary Γ\Gamma, divided into three measurable parts Γ1,Γ2\Gamma_{1},\Gamma_{2} and Γ3\Gamma_{3}, such that meas (Γ1)>0\left(\Gamma_{1}\right)>0. The body is subject to the action of body forces of density 𝒇0\boldsymbol{f}_{0}. We also assume that it is fixed on Γ1\Gamma_{1} and surface tractions of density 𝒇2\boldsymbol{f}_{2} act on Γ2\Gamma_{2}. On Γ3\Gamma_{3}, the body is in frictionless contact with a deformable obstacle, the so-called foundation. We assume that the contact process is quasistatic and we study it in the interval of time +=[0,)\mathbb{R}_{+}=[0,\infty). Then, the classical formulation of the contact problem we consider in this paper is the following.

Problem 𝒫\mathcal{P}. Find a displacement field 𝒖:Ω×+d\boldsymbol{u}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d} and a stress field 𝝈:Ω×+𝕊d\boldsymbol{\sigma}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d} such that, for all t+t\in\mathbb{R}_{+},

𝝈˙(t)=𝜺(𝒖˙(t))+𝒢(𝝈(t),𝜺(𝒖(t))) in Ω,Div𝝈(t)+𝒇0(t)=𝟎 in Ω,𝒖(t)=𝟎 on Γ1,𝝈(t)𝝂=𝒇2(t) on Γ2,\begin{array}[]{rll}\dot{\boldsymbol{\sigma}}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\dot{\boldsymbol{u}}(t))+\mathcal{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))&\text{ in }&\Omega,\\ \operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}&\text{ in }&\Omega,\\ \boldsymbol{u}(t)=\mathbf{0}&\text{ on }&\Gamma_{1},\\ \boldsymbol{\sigma}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t)&\text{ on }&\Gamma_{2},\end{array}

for all t+t\in\mathbb{R}_{+}, there exists ξ:Ω×+\xi:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R} which satisfies

uν(t)g,σν(t)+p(uν(t))+ξ(t)0\displaystyle u_{\nu}(t)\leq g,\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\leq 0 (10)
(uν(t)g)(σν(t)+p(uν(t))+ξ(t))=0\displaystyle\left(u_{\nu}(t)-g\right)\left(\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\right)=0 (11)
0ξ(t)0tb(ts)uν+(s)𝑑s\displaystyle 0\leq\xi(t)\leq\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds (12)
ξ(t)=0 if uν(t)<0\displaystyle\xi(t)=0\text{ if }u_{\nu}(t)<0
ξ(t)=0tb(ts)uν+(s)𝑑s if uν(t)>0} on Γ3\displaystyle\left.\begin{array}[]{r}\xi(t)=\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\text{ if }u_{\nu}(t)>0\end{array}\right\}\quad\text{ on }\quad\Gamma_{3}
𝝈τ(t)=𝟎\displaystyle\boldsymbol{\sigma}_{\tau}(t)=\mathbf{0}
𝒖(0)=𝒖0,𝝈(0)=𝝈0 on Γ3\displaystyle\boldsymbol{u}(0)=\boldsymbol{u}_{0},\boldsymbol{\sigma}(0)=\boldsymbol{\sigma}_{0}\text{ on }\quad\Gamma_{3}

Here and below, in order to simplify the notation, we do not indicate explicitly the dependence of various functions on the spatial variable 𝒙ΩΓ\boldsymbol{x}\in\Omega\cup\Gamma. Equation (6) represents the viscoplastic constitutive law of the material already introduced in Section 1. Equation (7) is the equilibrium equation in which Div denotes the divergence operator for tensor valued functions. Conditions (8) and (9) are the displacement and traction boundary conditions, respectively, and condition (10) represents the contact condition with normal compliance, unilateral constraint and memory term, in which σν\sigma_{\nu} denotes the normal stress, uνu_{\nu} is the normal displacement, g0g\geq 0 and p,bp,b are given functions. This condition was first introduced in [5] and, in the case when bb vanishes, was used in [7, 10, for instance. Condition (11) shows that the tangential stress on the contact surface, denoted 𝝈τ\boldsymbol{\sigma}_{\tau}, vanishes. We use it here since we assume that the contact process is frictionless. Finally, (12) represents the initial conditions in which 𝒖0\boldsymbol{u}_{0} and 𝝈0\boldsymbol{\sigma}_{0} denote the initial displacement and the initial stress field, respectively.

Next, we list the assumptions on the data, present the variational formulation of the problem 𝒫\mathcal{P} and then we state and prove its unique weak solvability. To this end, we assume that the elasticity tensor \mathcal{E}, the nonlinear constitutive function 𝒢\mathcal{G} and the normal compliance function pp satisfy the following conditions.

{ (a) =(ijkl):Ω×𝕊d𝕊d. (b) ijkl=klij=jiklL(Ω),1i,j,k,ld. (c) There exists m>0 such that 𝝉𝝉m𝝉2𝝉𝕊d, a.e. in Ω,{ (a) 𝒢:Ω×𝕊d×𝕊d𝕊d. (b) There exists L𝒢>0 such that 𝒢(𝒙,𝝈1,𝜺1)𝒢(𝒙,𝝈2,𝜺2)L𝒢(𝝈1𝝈2+𝜺1𝜺2)𝝈1,𝝈2,𝜺1,𝜺2𝕊d, a.e. 𝒙Ω. (c) The mapping 𝒙𝒢(𝒙,𝝈,𝜺) is measurable on Ω, for any 𝝈,𝜺𝕊d. (d) The mapping 𝒙𝒢(𝒙,𝟎,𝟎) belongs to Q\displaystyle\left\{\begin{array}[]{l}\text{ (a) }\mathcal{E}=\left(\mathcal{E}_{ijkl}\right):\Omega\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}.\\ \text{ (b) }\mathcal{E}_{ijkl}=\mathcal{E}_{klij}=\mathcal{E}_{jikl}\in L^{\infty}(\Omega),1\leq i,j,k,l\leq d.\\ \text{ (c) There exists }m_{\mathcal{E}}>0\text{ such that }\\ \mathcal{E}\boldsymbol{\tau}\cdot\boldsymbol{\tau}\geq m_{\mathcal{E}}\|\boldsymbol{\tau}\|^{2}\forall\boldsymbol{\tau}\in\mathbb{S}^{d}\text{, a.e. in }\Omega,\\ \left\{\begin{array}[]{l}\text{ (a) }\mathcal{G}:\Omega\times\mathbb{S}^{d}\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}.\\ \text{ (b) There exists }L_{\mathcal{G}}>0\text{ such that }\\ \left\|\mathcal{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{1},\boldsymbol{\varepsilon}_{1}\right)-\mathcal{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{2}\right)\right\|\\ \leq L_{\mathcal{G}}\left(\left\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\right\|+\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|\right)\\ \forall\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\text{ a.e. }\boldsymbol{x}\in\Omega.\end{array}\right.\\ \text{ (c) The mapping }\boldsymbol{x}\mapsto\mathcal{G}(\boldsymbol{x},\boldsymbol{\sigma},\boldsymbol{\varepsilon})\text{ is measurable on }\Omega,\\ \text{ for any }\boldsymbol{\sigma},\boldsymbol{\varepsilon}\in\mathbb{S}^{d}.\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto\mathcal{G}(\boldsymbol{x},\mathbf{0},\mathbf{0})\text{ belongs to }Q\end{array}\right. (13)
{ (a) p:+.(b) There exists Lp>0 such that |p(r1)p(r2)|Lp|r1r2|r1,r2. (c) (p(r1)p(r2))(r1r2)0r1,r2. (d) p(r)=0 for all r<0.\displaystyle\left\{\begin{array}[]{l}\text{ (a) }p:\mathbb{R}\rightarrow\mathbb{R}_{+}.\\ \text{(b) There exists }L_{p}>0\text{ such that }\\ \left|p\left(r_{1}\right)-p\left(r_{2}\right)\right|\leq L_{p}\left|r_{1}-r_{2}\right|\forall r_{1},r_{2}\in\mathbb{R}.\\ \text{ (c) }\left(p\left(r_{1}\right)-p\left(r_{2}\right)\right)\left(r_{1}-r_{2}\right)\geq 0\quad\forall r_{1},r_{2}\in\mathbb{R}.\\ \text{ (d) }p(r)=0\text{ for all }r<0.\end{array}\right. (14)

Moreover, the densities of body forces, surface tractions and the memory function are such that

𝒇0C(+;L2(Ω)d),𝒇2C(+;L2(Γ2)d).\boldsymbol{f}_{0}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right),\quad\boldsymbol{f}_{2}\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{2}\right)^{d}\right). (16)
bC(+;L(Γ3)),b(t,𝒙)0b\in C\left(\mathbb{R}_{+};L^{\infty}\left(\Gamma_{3}\right)\right),\quad b(t,\boldsymbol{x})\geq 0 (17)

Finally, the initial data verifies

𝒖0V,𝝈0Q.\boldsymbol{u}_{0}\in V,\quad\boldsymbol{\sigma}_{0}\in Q. (18)

We introduce the set of admissible displacements UU given by

U={𝒗V:vνg on Γ3}U=\left\{\boldsymbol{v}\in V:v_{\nu}\leq g\text{ on }\Gamma_{3}\right\} (19)

Next, using the Riesz representation theorem we define the operators PP : VV,:C(+,V)C(+,L2(Γ3))V\rightarrow V,\mathcal{B}:C\left(\mathbb{R}_{+},V\right)\rightarrow C\left(\mathbb{R}_{+},L^{2}\left(\Gamma_{3}\right)\right) and the function f:+Vf:\mathbb{R}_{+}\rightarrow V by equalities

(P𝒖,𝒗)V=Γ3p(uν)vν𝑑a𝒖,𝒗V\displaystyle(P\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Gamma_{3}}p\left(u_{\nu}\right)v_{\nu}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (20)
(𝒖(t),ξ)L2(Γ3)=(0tb(ts)uν+(s)𝑑s,ξ)L2(Γ3)\displaystyle(\mathcal{B}\boldsymbol{u}(t),\xi)_{L^{2}\left(\Gamma_{3}\right)}=\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,\xi\right)_{L^{2}\left(\Gamma_{3}\right)} (21)
𝒖C(+;V),ξL2(Γ3),t+\displaystyle\quad\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\xi\in L^{2}\left(\Gamma_{3}\right),t\in\mathbb{R}_{+}
(𝒇(t),𝒗)V=Ω𝒇0(t)𝒗𝑑x+Γ2𝒇2(t)𝒗𝑑a\displaystyle(\boldsymbol{f}(t),\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot\boldsymbol{v}dx+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot\boldsymbol{v}da (22)
𝒗V,t+\displaystyle\quad\forall\boldsymbol{v}\in V,t\in\mathbb{R}_{+}

In order to derive the variational formulation of the Problem 𝒫\mathcal{P} we introduce the operator 𝒮\mathcal{S} by the following lemma.

Lemma 3.1 Assume that (14) and (18) hold. Then, for each function 𝒖C(+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) there exists a unique function 𝒮𝒖C(+;Q)\mathcal{S}\boldsymbol{u}\in C\left(\mathbb{R}_{+};Q\right) such that

𝒮𝒖(t)=0t𝒢(𝒮𝒖(s)+𝜺(𝒖(s)),𝜺(𝒖(s)))𝑑s+𝝈0𝜺(𝒖0)t+\mathcal{S}\boldsymbol{u}(t)=\int_{0}^{t}\mathcal{G}(\mathcal{S}\boldsymbol{u}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)))ds+\boldsymbol{\sigma}_{0}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0}\right)\quad\forall t\in\mathbb{R}_{+} (23)

Moreover, the operator 𝒮:C(+;V)C(+;Q)\mathcal{S}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};Q\right) satisfies the following condition: for every nn\in\mathbb{N} there exists kn>0k_{n}>0 such that, 𝒖1,𝒖2C(+;V),t[0,n]\forall\boldsymbol{u}_{1},\boldsymbol{u}_{2}\in C\left(\mathbb{R}_{+};V\right),\forall t\in[0,n],

𝒮𝒖1(t)𝒮𝒖2(t)Qkn0t𝒖1(s)𝒖2(s)V𝑑s\left\|\mathcal{S}\boldsymbol{u}_{1}(t)-\mathcal{S}\boldsymbol{u}_{2}(t)\right\|_{Q}\leq k_{n}\int_{0}^{t}\left\|\boldsymbol{u}_{1}(s)-\boldsymbol{u}_{2}(s)\right\|_{V}ds (24)

The variational formulation of Problem 𝒫\mathcal{P} is the following.
Problem 𝒫V\mathcal{P}^{V}. Find a displacement field 𝒖:+U\boldsymbol{u}:\mathbb{R}_{+}\rightarrow U and a stress field 𝝈:+Q\boldsymbol{\sigma}:\mathbb{R}_{+}\rightarrow Q such that, for all t+t\in\mathbb{R}_{+},

𝝈(t)=𝜺(𝒖(t))+𝒮𝒖(t)t+\displaystyle\boldsymbol{\sigma}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\mathcal{S}\boldsymbol{u}(t)\quad\forall t\in\mathbb{R}_{+} (25)
(𝜺(𝒖(t)),𝜺(𝒗)𝜺(𝒖(t)))Q+(𝒮𝒖(t),𝜺(𝒗)𝜺(𝒖(t)))Q\displaystyle(\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}+(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q} (26)
+(𝒖(t),vν+uν+(t))L2(Γ3)+(P𝒖(t),𝒗𝒖(t))V\displaystyle\quad+\left(\mathcal{B}\boldsymbol{u}(t),v_{\nu}^{+}-u_{\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}+(P\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}
(𝒇(t),𝒗𝒖(t))V𝒗U,t+\displaystyle\quad\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}\quad\forall\boldsymbol{v}\in U,\forall t\in\mathbb{R}_{+}

The proof of Lemma 3.1 including the variational formulation 𝒫V\mathcal{P}^{V} were obtained in [5]. Note that (25) is a consequence of (6) and (12), while (26) can be easily obtained by using integrations by parts, (7)-(11) and notation (19)-(21). The unique weak solvability of Problem 𝒫\mathcal{P} follows from the following result.

Theorem 3.1 Assume that (13)-(18) hold. Then Problem 𝒫V\mathcal{P}^{V} has a unique solution, which satisfies 𝒖C(+;U)\boldsymbol{u}\in C\left(\mathbb{R}_{+};U\right) and 𝝈C(+;Q)\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q\right).

The proof of Theorem 3.1 was given in [5], based on an abstract result provided by 11, 12 .

4 A penalization result

In this section we introduce a penalized contact problem 𝒫μ\mathcal{P}_{\mu} and we prove that its unique weak solution converges to the weak solution of problem 𝒫\mathcal{P}.

Let qq be a function which satisfies

{ (a) q:[g,+[+.(b) There exists Lq>0 such that |q(r1)q(r2)|Lq|r1r2|r1,r2g. (c) (q(r1)q(r2))(r1r2)>0r1,r2g,r1r2. (d) q(g)=0.\left\{\begin{array}[]{l}\text{ (a) }q:\left[g,+\infty\left[\rightarrow\mathbb{R}_{+}.\right.\right.\\ \text{(b) There exists }L_{q}>0\text{ such that }\\ \quad\left|q\left(r_{1}\right)-q\left(r_{2}\right)\right|\leq L_{q}\left|r_{1}-r_{2}\right|\quad\forall r_{1},r_{2}\geq g.\\ \text{ (c) }\left(q\left(r_{1}\right)-q\left(r_{2}\right)\right)\left(r_{1}-r_{2}\right)>0\quad\forall r_{1},r_{2}\geq g,r_{1}\neq r_{2}.\\ \text{ (d) }q(g)=0.\end{array}\right.

Let μ>0\mu>0 and consider the function pμp_{\mu} defined by

pμ(r)={p(r) if rg1μq(r)+p(g) if r>gp_{\mu}(r)=\left\{\begin{array}[]{cl}p(r)&\text{ if }\quad r\leq g\\ \frac{1}{\mu}q(r)+p(g)&\text{ if }\quad r>g\end{array}\right.

We deduce that the function pμp_{\mu} satisfies condition (15), i.e.

{ (a) pμ:+.(b) There exists Lpμ>0 such that |pμ(r1)pμ(r2)|Lpμ|r1r2|r1,r2. (c) (pμ(r1)pμ(r2))(r1r2)0r1,r2. (d) pμ(r)=0 for all r<0.\left\{\begin{array}[]{l}\text{ (a) }p_{\mu}:\mathbb{R}\rightarrow\mathbb{R}_{+}.\\ \text{(b) There exists }L_{p_{\mu}}>0\text{ such that }\\ \quad\left|p_{\mu}\left(r_{1}\right)-p_{\mu}\left(r_{2}\right)\right|\leq L_{p_{\mu}}\left|r_{1}-r_{2}\right|\quad\forall r_{1},r_{2}\in\mathbb{R}.\\ \text{ (c) }\left(p_{\mu}\left(r_{1}\right)-p_{\mu}\left(r_{2}\right)\right)\left(r_{1}-r_{2}\right)\geq 0\quad\forall r_{1},r_{2}\in\mathbb{R}.\\ \text{ (d) }p_{\mu}(r)=0\text{ for all }r<0.\end{array}\right.

This allows us to consider the operator Pμ:VVP_{\mu}:V\rightarrow V defined by

(Pμ𝒖,𝒗)V=Γ3pμ(uν)vν𝑑a𝒖,𝒗V\left(P_{\mu}\boldsymbol{u},\boldsymbol{v}\right)_{V}=\int_{\Gamma_{3}}p_{\mu}\left(u_{\nu}\right)v_{\nu}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (30)

and we note that PμP_{\mu} is a monotone Lipschitz continuous operator.
With these notation, we consider the following contact problem.
Problem 𝒫μ\mathcal{P}_{\mu}. Find a displacement field 𝒖μ:Ω×+d\boldsymbol{u}_{\mu}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d} and a stress field σμ:Ω×+𝕊d\sigma_{\mu}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d} such that, for all t+t\in\mathbb{R}_{+},

𝝈˙μ(t)=𝜺(𝒖˙μ(t))+𝒢(𝝈μ(t),𝜺(𝒖μ(t)))\displaystyle\dot{\boldsymbol{\sigma}}_{\mu}(t)=\mathcal{E}\boldsymbol{\varepsilon}\left(\dot{\boldsymbol{u}}_{\mu}(t)\right)+\mathcal{G}\left(\boldsymbol{\sigma}_{\mu}(t),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)\right) in Ω,\displaystyle\text{ in }\quad\Omega, (31)
Div𝝈μ(t)+𝒇0(t)=𝟎\displaystyle\operatorname{Div}\boldsymbol{\sigma}_{\mu}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0} in Ω,\displaystyle\text{ in }\quad\Omega, (32)
𝒖μ(t)=𝟎\displaystyle\boldsymbol{u}_{\mu}(t)=\mathbf{0} on Γ1,\displaystyle\text{ on }\quad\Gamma_{1}, (33)
𝝈μ(t)𝝂=𝒇2(t)\displaystyle\boldsymbol{\sigma}_{\mu}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t) on Γ2,\displaystyle\text{ on }\quad\Gamma_{2}, (34)

for all t+t\in\mathbb{R}_{+}, there exists ξ:Ω×+\xi:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R} which satisfies

σμν(t)+pμ(uμν(t))+ξ(t)=00ξ(t)0tb(ts)uμν+(s)𝑑sξ(t)=0 if uμν(t)<0ξ(t)=0tb(ts)uμν+(s)𝑑s if uμν(t)>0 on Γ3𝝈μτ(t)=𝟎 on Γ3𝒖μ(0)=𝒖0,𝝈μ(0)=𝝈0 in 𝛀2\begin{array}[]{ll}\sigma_{\mu\nu}(t)+p_{\mu}\left(u_{\mu\nu}(t)\right)+\xi(t)=0&\\ 0\leq\xi(t)\leq\int_{0}^{t}b(t-s)u_{\mu\nu}^{+}(s)ds&\\ \xi(t)=0\text{ if }u_{\mu\nu}(t)<0&\\ \xi(t)=\int_{0}^{t}b(t-s)u_{\mu\nu}^{+}(s)ds\text{ if }u_{\mu\nu}(t)>0&\text{ on }\Gamma_{3}\\ &\boldsymbol{\sigma}_{\mu\tau}(t)=\mathbf{0}\\ &\text{ on }\Gamma_{3}\\ \boldsymbol{u}_{\mu}(0)=\boldsymbol{u}_{0},\boldsymbol{\sigma}_{\mu}(0)=\boldsymbol{\sigma}_{0}&\text{ in }\boldsymbol{\Omega}^{2}\end{array}

Note that here and below uμνu_{\mu\nu} represents the normal component of the displacement field 𝒖μ\boldsymbol{u}_{\mu} and σμν,𝝈μτ\sigma_{\mu\nu},\boldsymbol{\sigma}_{\mu\tau} represent the normal and tangential components of the stress tensor σμ\sigma_{\mu}, respectively. The equations and boundary conditions in problem (31)-(37) have a similar interpretation as those in problem (6)-(12). The difference arises in the fact that here we replace the contact condition with normal compliance, memory term and unilateral constraint (10) with the contact condition with normal compliance and memory term (35). In this condition μ\mu represents a penalization parameter which may be interpreted as a deformability coefficient of the foundation, and then 1μ\frac{1}{\mu} is the surface stiffness coefficient.

Using notation (221), (21) and (30) by similar arguments as in the case of Problem 𝒫\mathcal{P} we obtain the following variational formulation of Problem 𝒫μ\mathcal{P}_{\mu}.
Problem 𝒫μV\mathcal{P}_{\mu}^{V}. Find a displacement field 𝒖μ:+U\boldsymbol{u}_{\mu}:\mathbb{R}_{+}\rightarrow U and a stress field
𝝈μ:+Q\boldsymbol{\sigma}_{\mu}:\mathbb{R}_{+}\rightarrow Q such that, for all t+t\in\mathbb{R}_{+},

𝝈μ(t)=𝜺(𝒖μ(t))+𝒮𝒖μ(t)t+\displaystyle\boldsymbol{\sigma}_{\mu}(t)=\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)+\mathcal{S}\boldsymbol{u}_{\mu}(t)\quad\forall t\in\mathbb{R}_{+} (38)
(𝜺(𝒖μ(t)),𝜺(𝒗)𝜺(𝒖μ(t)))Q+(𝒮𝒖μ(t),𝜺(𝒗)𝜺(𝒖μ(t)))Q\displaystyle\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)\right)_{Q}+\left(\mathcal{S}\boldsymbol{u}_{\mu}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)\right)_{Q} (39)
+(𝒖μ(t),vν+uμν+(t))L2(Γ3)+(Pμ𝒖μ(t),𝒗𝒖μ(t))V\displaystyle\quad+\left(\mathcal{B}\boldsymbol{u}_{\mu}(t),v_{\nu}^{+}-u_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}+\left(P_{\mu}\boldsymbol{u}_{\mu}(t),\boldsymbol{v}-\boldsymbol{u}_{\mu}(t)\right)_{V}
(𝒇(t),𝒗𝒖μ(t))V𝒗V,t+\displaystyle\quad\geq\left(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}_{\mu}(t)\right)_{V}\quad\forall\boldsymbol{v}\in V,\forall t\in\mathbb{R}_{+}

We have the following existence, uniqueness and convergence result.
Theorem 4.1 Assume that (13) - (18) and (29) hold. Then
a) For each μ>0\mu>0 there exists a unique solution 𝒖μV\boldsymbol{u}_{\mu}\in V to Problem 𝒫μV\mathcal{P}_{\mu}^{V}.
b) The solution 𝒖μ\boldsymbol{u}_{\mu} of Problem 𝒫μV\mathcal{P}_{\mu}^{V} converges strongly to the solution 𝒖\boldsymbol{u} of Problem 𝒫V\mathcal{P}^{V}, that is

𝒖μ(t)𝒖(t)V+𝝈μ(t)𝝈(t)Q0\left\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}+\left\|\boldsymbol{\sigma}_{\mu}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}\rightarrow 0 (40)

as μ0\mu\rightarrow 0, for all t+t\in\mathbb{R}_{+}.
Note that the convergence (40) above is understood in the following sense: for all t+t\in\mathbb{R}_{+}and for every sequence {μn}+\left\{\mu_{n}\right\}\subset\mathbb{R}_{+}converging to 0 as nn\rightarrow\infty we have 𝒖μn(t)𝒖(t)\boldsymbol{u}_{\mu_{n}}(t)\rightarrow\boldsymbol{u}(t) in V,𝝈μn(t)𝝈(t)V,\boldsymbol{\sigma}_{\mu_{n}}(t)\rightarrow\boldsymbol{\sigma}(t) in QQ as nn\rightarrow\infty.

The proof of Theorem 4.1 is carried out in several steps that we present in what follows. To this end we assume below that (13)-(18) and (29) hold. Let μ>0\mu>0. We consider the auxiliary problem of finding a displacement field 𝒖~μ:+V\widetilde{\boldsymbol{u}}_{\mu}:\mathbb{R}_{+}\rightarrow V such that, for all t+t\in\mathbb{R}_{+},

(𝜺(𝒖~μ(t)),𝜺(𝒗)𝜺(𝒖~μ(t)))Q+(𝒮𝒖(t),𝜺(𝒗)𝜺(𝒖~μ(t)))Q\displaystyle\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}+\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q} (41)
+(𝒖(t),vν+u~μν+(t))L2(Γ3)+(Pμ𝒖~μ(t),𝒗𝒖~μ(t))V\displaystyle+\left(\mathcal{B}\boldsymbol{u}(t),v_{\nu}^{+}-\widetilde{u}_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}+\left(P_{\mu}\widetilde{\boldsymbol{u}}_{\mu}(t),\boldsymbol{v}-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}
(𝒇(t),𝒗𝒖~μ(t))V𝒗U\displaystyle\geq\left(\boldsymbol{f}(t),\boldsymbol{v}-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\forall\boldsymbol{v}\in U

This problem is an intermediate problem between (39) and (26), since here 𝒮𝒖(t),𝒖(t)\mathcal{S}\boldsymbol{u}(t),\mathcal{B}\boldsymbol{u}(t) are knowns, taken from the problem 𝒫V\mathcal{P}^{V}.

We have the following existence and uniqueness result.
Lemma 4.1 There exists a unique function 𝒖~μC(+;V)\widetilde{\boldsymbol{u}}_{\mu}\in C\left(\mathbb{R}_{+};V\right) which satisfies (41), for all t+t\in\mathbb{R}_{+}.

Proof. We define the operator Aμ:VVA_{\mu}:V\rightarrow V and the function 𝒇~:+V\widetilde{\boldsymbol{f}}:\mathbb{R}_{+}\rightarrow V by equalities

(Aμ𝒖,𝒗)V\displaystyle\left(A_{\mu}\boldsymbol{u},\boldsymbol{v}\right)_{V} =(𝜺(𝒖),𝜺(𝒗))Q+(Pμ𝒖,𝒗)V\displaystyle=(\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\left(P_{\mu}\boldsymbol{u},\boldsymbol{v}\right)_{V} (42)
(𝒇~(t),𝒗)V\displaystyle(\widetilde{\boldsymbol{f}}(t),\boldsymbol{v})_{V} =(𝒇(t),𝒗)V(𝒮𝒖(t),𝜺(𝒗))Q(𝒖(t),vν+)L2(Γ3)\displaystyle=(\boldsymbol{f}(t),\boldsymbol{v})_{V}-(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}-\left(\mathcal{B}\boldsymbol{u}(t),v_{\nu}^{+}\right)_{L^{2}\left(\Gamma_{3}\right)} (43)

for all 𝒖,𝒗V,t+\boldsymbol{u},\boldsymbol{v}\in V,t\in\mathbb{R}_{+}. We note that (17), (16), (22) and (23) yield 𝒇~C(+;V)\widetilde{\boldsymbol{f}}\in C\left(\mathbb{R}_{+};V\right).

Let t+t\in\mathbb{R}_{+}. Based on (42)-(43), it is easy to see that (41) is equivalent with the nonlinear variational inequality of the first kind

(Aμ𝒖~μ(t),𝒗𝒖~μ(t))V(𝒇~(t),𝒗𝒖~μ(t))V𝒗U\left(A_{\mu}\widetilde{\boldsymbol{u}}_{\mu}(t),\boldsymbol{v}-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\geq\left(\widetilde{\boldsymbol{f}}(t),\boldsymbol{v}-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\quad\forall\boldsymbol{v}\in U (44)

Next, by (13) and the properties of operator PμP_{\mu} it follows that AμA_{\mu} is a strongly monotone and Lipschitz continuous operator. Therefore, using standard arguments on variational inequalities we deduce that there exists a unique solution 𝒖~μC(+;U)\widetilde{\boldsymbol{u}}_{\mu}\in C\left(\mathbb{R}_{+};U\right) for (44), which concludes the proof.

We proceed with the following weak convergence result.
Lemma 4.2 As μ0\mu\rightarrow 0,

𝒖~μ(t)𝒖(t) in V,\widetilde{\boldsymbol{u}}_{\mu}(t)\longrightarrow\boldsymbol{u}(t)\quad\text{ in }V,

for all t+t\in\mathbb{R}_{+}.
Proof. Let t+t\in\mathbb{R}_{+}. We take 𝒗=𝟎\boldsymbol{v}=\mathbf{0} in (41) to obtain

(𝜺(𝒖~μ(t)),𝜺(𝒖~μ(t)))Q(𝒇(t),𝒖~μ(t))V(𝒮𝒖(t),𝜺(𝒖~μ(t)))Q\displaystyle\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}\leq\left(\boldsymbol{f}(t),\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}-\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}
(𝒖(t),u~μν+(t))L2(Γ3)(Pμ𝒖~μ(t),𝒖~μ(t))V\displaystyle-\left(\mathcal{B}\boldsymbol{u}(t),\widetilde{u}_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}-\left(P_{\mu}\widetilde{\boldsymbol{u}}_{\mu}(t),\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V} (45)

On the other hand, the properties (29) yield (Pμ𝒖~μ(t),𝒖~μ(t))V0\left(P_{\mu}\widetilde{\boldsymbol{u}}_{\mu}(t),\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\geq 0, and from (45) we deduce that

(𝜺(𝒖~μ(t)),𝜺(𝒖~μ(t)))Q(𝒇(t),𝒖~μ(t))V\displaystyle\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}\leq\left(\boldsymbol{f}(t),\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}
(𝒮𝒖(t),𝜺(𝒖~μ(t)))Q(𝒖(t),u~μν+(t))L2(Γ3)\displaystyle\quad-\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}-\left(\mathcal{B}\boldsymbol{u}(t),\widetilde{u}_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)} (46)

From (13) we obtain that

𝒖~μ(t)Vc(𝒇(t)V+𝒮𝒖(t)V+𝒖(t)L2(Γ3))\left\|\widetilde{\boldsymbol{u}}_{\mu}(t)\right\|_{V}\leq c\left(\|\boldsymbol{f}(t)\|_{V}+\|\mathcal{S}\boldsymbol{u}(t)\|_{V}+\|\mathcal{B}\boldsymbol{u}(t)\|_{L^{2}\left(\Gamma_{3}\right)}\right) (47)

Note that here and below cc is a constant which does not depend on μ\mu and tt and whose value can change from line to line. This inequality shows that the sequence {𝒖~μ(t)}μV\left\{\widetilde{\boldsymbol{u}}_{\mu}(t)\right\}_{\mu}\subset V is bounded. Hence, there exists a subsequence of the sequence {𝒖~μ(t)}μ\left\{\widetilde{\boldsymbol{u}}_{\mu}(t)\right\}_{\mu}, still denoted {𝒖~μ(t)}μ\left\{\widetilde{\boldsymbol{u}}_{\mu}(t)\right\}_{\mu}, and an element 𝒖~(t)V\widetilde{\boldsymbol{u}}(t)\in V such that

𝒖~μ(t)𝒖~(t) in V as μ0.\widetilde{\boldsymbol{u}}_{\mu}(t)\longrightarrow\widetilde{\boldsymbol{u}}(t)\quad\text{ in }V\quad\text{ as }\mu\rightarrow 0. (48)

Next we study the properties of the element 𝒖~(t)\widetilde{\boldsymbol{u}}(t). It follows from (45) that

(Pμ𝒖~μ(t),𝒖~μ(t))V(𝒇(t),𝒖~μ(t))V(𝜺(𝒖~μ(t)),𝜺(𝒖~μ(t)))Q(𝒮𝒖(t),𝜺(𝒖~μ(t)))Q(𝒖(t),u~μν+(t))L2(Γ3)\begin{array}[]{r}\left(P_{\mu}\widetilde{\boldsymbol{u}}_{\mu}(t),\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\leq\left(\boldsymbol{f}(t),\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}-\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}\\ -\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}-\left(\mathcal{B}\boldsymbol{u}(t),\widetilde{u}_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}\end{array}

and, since {𝒖~μ(t)}μ\left\{\widetilde{\boldsymbol{u}}_{\mu}(t)\right\}_{\mu} is a bounded sequence in VV, we deduce that

(Pμ𝒖~μ(t),𝒖~μ(t))Vc\left(P_{\mu}\widetilde{\boldsymbol{u}}_{\mu}(t),\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\leq c

This implies that Γ3pμ(u~μν(t))u~μν(t)𝑑ac\int_{\Gamma_{3}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\widetilde{u}_{\mu\nu}(t)da\leq c and, since Γ3pμ(u~μν(t))g𝑑a\int_{\Gamma_{3}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)gda\geq 0, it follows that

Γ3pμ(u~μν(t))(u~μν(t)g)𝑑ac\int_{\Gamma_{3}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\left(\widetilde{u}_{\mu\nu}(t)-g\right)da\leq c (49)

We consider now the measurable subsets of Γ3\Gamma_{3} defined by

Γ31={𝒙Γ3:u~μν(t)(𝒙)g},Γ32={𝒙Γ3:u~μν(t)(𝒙)>g}\Gamma_{31}=\left\{\boldsymbol{x}\in\Gamma_{3}:\widetilde{u}_{\mu\nu}(t)(\boldsymbol{x})\leq g\right\},\quad\Gamma_{32}=\left\{\boldsymbol{x}\in\Gamma_{3}:\widetilde{u}_{\mu\nu}(t)(\boldsymbol{x})>g\right\} (50)

Clearly, both Γ31\Gamma_{31} and Γ32\Gamma_{32} depend on tt and μ\mu but, for simplicity, we do not indicate explicitly this dependence. We use (49) to write

Γ31pμ(u~μν(t))(u~μν(t)g)𝑑a+Γ32pμ(u~μν(t))(u~μν(t)g)𝑑ac\int_{\Gamma_{31}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\left(\widetilde{u}_{\mu\nu}(t)-g\right)da+\int_{\Gamma_{32}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\left(\widetilde{u}_{\mu\nu}(t)-g\right)da\leq c

and, since Γ31pμ(u~μν(t))u~μν(t)𝑑a0\int_{\Gamma_{31}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\widetilde{u}_{\mu\nu}(t)da\geq 0, we obtain

Γ32pμ(u~μν(t))(u~μν(t)g)𝑑aΓ31pμ(u~μν(t))g𝑑a+c\int_{\Gamma_{32}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\left(\widetilde{u}_{\mu\nu}(t)-g\right)da\leq\int_{\Gamma_{31}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)gda+c

Thus, taking into account that pμ(r)=p(r)p_{\mu}(r)=p(r) for rgr\leq g, by the monotonicity of the function pp we can write

Γ32pμ(u~μν(t))(u~μν(t)g)𝑑aΓ31p(u~μν(t))g𝑑a+cΓ3p(g)g𝑑a+c\int_{\Gamma_{32}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\left(\widetilde{u}_{\mu\nu}(t)-g\right)da\leq\int_{\Gamma_{31}}p\left(\widetilde{u}_{\mu\nu}(t)\right)gda+c\leq\int_{\Gamma_{3}}p(g)gda+c

Therefore, we deduce that

Γ32pμ(u~μν(t))(u~μν(t)g)𝑑ac\int_{\Gamma_{32}}p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\left(\widetilde{u}_{\mu\nu}(t)-g\right)da\leq c (51)

We use now the definitions (28) and (50) to see that, a.e on Γ32\Gamma_{32}, we have

pμ(u~μν(t))=1μq(u~μν(t))+p(g),p(g)(u~μν(t)g)>0.p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)=\frac{1}{\mu}q\left(\widetilde{u}_{\mu\nu}(t)\right)+p(g),\quad p(g)\left(\widetilde{u}_{\mu\nu}(t)-g\right)>0.

Consequently, the inequality (51) yields

Γ32q(u~μν(t))(u~μν(t)g)𝑑acμ\int_{\Gamma_{32}}q\left(\widetilde{u}_{\mu\nu}(t)\right)\left(\widetilde{u}_{\mu\nu}(t)-g\right)da\leq c\mu (52)

Next, we consider the function defined by

p~:+p~(r)={0 if rgq(r) if r>g\widetilde{p}:\mathbb{R}\rightarrow\mathbb{R}_{+}\quad\widetilde{p}(r)=\left\{\begin{array}[]{clc}0&\text{ if }&r\leq g\\ q(r)&\text{ if }&r>g\end{array}\right.

and we note that by (27) it follows that p~\widetilde{p} is a continuous increasing function and, moreover,

p~(r)=0 iff rg.\widetilde{p}(r)=0\quad\text{ iff }\quad r\leq g. (53)

We use (52), equality q(u~μν(t))=p~(u~μν(t))q\left(\widetilde{u}_{\mu\nu}(t)\right)=\widetilde{p}\left(\widetilde{u}_{\mu\nu}(t)\right) a.e on Γ32\Gamma_{32} and (50) to deduce that

Γ3p~(u~μν(t))(u~μν(t)g)+cμ\int_{\Gamma_{3}}\widetilde{p}\left(\widetilde{u}_{\mu\nu}(t)\right)\left(\widetilde{u}_{\mu\nu}(t)-g\right)^{+}\leq c\mu

where (u~μν(t)g)+\left(\widetilde{u}_{\mu\nu}(t)-g\right)^{+}denotes the positive part of u~μν(t)g\widetilde{u}_{\mu\nu}(t)-g. Therefore, passing to the limit as μ0\mu\rightarrow 0, by using (48) as well as compactness of the trace operator we find that

Γ3p~(u~ν(t))(u~ν(t)g)+𝑑a0\int_{\Gamma_{3}}\widetilde{p}\left(\widetilde{u}_{\nu}(t)\right)\left(\widetilde{u}_{\nu}(t)-g\right)^{+}da\leq 0

Since the integrand p~(u~ν(t))(u~ν(t)g)+\widetilde{p}\left(\widetilde{u}_{\nu}(t)\right)\left(\widetilde{u}_{\nu}(t)-g\right)^{+}is positive a.e on Γ3\Gamma_{3}, the last inequality yields p~(u~ν(t))(u~ν(t)g)+=0\widetilde{p}\left(\widetilde{u}_{\nu}(t)\right)\left(\widetilde{u}_{\nu}(t)-g\right)^{+}=0 a.e on Γ3\Gamma_{3} and, using (53) and definition (19) we conclude that

𝒖~(t)U.\widetilde{\boldsymbol{u}}(t)\in U. (54)

Since 𝒗U\boldsymbol{v}\in U we have pμ(vν)=p(vν)p_{\mu}\left(v_{\nu}\right)=p\left(v_{\nu}\right) a.e. on Γ3\Gamma_{3}. Taking into account this equality and the monotonicity of the function pμp_{\mu} we have

p(vν)(vνu~μν(t))pμ(u~μν(t))(vνu~μν(t)) a.e. on Γ3p\left(v_{\nu}\right)\left(v_{\nu}-\widetilde{u}_{\mu\nu}(t)\right)\geq p_{\mu}\left(\widetilde{u}_{\mu\nu}(t)\right)\left(v_{\nu}-\widetilde{u}_{\mu\nu}(t)\right)\text{ a.e. on }\Gamma_{3}

and, therefore, by using (30) we obtain

(P𝒗,𝒗𝒖~μ(t))V(Pμ𝒖~μ(t),𝒗𝒖~μ(t))V\left(P\boldsymbol{v},\boldsymbol{v}-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\geq\left(P_{\mu}\widetilde{\boldsymbol{u}}_{\mu}(t),\boldsymbol{v}-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V} (55)

Then, using (55) and (41) we find that

(𝜺(𝒖~μ(t)),𝜺(𝒗)𝜺(𝒖~μ(t)))Q+(𝒮𝒖(t),𝜺(𝒗)𝜺(𝒖~μ(t)))Q\displaystyle\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}+\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q} (56)
+\displaystyle+ (𝒖(t),vν+u~μν+(t))L2(Γ3)+(P𝒗,𝒗𝒖~μ(t))V(𝒇(t),𝒗𝒖~μ(t))V\displaystyle\left(\mathcal{B}\boldsymbol{u}(t),v_{\nu}^{+}-\widetilde{u}_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}+\left(P\boldsymbol{v},\boldsymbol{v}-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}\geq\left(\boldsymbol{f}(t),\boldsymbol{v}-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}

for all 𝒗U\boldsymbol{v}\in U. We pass to the lower limit in (56) and use (48) to obtain

(𝜺(𝒖~(t)),𝜺(𝒗)𝜺(𝒖~(t)))Q+(𝒮𝒖(t),𝜺(𝒗)𝜺(𝒖~(t)))Q\displaystyle\quad(\mathcal{E}\boldsymbol{\varepsilon}(\widetilde{\boldsymbol{u}}(t)),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\widetilde{\boldsymbol{u}}(t)))_{Q}+(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\widetilde{\boldsymbol{u}}(t)))_{Q} (57)
+(𝒖(t),vν+u~ν+(t))L2(Γ3)+(P𝒗,𝒗𝒖~(t))V(𝒇(t),𝒗𝒖~(t))V\displaystyle+\left(\mathcal{B}\boldsymbol{u}(t),v_{\nu}^{+}-\widetilde{u}_{\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}+(P\boldsymbol{v},\boldsymbol{v}-\widetilde{\boldsymbol{u}}(t))_{V}\geq(\boldsymbol{f}(t),\boldsymbol{v}-\widetilde{\boldsymbol{u}}(t))_{V}

for all 𝒗U\boldsymbol{v}\in U. Next, we take 𝒗=𝒖~(t)\boldsymbol{v}=\widetilde{\boldsymbol{u}}(t) in (26) and 𝒗=𝒖(t)\boldsymbol{v}=\boldsymbol{u}(t) in (57). Then, adding the resulting inequalities we find that

(ε(𝒖~(t))ε(𝒖(t)),𝜺(𝒖~(t))𝜺(𝒖(t)))Q0(\mathcal{E}\varepsilon(\widetilde{\boldsymbol{u}}(t))-\mathcal{E}\varepsilon(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\widetilde{\boldsymbol{u}}(t))-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}\leq 0

Using (13), the above inequality implies that 𝒖~(t)=𝒖(t)\widetilde{\boldsymbol{u}}(t)=\boldsymbol{u}(t). It follows from here that the whole sequence {𝒖~μ(t)}μ\left\{\widetilde{\boldsymbol{u}}_{\mu}(t)\right\}_{\mu} is weakly convergent to the element 𝒖(t)V\boldsymbol{u}(t)\in V, which concludes the proof.

We proceed with the following strong convergence result.

Lemma 4.3 As μ0\mu\rightarrow 0,

𝒖~μ(t)𝒖(t)V0\left\|\widetilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}\rightarrow 0

for all t+t\in\mathbb{R}_{+}.
Proof. Let t+t\in\mathbb{R}_{+}and μ>0\mu>0. Using (13) we write

m𝒖~μ(t)𝒖(t)V2(𝜺(𝒖~μ(t))𝜺(𝒖(t)),𝜺(𝒖~μ(t))𝜺(𝒖(t)))Q\displaystyle m_{\mathcal{E}}\left\|\widetilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}^{2}\leq\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)-\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)-\boldsymbol{\varepsilon}(\boldsymbol{u}(t))\right)_{Q}
=(𝜺(𝒖(t)),𝜺(𝒖(t))𝜺(𝒖~μ(t)))Q(𝜺(𝒖~μ(t)),𝜺(𝒖(t))𝜺(𝒖~μ(t)))Q\displaystyle=\left(\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}-\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}

Next, we take 𝒗=𝒖(t)\boldsymbol{v}=\boldsymbol{u}(t) in (56) to obtain

(𝜺(𝒖~μ(t)),𝜺(𝒖(t))𝜺(𝒖~μ(t)))Q(𝒮𝒖(t),𝜺(𝒖(t))𝜺(𝒖~μ(t)))Q\displaystyle-\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}\leq\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}
+\displaystyle+ (𝒖(t),uν+(t)u~μν+(t))L2(Γ3)+(P𝒖(t),𝒖(t)𝒖~μ(t))V(𝒇(t),𝒖(t)𝒖~μ(t))V\displaystyle\left(\mathcal{B}\boldsymbol{u}(t),u_{\nu}^{+}(t)-\widetilde{u}_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}+\left(P\boldsymbol{u}(t),\boldsymbol{u}(t)-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}-\left(\boldsymbol{f}(t),\boldsymbol{u}(t)-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}

and, therefore, combining the above inequalities we find that

m\displaystyle m_{\mathcal{E}} 𝒖~μ(t)𝒖(t)V2(𝜺(𝒖(t)),𝜺(𝒖(t))𝜺(𝒖~μ(t)))Q\displaystyle\left\|\widetilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}^{2}\leq\left(\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}
+\displaystyle+ (𝒮𝒖(t),𝜺(𝒖(t))𝜺(𝒖~μ(t)))Q+(P𝒖(t),𝒖(t)𝒖~μ(t))V\displaystyle\left(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}+\left(P\boldsymbol{u}(t),\boldsymbol{u}(t)-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}
+\displaystyle+ (𝒖(t),uν+(t)u~μν+(t))L2(Γ3)(𝒇(t),𝒖(t)𝒖~μ(t))V\displaystyle\left(\mathcal{B}\boldsymbol{u}(t),u_{\nu}^{+}(t)-\widetilde{u}_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}-\left(\boldsymbol{f}(t),\boldsymbol{u}(t)-\widetilde{\boldsymbol{u}}_{\mu}(t)\right)_{V}

We pass to the upper limit in this inequality and use Lemma 4.2 to conclude the proof.

We are now in position to provide the proof of Theorem 4.1.
Proof. Let t+t\in\mathbb{R}_{+}and let nn\in\mathbb{N} be such that t[0,n]t\in[0,n]. Let also μ>0\mu>0. Next, we take 𝒗=𝒖μ(t)\boldsymbol{v}=\boldsymbol{u}_{\mu}(t) in (41) and 𝒖~μ(t)\widetilde{\boldsymbol{u}}_{\mu}(t) in (39). Then adding the resulting inequalities and using the monotonicity of the operator PμP_{\mu} we deduce that

(𝜺(𝒖μ(t))𝜺(𝒖~μ(t)),𝜺(𝒖μ(t))𝜺(𝒖~μ(t)))Q(𝒮𝒖(t)𝒮𝒖μ(t),𝜺(𝒖μ(t))𝜺(𝒖~μ(t)))Q+(𝒖(t)𝒖μ(t),uμν+(t)u~μν+(t))L2(Γ3)\begin{array}[]{r}\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)-\mathcal{E}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}\\ \leq\left(\mathcal{S}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{u}_{\mu}(t),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\mu}(t)\right)-\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\mu}(t)\right)\right)_{Q}\\ \quad+\left(\mathcal{B}\boldsymbol{u}(t)-\mathcal{B}\boldsymbol{u}_{\mu}(t),u_{\mu\nu}^{+}(t)-\widetilde{u}_{\mu\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}\end{array}

and, therefore,

𝒖μ(t)𝒖~μ(t)Vcm(𝒮𝒖(t)𝒮𝒖μ(t)Q+𝒖(t)𝒖μ(t)L2(Γ3)).\left\|\boldsymbol{u}_{\mu}(t)-\widetilde{\boldsymbol{u}}_{\mu}(t)\right\|_{V}\leq\frac{c}{m_{\mathcal{E}}}\left(\left\|\mathcal{S}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{u}_{\mu}(t)\right\|_{Q}+\left\|\mathcal{B}\boldsymbol{u}(t)-\mathcal{B}\boldsymbol{u}_{\mu}(t)\right\|_{L^{2}\left(\Gamma_{3}\right)}\right). (58)

We use (58) to find that

𝒖μ(t)𝒖~μ(t)Vrnm0t𝒖(s)𝒖μ(s)V𝑑s\left\|\boldsymbol{u}_{\mu}(t)-\widetilde{\boldsymbol{u}}_{\mu}(t)\right\|_{V}\leq\frac{r_{n}}{m_{\mathcal{E}}}\int_{0}^{t}\left\|\boldsymbol{u}(s)-\boldsymbol{u}_{\mu}(s)\right\|_{V}ds

where rn=kn+c02maxr[0,n]b(r)L2(Γ3)r_{n}=k_{n}+c_{0}^{2}\max_{r\in[0,n]}\|b(r)\|_{L^{2}\left(\Gamma_{3}\right)}. It follows from here that

𝒖μ(t)𝒖(t)V𝒖~μ(t)𝒖(t)V+rnm0t𝒖μ(s)𝒖(s)V𝑑s\left\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left\|\widetilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}+\frac{r_{n}}{m_{\mathcal{E}}}\int_{0}^{t}\left\|\boldsymbol{u}_{\mu}(s)-\boldsymbol{u}(s)\right\|_{V}ds

and, using a Gronwall argument, we obtain

𝒖μ(t)𝒖(t)V𝒖~μ(t)𝒖(t)V+rnm0ternm(ts)𝒖~μ(s)𝒖(s)V𝑑s\left\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left\|\widetilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}+\frac{r_{n}}{m_{\mathcal{E}}}\int_{0}^{t}e^{\frac{r_{n}}{m_{\mathcal{E}}}(t-s)}\left\|\widetilde{\boldsymbol{u}}_{\mu}(s)-\boldsymbol{u}(s)\right\|_{V}ds

Note that ernm(ts)ernmtenrnme^{\frac{r_{n}}{m_{\mathcal{E}}}(t-s)}\leq e^{\frac{r_{n}}{m_{\mathcal{E}}}t}\leq e^{\frac{nr_{n}}{m_{\mathcal{E}}}} for all s[0,t]s\in[0,t] and we deduce that

𝒖μ(t)𝒖(t)V𝒖~μ(t)𝒖(t)V+rnmenrnm0t𝒖~μ(s)𝒖(s)V𝑑s\left\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left\|\widetilde{\boldsymbol{u}}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}+\frac{r_{n}}{m_{\mathcal{E}}}e^{\frac{nr_{n}}{m_{\mathcal{E}}}}\int_{0}^{t}\left\|\widetilde{\boldsymbol{u}}_{\mu}(s)-\boldsymbol{u}(s)\right\|_{V}ds (59)

On the other hand, by estimate (47), Lemma 4.3 and Lebesgue’s convergence Theorem it follows that

0t𝒖~μ(s)𝒖(s)V𝑑s0 as μ0\int_{0}^{t}\left\|\widetilde{\boldsymbol{u}}_{\mu}(s)-\boldsymbol{u}(s)\right\|_{V}ds\rightarrow 0\quad\text{ as }\quad\mu\rightarrow 0 (60)

We use now (59), (60) and Lemma 4.3 to see that

𝒖μ(t)𝒖(t)V0 as μ0\left\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right\|_{V}\rightarrow 0\quad\text{ as }\quad\mu\rightarrow 0 (61)

Next, by (25), (38), (13), (24) and (17) it follows that

𝝈μ(t)𝝈(t)Qc𝒖μ(t)𝒖(t))V+kn0t𝒖μ(s)𝒖(s)Vds\left.\left\|\boldsymbol{\sigma}_{\mu}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}\leq c\|\boldsymbol{u}_{\mu}(t)-\boldsymbol{u}(t)\right)\left\|{}_{V}+k_{n}\int_{0}^{t}\right\|\boldsymbol{u}_{\mu}(s)-\boldsymbol{u}(s)\|_{V}ds

We use again the convergence (61) and Lebesque’s Theorem to find that

𝝈μ(t)𝝈(t)Q0 as μ0\left\|\boldsymbol{\sigma}_{\mu}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}\rightarrow 0\quad\text{ as }\quad\mu\rightarrow 0 (62)

Theorem 4.1 is now a consequence of the convergences (61) and (62).

Acknowledgments

The work of the second author was supported within the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project POSDRU/107/1.5/ S/76841 entitled Modern Doctoral Studies: Internationalization and Interdisciplinarity, at Babeş-Bolyai University, Cluj-Napoca.

References

[1] M. Barboteu, A. Matei and M. Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance, Quarterly Jnl. of Mechanics and App. Maths., to appear.
[2] M. Barboteu, F. Pătrulescu, A. Ramadan, M. Sofonea, History-dependent contact models for viscoplastic materials, IMA J. Appl. Math., 79, no. 6 (2014), pp. 11801200
[3] M. Barboteu, A. Ramadan, M. Sofonea and F. Pătrulescu, An elastic contact problem with normal compliance and memory term, Machine Dynamics Research, 36, no. 1 (2012), pp. 15-25..
[4] C. Corduneanu, Problèmes globaux dans la théorie des équations intégrales de Volterra, Ann. Math. Pure Appl. 67 (1965), 349-363.
[5] A. Farcaş, F. Pătrulescu and M. Sofonea, A history-dependent contact problem with unilateral constraint, Ann. Acad. Rom. Sci. Ser. Math. Appl. 4, no. 1 (2012), 90-96.
[6] W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, American Mathematical SocietyInternational Press, 2002.
[7] J. Jarušek and M. Sofonea. On the solvability of dynamic elastic-visco-plastic contact problems. Zeitschrift für Angewandte Matematik und Mechanik (ZAMM), 88 (2008) pp. 3-22.
[8] J. J. Massera and J. J. Schäffer, Linear Differential Equations and Function Spaces, Academic Press, New York-London, 1966.
[9] M. Shillor, M. Sofonea and J.J. Telega, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics 655, Springer, Berlin, 2004.
[10] M. Sofonea and A. Matei. History-dependent quasivariational inequalities arising in Contact Mechanics. European Journal of Applied Mathematics, 22 (2011), pp. 471491.
[11] M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series 398, Cambridge University Press, Cambridge, 2012.
[12] M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Notes, Cambridge University Press 398, Cambridge, 2012.
[13] M. Sofonea and F. Pătrulescu, Analysis of a history-dependent frictionless contact problem, Mathematics and Mechanics of Solids, 18, no. 4 (2013), pp. 409-430.
F.Pătrulescu

Tiberiu Popoviciu Institute of Numerical Analysis
P.O. Box 68-1, 400110 Cluj-Napoca, Romania, fpatrulescu@ictp.acad.ro
A. Farcaş

Faculty of Mathematics and Computer Science, Babeş-Bolyai University
Kogălniceanu street, no. 1, 400084, Cluj-Napoca, Romania
A. Ramadan

Laboratoire de Mathématiques et Physique, Université de Perpignan
52 Avenue de Paul Alduy, 66860 Perpignan, France

2013

Related Posts