If \((X,||\cdot|)\) is a linear space with asymmetric norm and \(Y\) is a \(X\), for every \(f\in Y_{+}^{\ast}\) (the cone of linear bounded functional on \(Y\)) there exists functional \(F\in Y_{+}^{\ast}\) extending \(f\) and preserving the asymmetric norm of \(f\).The problem of uniqueness of the extension in terms of uniqueness of elements of best of \(F\in X_{+}^{\ast}\) by elements of \(Y_{+}^{\perp}=\{G\in X_{+}^{\ast}:\left. G\right \vert _{Y}-0,F\geq G\}\), is discussed.
Authors
Costica Mustăţa
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania
Keywords
asymmetric norm; extension and approximation.
Paper coordinates
C. Mustăţa, A Phelps type result for spaces with asymmetric norms, Bul. Şt. Univ. Baia Mare, Seria B, Fascicola matematică-informatică, 18 (2002) no. 2, 275-280.
[1] Borodin, P.A.; The Banach-Mazur Theorem for Spaces with Asymetrie Norm and Its Applications in Convex Analysis, Mathematical Notes vol. 69. Nr. 3 (2001), 298-305
[2] Dolzhenko, E.P. and E.A. Sevastyanov, Approximation with sign-sensitive weights. Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sei. Izv. Marh.] 62 (1998) no. 6, 59-102 and 63 (1999) no. 3 77-48.
[3] Ferrer, J., Gregori, V. and C. Alegre, Quasi-uniform structures in linear lattices, Rocky Mountain J. Math. 23 (1993), 877-884
[4] Garcia -Raffi, L.M.; Romaguera S., and Sanchez Pérez E.A., Extension of Asymmetric Norms to Linear Spaces, Rend. Istit. Mat. Trieste XXXIII, 113-125 (2001)
[5] Krein, M.G. and A.A.Nudel’man, The Markov Moment Problem and Extrémům Problems [in Russian], Nauka, Moscow, 1973.
[6] Kopperman, R.D., All topologies come from generalized metrics, Amer. Math. Monthly 95 (1988), 89-97
[7] McShane, E.J., Extension of Range of Functions, Bull. Amer. Math. Soc. 40 (1934), 847-842
[8] Mustata, C., Extensions of Semi-Lipschitz functions on quasi-Metric spaces, Rev. Anal. Numér. Théor. Approx.. 30 (2001) No.l, 61-67
[9] Mustäfa, C., Extensions of convex Semi-Lipschitz Functions on quasi-metric linear spaces, Séminaire de la Théorie de la Meileure Approximation Convexité et Optimization, Cluj-Napoca, le 29 november 2001, 85-92.
[10] Phelps, R.R., Uniqueness of Hahn -Banach Extension and Unique Best Approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
[11] Romaguera, S. and M. Sanchis, Semi-Lipschitz Functions and Best Approximation in quasi-Metric Spaces, J. Approx. Theory 103 (2000), 292-301.
Paper (preprint) in HTML form
2002-Mustata-A Phelps type result-BulBaiaMare
A PHELPS TYPE THEOREM FOR SPACES WITH ASYMMETRIC NORMS
Costică MUSTĂTA
Abstract
If ( X,||*∣X, \| \cdot \mid ) is a linear space with asymmetric norm and YY is a subspace of XX, for every f inY_(+)^(**)f \in Y_{+}^{*} (the cone of linear bounded functional on YY ) there exists at most one functional F inX_(+)^(**)F \in X_{+}^{*} extending ff and preserving the asymmetric norm of ff. The problem of uniqueness of the extension in terms of uniqueness of elements of best approximation of F inX_(+)^(**)F \in X_{+}^{*} by elements of Y_(+)^(_|_)={G inX_(+)^(**):G|_(Y)=0,F >= G}Y_{+}^{\perp}=\left\{G \in X_{+}^{*}:\left.G\right|_{Y}=0, F \geq G\right\} is discussed.
MSC: 41A65, 41A52, 46A22
Keywords: asymmetric norm, extension and approximation
1. Asymmetric norms
Let XX be a real linear space and ||*∣:X rarr[0,oo)\| \cdot \mid: X \rightarrow[0, \infty) a function with the following properties:
||x∣>0\| x \mid>0 for all x!=theta;2)||lambda x|=lambda||x|x \neq \theta ; 2)\|\lambda x|=\lambda \| x| for all lambda >= 0\lambda \geq 0 and all x in X;3)||x+y∣≤||x|+||y|x \in X ; 3) \| x+y \mid \leq ||x|+||y| for all x,y,in Xx, y, \in X. Then the function ||*|\| \cdot| is called an asymmetric norm on XX and the pair ( X,||*||X,\|\cdot\| ) is called a space with asymmetric norm (see [5]). In such a space, in general ||-x|!=||x|\|-x|\neq \| x|.
Example ([1]) Consider the real linear space
C_(0)([0,1],1,0)={x:[0,1]rarrR,x" is continuous and "int_(0)^(1)x(t)dt=0}C_{0}([0,1], 1,0)=\left\{x:[0,1] \rightarrow \mathbb{R}, x \text { is continuous and } \int_{0}^{1} x(t) d t=0\right\}
The function ||*|:C_(0)([0,1],1,0)rarr[0,oo),||x|=max{x(t):t in[0,1]}:}\left\|\cdot\left|: C_{0}([0,1], 1,0) \rightarrow[0, \infty), \| x\right|=\max \{x(t): t \in[0,1]\}\right. satisfies the properties 1) - 3) of asymmetric norm. The functions x_(alpha)(t)=alpha(t-(1)/(2)),alpha inRx_{\alpha}(t)=\alpha\left(t-\frac{1}{2}\right), \alpha \in \mathbb{R} are in C_(0)([0,1],1,0)C_{0}([0,1], 1,0) and {:||x_(alpha)|_(=)(|alpha|)/(2)=||-x_(alpha)|\left.\left\|\left.x_{\alpha}\right|_{=} \frac{|\alpha|}{2}=\right\|-x_{\alpha} \right\rvert\,, but the functions y_(n)(t)=1-nt^(n-1),n > 2(n inN)y_{n}(t)=1-n t^{n-1}, n> 2(n \in \mathbb{N}), which also belong to C([0,1],1,0)C([0,1], 1,0) satisfy ||y_(n)|^(=1)\|\left. y_{n}\right|^{=1} and ||-y_(n)∣=n-1 > 1\|-y_{n} \mid=n-1>1, i.e. ||y_(n)|!=||-y_(n)|:}\left|\left|y_{n}\right| \neq\left|\left|-y_{n}\right|\right.\right..
By definition, the balls B(x,r)={y in X:||y-x∣<r}quad x in XB(x, r)=\{y \in X: \| y-x \mid<r\} \quad x \in X and r > 0r>0 form a base of the topology of the space (X,||*∣)(X, \| \cdot \mid). The space ( X,||*∣X, \| \cdot \mid ) equipped with this topology need not be a topological linear space, since the multiplication by scalars is not continuous. In the preceding example, for x=0x=0 and lambda=-1,(-1)0=0\lambda=-1,(-1) 0=0 and for all r > 0,-B(0,r)⊈B(0,1)r>0,-B(0, r) \nsubseteq B(0,1) i.e. the multiplication by scalars is not continuous.
For each asymmetric norm ||*∣\| \cdot \mid on XX one defines ||x||=max{||x|,||-x|}\|x\|=\max \{\|x|, \|-x|\}. Then ||x∣≤||x||,x in X\| x \mid \leq \|x\|, x \in X. If there exists c > 0c>0 such that ||x|| <= c||x∣\|x\| \leq c \| x \mid, i.e. the norm ||*||\|\cdot\| and asymmetric
norm ||*∣\| \cdot \mid are equivalent, then (X,||*||)(X,\|\cdot\|) is a topological linear space. Such a situation occurs when dim X < oo\operatorname{dim} X<\infty. In this case all the norms and asymmetric norms are equivalent ([5], I.2.1. pp.21-23). If ||*||\|\cdot\| and ||*∣\| \cdot \mid are equivalent then ||*∣\| \cdot \mid is continuous on XX.
An example of an asymmetric norm on the normed space (X,||*||)(X,\|\cdot\|) is given by ||x∣=||x||+varphi(x),x in X\| x \mid= \|x\|+\varphi(x), x \in X where varphi inX^(**),varphi!=0\varphi \in X^{*}, \varphi \neq 0, (a linear and continuous functional on XX ).
2. Linear and bounded functional on a linear space with asymmetric norm. Let (X,||||)(X,\| \|) be a space with asymmetric norm and f:X rarrRf: X \rightarrow \mathbb{R} a linear functional. The linear functional ff is called bounded if
{:(1)||f|:=s u p{(f(x))/(||x∣) < oo:x!=0} < oo.:}:}\begin{equation*}
\| f \left\lvert\,:=\sup \left\{\frac{f(x)}{\| x \mid}<\infty: x \neq 0\right\}<\infty .\right. \tag{1}
\end{equation*}
(see [5], Ch.9, Sec.5, p.483). If ff is a linear and bounded functional, then
{:(2)f(x) <= ||f|*||x|","x in X",":}\begin{equation*}
f(x) \leq||f| \cdot||x|, x \in X, \tag{2}
\end{equation*}
and, changing xx with -x-x, one obtains -f(x)=f(-x) <= ||f|*||-x|-f(x)=f(-x) \leq\|f|\cdot \|-x|. Consequently
-||f|*||-x| <= f(x) <= ||f|*||x|,x in X-\|f|\cdot\|-x|\leq f(x) \leq\|f|\cdot \| x|, x \in X
and in general, ||-f|!=||f|:}\left\|-f|\neq \| f|\right.. Denote by X^(#)X^{\#} the algebraic dual of the linear space XX and by X_(+)^(**)X_{+}^{*} the set of all linear and bounded functional on the space XX with an asymmetric norm |||.
For f,g inX_(+)^(**)f, g \in X_{+}^{*} one obtains f+g inX_(+)^(**)f+g \in X_{+}^{*} and lambda f inX_(+)^(**)(lambda >= 0)(lambda f+mu g inX_(+)^(**):}\lambda f \in X_{+}^{*}(\lambda \geq 0)\left(\lambda f+\mu g \in X_{+}^{*}\right., for all f,g,inX_(+)^(**)f, g, \in X_{+}^{*} and all lambda,mu >= 0\lambda, \mu \geq 0 ). Consequently X_(+)^(**)X_{+}^{*} is a convex cone in X^(#)X^{\#}.
The functional ||*∣:X_(+)^(**)rarr[0,oo)\| \cdot \mid: X_{+}^{*} \rightarrow[0, \infty) defined by formula (1) satisfies the axioms 1) - 3) of an asymmetric norm. Indeed, if f!=0f \neq 0 then there exists x in X,x!=0x \in X, x \neq 0 such that f(x) > 0f(x)>0 or f(-x) > 0f(-x)>0. It follows that ||f||=s u p(f(x)//||x||) > 0\|f\|=\sup (f(x) /\|x\|)>0. If lambda >= 0\lambda \geq 0 then ||lambda f|=lambda||f|\|\lambda f|=\lambda \| f| and ||f+g| <= ||f|+||g|||f+g| \leq||f|+||g| are evidently fullfielled.
Finally, observe that the function d:X xx X rarr[0,oo)d: X \times X \rightarrow[0, \infty) defined by
{:(3)d(x","y)=||x-y∣","quad x","y in X:}\begin{equation*}
d(x, y)=\| x-y \mid, \quad x, y \in X \tag{3}
\end{equation*}
where XX is a space with asymmetric norm ||*||\|\cdot\|, is a quasi-metric on XX, i.e. dd satisfies the conditions:
a) d(x,y)=0Longleftrightarrow x=yd(x, y)=0 \Longleftrightarrow x=y;
b) d(x,y) <= d(x,z)+d(z,y),quad x,y,z in X(d(x, y) \leq d(x, z)+d(z, y), \quad x, y, z \in X( see [6] ))
For f inX_(+)^(**)f \in X_{+}^{*} and all x,y in Xx, y \in X, we have f(x-y) <= ||f|*||x-y|f(x-y) \leq\|f|\cdot \| x-y|, so that
{:(4)f(x)-f(y) <= ||f|*||x-y|","quad x","y in X.:}\begin{equation*}
f(x)-f(y) \leq\|f|\cdot \| x-y|, \quad x, y \in X . \tag{4}
\end{equation*}
The last inequality means that every bounded linear functional ff on (X,||*||)(X,\|\cdot\|) is semiLipschitz (see [11]) i.e. X_(+)^(**)sub SLip_(0)XX_{+}^{*} \subset S \operatorname{Lip}_{0} X where
SLip_(0)X={f:X rarrR,f(0)=0,s u p((f(x)-f(y))vv0)/(||x-y||) < oo}S \operatorname{Lip}_{0} X=\left\{f: X \rightarrow \mathbb{R}, f(0)=0, \sup \frac{(f(x)-f(y)) \vee 0}{\|x-y\|}<\infty\right\}
is the semi-linear space of semi-Lipschitz real functions defined on (X,||*||)(X,\|\cdot\|) (see [11]). Because X_(+)^(**)sub SLip_(0)XX_{+}^{*} \subset S \operatorname{Lip}_{0} X, for every f inX_(+)^(**)f \in X_{+}^{*}, we have
{:(5)s u p_(x!=0)(f(x)vv0)/(||x∣)=s u p_(x!=0)(f(x))/(||x||)quad" and "{: quads u p_(x-y!=0)(f(x)-f(y))/(||x-y||)=||f|:}\begin{equation*}
\sup _{x \neq 0} \frac{f(x) \vee 0}{\| x \mid}=\sup _{x \neq 0} \frac{f(x)}{\|x\|} \quad \text { and } \left.\quad \sup _{x-y \neq 0} \frac{f(x)-f(y)}{\|x-y\|}=\| f \right\rvert\, \tag{5}
\end{equation*}
i.e. the asymmetric norm of f inX_(+)^(**)f \in X_{+}^{*} is the smallest semi-Lipschitz constant of ff.
Let YY be a subspace of the linear space XX with asymmetric norm ||*∣\| \cdot \mid and let f inY_(+)^(**)f \in Y_{+}^{*}. Then f in SLip_(0)Yf \in S \operatorname{Lip}_{0} Y and, by an analogue of an extension theorem of McShane ([7]), there exists at least one function F in SF \in S Lip _(0)X_{0} X such that F|_(Y)=f\left.F\right|_{Y}=f and ||F|=||f|\|F|=\| f| (see [8], Th.2). In our case the following result holds:
Theorem 1. ([5]). Let XX be a real linear space with the asymmetric norm ||*∣\| \cdot \mid and YY be a subspace of XX. Then for every f inY_(+)^(**)f \in Y_{+}^{*} there exists F inX_(+)^(**)F \in X_{+}^{*} such that
a) F|_(Y)=f\left.F\right|_{Y}=f,
b) ||F|=||f|\|F|=\| f|.
Proof. If f inY_(+)^(**)f \in Y_{+}^{*} let p:X rarrRp: X \rightarrow \mathbb{R} be defined by p(x)=||f|*||x|p(x)=\|f|\cdot \| x|. Then f(y) <= ||f|*||y|=p(y),y <= Yf(y) \leq\| f|\cdot \| y|= p(y), y \leq Y, and by Hahn-Banach theorem, there exists F inX^(**)F \in X^{*} such that
F|_(Y)=f" and "F(x) <= ||f|*||x|,quad x in X.\left.F\right|_{Y}=f \text { and } F(x) \leq\|f|\cdot \| x|, \quad x \in X .
Then
{:(F(x))/(||x||) <= ||f|,x in X,x!=0\left.\frac{F(x)}{\|x\|} \leq \| f \right\rvert\,, x \in X, x \neq 0
and taking the supremum with respect to x in Xx \in X one obtains ||F| <= ||f|\|F|\leq \| f|. On the other hand
{:[||F∣=s u p{(F(x))/(||x∣),x in X,x!=0} >= s u p{(F(y))/(||y∣),y in Y,y!=0}=],[(6){:=s u p{(f(y))/(||y∣),y in Y,y!=0}=||f|]:}\begin{align*}
\| F \mid & =\sup \left\{\frac{F(x)}{\| x \mid}, x \in X, x \neq 0\right\} \geq \sup \left\{\frac{F(y)}{\| y \mid}, y \in Y, y \neq 0\right\}= \\
& \left.=\sup \left\{\frac{f(y)}{\| y \mid}, y \in Y, y \neq 0\right\}=\| f \right\rvert\, \tag{6}
\end{align*}
and, consequently ||F|=||f|\|F|=\| f|.
By Theorem 1 it follows that if YY is a subspace of ( X,||*∣X, \| \cdot \mid ) then for every f inY_(+)^(**)f \in Y_{+}^{*} the set
{:(6)E(f)={F inX_(+)^(**):F|_(Y)=f" and "||F|=||f|}:}:}\begin{equation*}
\mathcal{E}(f)=\left\{F \in X_{+}^{*}:\left.F\right|_{Y}=f \text { and }\|F|=\| f|\}\right. \tag{6}
\end{equation*}
is nonvoid.
Observe that, for every f inY_(+)^(**)f \in Y_{+}^{*}, the set E(f)\mathcal{E}(f) of all extensions of ff, is included in S(0):={F inX_(+)^(**):||F|=||f|}:}S(0):=\left\{F \in X_{+}^{*}:\|F|=\| f|\}\right. and E(f)\mathcal{E}(f) is convex.
Indeed, if F_(1),F_(2)inE(f)F_{1}, F_{2} \in \mathcal{E}(f) and lambda in[0,1]\lambda \in[0,1] then f= lambdaF_(1)|_(Y)+(1-lambda)F_(2)|_(Y)f=\left.\lambda F_{1}\right|_{Y}+\left.(1-\lambda) F_{2}\right|_{Y} and
{:[||f|=|| lambdaF_(1)|_(Y)+(1-lambda)F_(2)| <= ||lambdaF_(1)+(1-lambda)F_(2)| <= lambda||F_(1)|+(1-lambda)||F_(2)|=:}],[quad=lambda||f|+(1-lambda)||f|=||f|" so that "lambdaF_(1)+(1-lambda)F_(2)inE(f).:}]:}\begin{aligned}
& \left\|f \left|=\left\|\left.\lambda F_{1}\right|_{Y}+(1-\lambda) F_{2}\left|\leq\left\|\lambda F_{1}+(1-\lambda) F_{2}\left|\leq \lambda\left\|F_{1}\left|+(1-\lambda) \| F_{2}\right|=\right.\right.\right.\right.\right.\right.\right. \\
& \quad=\lambda\left\|f \left|+(1-\lambda)\left\|f|=\| f| \text { so that } \lambda F_{1}+(1-\lambda) F_{2} \in \mathcal{E}(f) .\right.\right.\right.
\end{aligned}
3. Extension and approximation
In [10] R.R. Phelps made a connection between the set of the extensions of a linear and continuous functional f inY^(**)(Y^(**):}f \in Y^{*}\left(Y^{*}\right. is the algebraic - topological dual of the subspace YY of a normed space (X,||*||))(X,\|\cdot\|)) and the set of elements of best approximation of a functional F inX^(**)F \in X^{*} by the elements of the annihilator Y^(_|_)={G inX^(**):G|_(Y)=0}Y^{\perp}=\left\{G \in X^{*}:\left.G\right|_{Y}=0\right\}.
If F inX^(**)F \in X^{*} then the set of elements of best approximation of FF in Y^(_|_)Y^{\perp} is P_(Y^(_|_))(F)=F-E(F|_(Y))P_{Y^{\perp}}(F)= F-\mathcal{E}\left(\left.F\right|_{Y}\right) where E(F|_(Y))={H inX^(**):H|_(Y)=F|_(Y):}\mathcal{E}\left(\left.F\right|_{Y}\right)=\left\{H \in X^{*}:\left.H\right|_{Y}=\left.F\right|_{Y}\right. and {:||H||=||F|_(Y)||}\left.\|H\|=\left\|\left.F\right|_{Y}\right\|\right\}. The extension of a functional f inY^(**)f \in Y^{*} is unique if and only if Y^(_|_)Y^{\perp} is a Chebyshevian subspace of X^(**)X^{*}.
In the proof of R.R. Phelps'result one uses an essential fact: together with F inX^(**)F \in X^{*} the functional F-GF-G belongs to X^(**)X^{*}, for every G inE(F|_(Y))G \in \mathcal{E}\left(\left.F\right|_{Y}\right), i.e. the fact that X^(**)X^{*} has a structure of linear space.
Because X_(+)^(**)X_{+}^{*} has only a structure of a convex cone, it could exist a linear and bounded functional F inX_(+)^(**)F \in X_{+}^{*}, such that for certain extensions GG from E(F|_(Y))\mathcal{E}\left(\left.F\right|_{Y}\right), or for all of them, we could have F-GF-G unbounded, i.e. F-G!inX_(+)^(**)F-G \notin X_{+}^{*}. Some additional definitions are necessary. For a cone K\mathcal{K} in a linear space V\mathcal{V} and x,y inVx, y \in \mathcal{V}, we will write x <= yx \leq y if and only if y-x inKy-x \in \mathcal{K}.
Let M\mathcal{M} be a non-empty subset of the cone X_(+)^(**)X_{+}^{*} and F inX_(+)^(**)F \in X_{+}^{*}. We say that FF admits minorants in M\mathcal{M} if there exists G inMG \in \mathcal{M} such that F >= GF \geq G (i.e. F-G inX_(+)^(**)F-G \in X_{+}^{*} ) and we say that FF majorizes the set M\mathcal{M} if F >= GF \geq G for every G inMG \in \mathcal{M}. (i.e. F-MsubX_(+)^(**)F-\mathcal{M} \subset X_{+}^{*} ). Obviously, if F inX_(+)^(**)F \in X_{+}^{*} and majorizes M\mathcal{M}, then FF admits minorants in M\mathcal{M}.
For a subspace YY of the space XX with asymmetric norm, we denote by Y_(+)^(_|_)Y_{+}^{\perp} the annihilator of YY in X_(+)^(**)X_{+}^{*} i.e., the set
We state the following problem of best approximation:
For F inX_(+)^(**)F \in X_{+}^{*} find G_(0)inY_(+)^(_|_)G_{0} \in Y_{+}^{\perp} such that ||F-G_(0)∣=d_(+)(F,Y_(+)^(_|_))\| F-G_{0} \mid=d_{+}\left(F, Y_{+}^{\perp}\right) where
{:(8)d_(+)(F,Y_(+)^(**))=i n f{||F-G∣:G inY_(+)^(_|_),F >= G}.:}\begin{equation*}
d_{+}\left(F, Y_{+}^{*}\right)=\inf \left\{\| F-G \mid: G \in Y_{+}^{\perp}, F \geq G\right\} . \tag{8}
\end{equation*}
We say that Y_(+)^(_|_)Y_{+}^{\perp} is FF - proximinal if P_(Y_(+)^(_|_))(F)!=O/P_{Y_{+}^{\perp}}(F) \neq \emptyset. If, in addition, card P_(Y_(+)^(_|_))(F)=1P_{Y_{+}^{\perp}}(F)=1 then Y_(+)^(_|_)Y_{+}^{\perp} is called FF - Chebyshevian.
The following result is similar to Phelps'result([10]).
Theorem 2. Let XX be a space with asymmetric norm, YY a subspace of XX, and F inX_(+)^(**)F \in X_{+}^{*}. Let
{:(10)E(F|_(Y))={H inX_(+)^(**):H|_(Y)=F|_(Y)" and "||H|=||F|}:}:}\begin{equation*}
\mathcal{E}\left(\left.F\right|_{Y}\right)=\left\{H \in X_{+}^{*}:\left.H\right|_{Y}=\left.F\right|_{Y} \text { and }\|H|=\| F|\}\right. \tag{10}
\end{equation*}
a) If E_(+)(F|_(Y))!=O/\mathcal{E}_{+}\left(\left.F\right|_{Y}\right) \neq \emptyset then Y_(+)^(_|_)Y_{+}^{\perp} is FF - proximinal and the following equality holds:
b) If G_(0)inP_(Y_(+)^(_|_))(F)G_{0} \in P_{Y_{+}^{\perp}}(F) then F-G_(0)inE_(+)(F|_(Y))F-G_{0} \in \mathcal{E}_{+}\left(\left.F\right|_{Y}\right).
c) We have E_(+)(F|_(Y))!=O/\mathcal{E}_{+}\left(\left.F\right|_{Y}\right) \neq \emptyset if and only if P_(Y_(+)^(_|_))(F)!=O/P_{Y_{+}^{\perp}}(F) \neq \emptyset and the following equality holds:
d) Y_(+)^(_|_)Y_{+}^{\perp} is FF - Chebyshevian if and only quad\quad card E_(+)(F|_(Y))=1\mathcal{E}_{+}\left(\left.F\right|_{Y}\right)=1.
e) F inE_(+)(F|_(Y))F \in \mathcal{E}_{+}\left(\left.F\right|_{Y}\right) if and only if 0inP_(Y_(+)^(_|_))(F)0 \in P_{Y_{+}^{\perp}}(F).
Proof. Let G_(0)G_{0} be a minorant of FF in E(F|_(Y))(G_(0):}\mathcal{E}\left(\left.F\right|_{Y}\right)\left(G_{0}\right. exists, because E_(+)(F|_(Y)!=O/)\mathcal{E}_{+}\left(\left.F\right|_{Y} \neq \emptyset\right). Then, F-G_(0)inX_(+)^(**)F-G_{0} \in X_{+}^{*} and
Therefore, the formula (12) holds, and Y_(+)^(_|_)Y_{+}^{\perp} is FF - proximinal.
b) Let G_(0)inP_(Y_(+)^(_|_))(F)G_{0} \in P_{Y_{+}^{\perp}}(F). Then F >= G_(0)F \geq G_{0} (according to the definition of P_(Y_(+)^(_|_))(F)P_{Y_{+}^{\perp}}(F) ), (F-G_(0))|_(Y)=F|_(Y)\left.\left(F-G_{0}\right)\right|_{Y}=\left.F\right|_{Y} and
||F-G_(0)|=i n f{||F-G∣:G inY_(+)^(_|_),F >= G}=d_(+)(F,Y_(+)^(_|_))=||F|_(Y)∣:}\left\|F-G_{0}\left|=\inf \left\{\| F-G \mid: G \in Y_{+}^{\perp}, F \geq G\right\}=d_{+}\left(F, Y_{+}^{\perp}\right)=\| F\right|_{Y} \mid\right.
(according to a)). Thus F-G_(0)inE_(+)(F|_(Y))F-G_{0} \in \mathcal{E}_{+}\left(\left.F\right|_{Y}\right).
c) Follows from a ) and b ).
If H inE_(+)(F|_(Y))H \in \mathcal{E}_{+}\left(\left.F\right|_{Y}\right) then F >= H,(F-H)|_(Y)=0F \geq H,\left.(F-H)\right|_{Y}=0 and
and then F-H inP_(Y_(+)^(_|_))(F)F-H \in P_{Y_{+}^{\perp}}(F).
Conversely, G inP_(Y_(+)^(_|_))(F)G \in P_{Y_{+}^{\perp}}(F) implies F >= GF \geq G, so that F-G inX_(+)^(**),(F-G)|_(Y)=F|_(Y)F-G \in X_{+}^{*},\left.(F-G)\right|_{Y}=\left.F\right|_{Y}, and
It follows that F-G inE_(+)(F|_(Y))F-G \in \mathcal{E}_{+}\left(\left.F\right|_{Y}\right), i.e. G in F-E_(+)(F|_(Y))G \in F-\mathcal{E}_{+}\left(\left.F\right|_{Y}\right).
d) If Y_(+)^(_|_)Y_{+}^{\perp} is FF - Chebyshevian, it results that there exists only one element G inP_(Y_(+)^(_|_))(F)G \in P_{Y_{+}^{\perp}}(F) such that F >= GF \geq G, so that F-G inX_(+)^(**),(F-G)|_(Y)=F|_(Y)F-G \in X_{+}^{*},\left.(F-G)\right|_{Y}=\left.F\right|_{Y} and
i.e. E_(+)(F|_(Y))\mathcal{E}_{+}\left(\left.F\right|_{Y}\right) contains only one element, namely F-GF-G.
e) If F inE_(+)(F|_(Y))F \in \mathcal{E}_{+}\left(\left.F\right|_{Y}\right) then there exists H inE_(+)(F|_(Y))H \in \mathcal{E}_{+}\left(\left.F\right|_{Y}\right) such that F=HF=H. Thus, according to c) F-H=F-F=0inP_(Y_(+)^(_|_))(F)F-H=F-F=0 \in P_{Y_{+}^{\perp}}(F).
If 0inP_(Y_(+)^(_|_))(F)0 \in P_{Y_{+}^{\perp}}(F) then ||F|=d_(+)(F,Y_(+)^(_|_))=||F|_(Y)∣:}\left\|F\left|=d_{+}\left(F, Y_{+}^{\perp}\right)=\| F\right|_{Y} \mid\right., so F inE_(+)(F|_(Y))F \in \mathcal{E}_{+}\left(\left.F\right|_{Y}\right).
REFERENCES
[1]Borodin, P.A.; The Banach-Mazur Theorem for Spaces with Asymetric Norm and Its Applications in Convex Analysis, Mathematical Notes vol. 69. Nr. 3 (2001), 298-305
[2] Dolzhenko, E.P. and E.A. Sevast'yanov, Approximation with sign-sensitive weights, Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Marh.] 62 (1998) no.6, 59-102 and 63 (1999) no. 3 77-48.
[3] Ferrer, J., Gregori, V. and C. Alegre, Quasi-uniform structures in linear lattices, Rocky Mountain J. Math. 23 (1993), 877-884
[4] Garćia - Raffi, L.M.; Romaguera S., and Sanchez Pérez E.A., Extension of Asymmetric Norms to Linear Spaces, Rend. Istit. Mat. Trieste XXXIII, 113-125 (2001)
[5] Krein, M.G. and A.A.Nudel'man, The Markov Moment Problem and Extremum Problems [in Russian], Nauka, Moscow, 1973.
[6] Kopperman, R.D., All topologies come from generalized metrics, Amer. Math. Monthly 95 (1988), 89-97
[7] McShane, E.J., Extension of Range of Functions, Bull. Amer. Math. Soc. 40 (1934), 847-842
[8] Mustăţa, C., Extensions of Semi-Lipschitz functions on quasi-Metric spaces, Rev. Anal. Numér. Théor. Approx.. 30 (2001) No.1, 61-67
[9] Mustăfa, C., Extensions of convex Semi-Lipschitz Functions on quasi-metric linear spaces, Séminaire de la Théorie de la Meileure Approximation Convexité et Optimization, Cluj-Napoca, le 29 november 2001, 85-92.
[10] Phelps, R.R., Uniqueness of Hahn - Banach Extension and Unique Best Approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
[11] Romaguera, S. and M. Sanchis, Semi-Lipschitz Functions and Best Approximation in quasi-Metric Spaces, J. Approx. Theory 103 (2000), 292-301.
Received: 1.09.2002
Department of Mathematics and Computer Science
North University of Baia Mare, Str. Victoriei nr. 76
4800 Baia Mare ROMANIA;
Email: mmustata@ubbcluj.ro