## Abstract

Given a function defined on a square with one curved side, we consider some Bernstein-type operators as well as their product and Boolean sum. Using the weakly Picard operators technique and the contraction principle, we study the convergence of the iterates of these operators.

## Authors

T. **Catinas
**(Babes Bolyai Univ.)

D. **Otrocol
**(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

## Keywords

Square with curved side, Bernstein operators, contraction principle, weakly Picard operators.

## Cite this paper as:

T. Catinas, D. Otrocol, *Iterates of Bernstein type operators on a square with one curved side via contraction principle*, Fixed Point Theory, 14(2013), no. 1, pp. 97-106

## About this paper

##### Journal

Fixed Point Theory

##### Publisher Name

Casa Cartii de Stiinta, Cluj-Napoca, Romania

##### Print ISSN

1583-5022

##### Online ISSN

2066-9208

##### MR

MR3821782

##### ZBL

1397.34108

## Google Scholar

## References

## Paper in html format

## References

[1] O. Agratini, I.A. Rus, *Iterates of a class of discrete linear operators via contraction principle*, Comment. Math. Univ. Caroline, 44(2003), 555-563.

[2] O. Agratini, I.A. Rus, *Iterates of some bivariate approximation process via weakly Picard operators*, Nonlinear Analysis Forum, 8(2003), no. 2, 159-168.

[3] P. Blaga, T. Catinas, G. Coman, *Bernstein-type operators on triangle with one curved side*, Mediterr. J. Math., 10(2013), 10.1007/s00009-011-0156-2, in press.

[4] P. Blaga, T. Catinas, G. Coman, *Bernstein-type operators on a square with one and two curved sides*, Studia Univ. Babes–Bolyai Math., 55(2010), no. 3, 51-67.

[5] P. Blaga, T. Catinas, G. Coman, *Bernstein-type operators on triangle with all curved sides*, Appl. Math. Comput., 218(2011), 3072-3082.

[6] G. Coman, T. Catinas, *Interpolation operators on a triangle with one curved side*, BIT Numerical Mathematics, 50(2010), no. 2, 243-267.

[7] I. Gavrea, M. Ivan, *The iterates of positive linear operators preserving the affine functions*, J. Math. Anal. Appl., 372(2010), 366-368.

[8] I. Gavrea, M. Ivan, *The iterates of positive linear operators preserving the constants*, Appl. Math. Lett., 24(2011), no. 12, 2068-2071.

[9] I. Gavrea, M. Ivan, *On the iterates of positive linear operators*, J. Approximation Theory, 163(2011), no. 9, 1076-1079.

[10] H. Gonska, D. Kacso, P. Pitul, *The degree of convergence of over-iterated positive linear operators*, J. Appl. Funct. Anal., 1(2006), 403-423.

[11] H. Gonska, P. Pitul, I. Rasa, *Over-iterates of Bernstein-Stancu operators*, Calcolo, 44(2007), 117-125.

[12] H. Gonska, I. Rasa, *The limiting semigroup of the Bernstein iterates: degree of convergence*, Acta Math. Hungar., 111(2006), no. 1-2, 119-130.

[13] S. Karlin, Z. Ziegler, *Iteration of positive approximation operators*, J. Approximation Theory 3(1970), 310-339.

[14] R.P. Kelisky, T.J. Rivlin, *Iterates of Bernstein polynomials*, Pacific J. Math., 21(1967), 511-520.

[15] I.A. Rus, *Generalized Contractions and Applications*, Cluj Univ. Press, 2001.

[16] I.A. Rus, *Iterates of Stancu operators, via contraction principle*, Studia Univ. Babes-Bolyai Math., 47(2002), no. 4, 101-104.

[17] I.A. Rus, *Iterates of Bernstein operators, via contraction principle*, J. Math. Anal. Appl., 292(2004), 259-261.

[18] I.A. Rus, *Fixed point and interpolation point set of a positive linear operator on C(D),* Studia Univ. Babes–Bolyai Math., 55(2010), no. 4, 243-248.