A Phelps type result for spaces with asymmetric norms

Abstract


If \((X,||\cdot|)\) is a linear space with asymmetric norm and \(Y\) is a \(X\), for every \(f\in Y_{+}^{\ast}\) (the cone of linear bounded functional on \(Y\)) there exists functional \(F\in Y_{+}^{\ast}\) extending \(f\) and preserving the asymmetric norm of \(f\).The problem of uniqueness of the extension in terms of uniqueness of elements of best of \(F\in X_{+}^{\ast}\) by elements of \(Y_{+}^{\perp}=\{G\in X_{+}^{\ast}:\left. G\right \vert _{Y}-0,F\geq G\}\), is discussed.

Authors

Costica Mustăţa
“Tiberiu Popoviciu”  Institute of Numerical Analysis, Romanian Academy,  Romania

Keywords

asymmetric norm; extension and approximation.

Paper coordinates

C. Mustăţa, A Phelps type result for spaces with asymmetric norms, Bul. Şt. Univ. Baia Mare, Seria B, Fascicola matematică-informatică, 18 (2002) no. 2, 275-280.

PDF

About this paper

Journal

Bul. St. Univ. Baia Mare

Publisher Name
Print ISSN
Online ISSN

google scholar link

[1] Borodin, P.A.; The Banach-Mazur Theorem for Spaces with Asymetrie Norm and Its Applications in Convex Analysis, Mathematical Notes vol. 69. Nr. 3 (2001), 298-305
[2] Dolzhenko, E.P. and E.A. Sevastyanov, Approximation with sign-sensitive weights. Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sei. Izv. Marh.] 62 (1998) no. 6, 59-102 and 63 (1999) no. 3 77-48.
[3] Ferrer, J., Gregori, V. and C. Alegre, Quasi-uniform structures in linear lattices, Rocky Mountain J. Math. 23 (1993), 877-884
[4] Garcia -Raffi, L.M.; Romaguera S., and Sanchez Pérez E.A., Extension of Asymmetric Norms to Linear Spaces, Rend. Istit. Mat. Trieste XXXIII, 113-125 (2001)
[5] Krein, M.G. and A.A.Nudel’man, The Markov Moment Problem and Extrémům Problems [in Russian], Nauka, Moscow, 1973.
[6] Kopperman, R.D., All topologies come from generalized metrics, Amer. Math. Monthly 95 (1988), 89-97
[7] McShane, E.J., Extension of Range of Functions, Bull. Amer. Math. Soc. 40 (1934), 847-842
[8] Mustata, C., Extensions of Semi-Lipschitz functions on quasi-Metric spaces, Rev. Anal. Numér. Théor. Approx.. 30 (2001) No.l, 61-67
[9] Mustäfa, C., Extensions of convex Semi-Lipschitz Functions on quasi-metric linear spaces, Séminaire de la Théorie de la Meileure Approximation Convexité et Optimization, Cluj-Napoca, le 29 november 2001, 85-92.
[10] Phelps, R.R., Uniqueness of Hahn -Banach Extension and Unique Best Approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
[11] Romaguera, S. and M. Sanchis, Semi-Lipschitz Functions and Best Approximation in quasi-Metric Spaces, J. Approx. Theory 103 (2000), 292-301.

Paper (preprint) in HTML form

2002-Mustata-A Phelps type result-BulBaiaMare

A PHELPS TYPE THEOREM FOR SPACES WITH ASYMMETRIC NORMS

Costică MUSTĂTA

Abstract

If ( X , X , X,||*∣X, \| \cdot \midX, ) is a linear space with asymmetric norm and Y Y YYY is a subspace of X X XXX, for every f Y + f Y + f inY_(+)^(**)f \in Y_{+}^{*}fY+ (the cone of linear bounded functional on Y Y YYY ) there exists at most one functional F X + F X + F inX_(+)^(**)F \in X_{+}^{*}FX+ extending f f fff and preserving the asymmetric norm of f f fff. The problem of uniqueness of the extension in terms of uniqueness of elements of best approximation of F X + F X + F inX_(+)^(**)F \in X_{+}^{*}FX+ by elements of Y + = { G X + : G | Y = 0 , F G } Y + = G X + : G Y = 0 , F G Y_(+)^(_|_)={G inX_(+)^(**):G|_(Y)=0,F >= G}Y_{+}^{\perp}=\left\{G \in X_{+}^{*}:\left.G\right|_{Y}=0, F \geq G\right\}Y+={GX+:G|Y=0,FG} is discussed.

MSC: 41A65, 41A52, 46A22
Keywords: asymmetric norm, extension and approximation

1. Asymmetric norms

Let X X XXX be a real linear space and ∣: X [ 0 , ) ∣: X [ 0 , ) ||*∣:X rarr[0,oo)\| \cdot \mid: X \rightarrow[0, \infty)∣:X[0,) a function with the following properties:
  1. x ∣> 0 x ∣> 0 ||x∣>0\| x \mid>0x∣>0 for all x θ ; 2 ) λ x | = λ x | x θ ; 2 ) λ x | = λ x | x!=theta;2)||lambda x|=lambda||x|x \neq \theta ; 2)\|\lambda x|=\lambda \| x|xθ;2)λx|=λx| for all λ 0 λ 0 lambda >= 0\lambda \geq 0λ0 and all x X ; 3 ) x + y ∣≤ | | x | + | | y | x X ; 3 ) x + y ∣≤ | | x | + | | y | x in X;3)||x+y∣≤||x|+||y|x \in X ; 3) \| x+y \mid \leq ||x|+||y|xX;3)x+y∣≤||x|+||y| for all x , y , X x , y , X x,y,in Xx, y, \in Xx,y,X. Then the function | | ||*|\| \cdot|| is called an asymmetric norm on X X XXX and the pair ( X , X , X,||*||X,\|\cdot\|X, ) is called a space with asymmetric norm (see [5]). In such a space, in general x | x | x | x | ||-x|!=||x|\|-x|\neq \| x|x|x|.
Example ([1]) Consider the real linear space
C 0 ( [ 0 , 1 ] , 1 , 0 ) = { x : [ 0 , 1 ] R , x is continuous and 0 1 x ( t ) d t = 0 } C 0 ( [ 0 , 1 ] , 1 , 0 ) = x : [ 0 , 1 ] R , x  is continuous and  0 1 x ( t ) d t = 0 C_(0)([0,1],1,0)={x:[0,1]rarrR,x" is continuous and "int_(0)^(1)x(t)dt=0}C_{0}([0,1], 1,0)=\left\{x:[0,1] \rightarrow \mathbb{R}, x \text { is continuous and } \int_{0}^{1} x(t) d t=0\right\}C0([0,1],1,0)={x:[0,1]R,x is continuous and 01x(t)dt=0}
The function | : C 0 ( [ 0 , 1 ] , 1 , 0 ) [ 0 , ) , x | = max { x ( t ) : t [ 0 , 1 ] } : C 0 ( [ 0 , 1 ] , 1 , 0 ) [ 0 , ) , x = max { x ( t ) : t [ 0 , 1 ] } ||*|:C_(0)([0,1],1,0)rarr[0,oo),||x|=max{x(t):t in[0,1]}:}\left\|\cdot\left|: C_{0}([0,1], 1,0) \rightarrow[0, \infty), \| x\right|=\max \{x(t): t \in[0,1]\}\right.|:C0([0,1],1,0)[0,),x|=max{x(t):t[0,1]} satisfies the properties 1) - 3) of asymmetric norm. The functions x α ( t ) = α ( t 1 2 ) , α R x α ( t ) = α t 1 2 , α R x_(alpha)(t)=alpha(t-(1)/(2)),alpha inRx_{\alpha}(t)=\alpha\left(t-\frac{1}{2}\right), \alpha \in \mathbb{R}xα(t)=α(t12),αR are in C 0 ( [ 0 , 1 ] , 1 , 0 ) C 0 ( [ 0 , 1 ] , 1 , 0 ) C_(0)([0,1],1,0)C_{0}([0,1], 1,0)C0([0,1],1,0) and x α | = | α | 2 = x α | x α = | α | 2 = x α {:||x_(alpha)|_(=)(|alpha|)/(2)=||-x_(alpha)|\left.\left\|\left.x_{\alpha}\right|_{=} \frac{|\alpha|}{2}=\right\|-x_{\alpha} \right\rvert\,xα|=|α|2=xα|, but the functions y n ( t ) = 1 n t n 1 , n > 2 ( n N ) y n ( t ) = 1 n t n 1 , n > 2 ( n N ) y_(n)(t)=1-nt^(n-1),n > 2(n inN)y_{n}(t)=1-n t^{n-1}, n> 2(n \in \mathbb{N})yn(t)=1ntn1,n>2(nN), which also belong to C ( [ 0 , 1 ] , 1 , 0 ) C ( [ 0 , 1 ] , 1 , 0 ) C([0,1],1,0)C([0,1], 1,0)C([0,1],1,0) satisfy y n | = 1 y n = 1 ||y_(n)|^(=1)\|\left. y_{n}\right|^{=1}yn|=1 and y n ∣= n 1 > 1 y n ∣= n 1 > 1 ||-y_(n)∣=n-1 > 1\|-y_{n} \mid=n-1>1yn∣=n1>1, i.e. | | y n | | | y n | y n y n ||y_(n)|!=||-y_(n)|:}\left|\left|y_{n}\right| \neq\left|\left|-y_{n}\right|\right.\right.||yn|||yn|.
By definition, the balls B ( x , r ) = { y X : y x ∣< r } x X B ( x , r ) = { y X : y x ∣< r } x X B(x,r)={y in X:||y-x∣<r}quad x in XB(x, r)=\{y \in X: \| y-x \mid<r\} \quad x \in XB(x,r)={yX:yx∣<r}xX and r > 0 r > 0 r > 0r>0r>0 form a base of the topology of the space ( X , ) ( X , ) (X,||*∣)(X, \| \cdot \mid)(X,). The space ( X , X , X,||*∣X, \| \cdot \midX, ) equipped with this topology need not be a topological linear space, since the multiplication by scalars is not continuous. In the preceding example, for x = 0 x = 0 x=0x=0x=0 and λ = 1 , ( 1 ) 0 = 0 λ = 1 , ( 1 ) 0 = 0 lambda=-1,(-1)0=0\lambda=-1,(-1) 0=0λ=1,(1)0=0 and for all r > 0 , B ( 0 , r ) B ( 0 , 1 ) r > 0 , B ( 0 , r ) B ( 0 , 1 ) r > 0,-B(0,r)⊈B(0,1)r>0,-B(0, r) \nsubseteq B(0,1)r>0,B(0,r)B(0,1) i.e. the multiplication by scalars is not continuous.
For each asymmetric norm ||*∣\| \cdot \mid on X X XXX one defines x = max { x | , x | } x = max { x | , x | } ||x||=max{||x|,||-x|}\|x\|=\max \{\|x|, \|-x|\}x=max{x|,x|}. Then x ∣≤ x , x X x ∣≤ x , x X ||x∣≤||x||,x in X\| x \mid \leq \|x\|, x \in Xx∣≤x,xX. If there exists c > 0 c > 0 c > 0c>0c>0 such that x c x x c x ||x|| <= c||x∣\|x\| \leq c \| x \midxcx, i.e. the norm ||*||\|\cdot\| and asymmetric
norm ||*∣\| \cdot \mid are equivalent, then ( X , ) ( X , ) (X,||*||)(X,\|\cdot\|)(X,) is a topological linear space. Such a situation occurs when dim X < dim X < dim X < oo\operatorname{dim} X<\inftydimX<. In this case all the norms and asymmetric norms are equivalent ([5], I.2.1. pp.21-23). If ||*||\|\cdot\| and ||*∣\| \cdot \mid are equivalent then ||*∣\| \cdot \mid is continuous on X X XXX.
An example of an asymmetric norm on the normed space ( X , ) ( X , ) (X,||*||)(X,\|\cdot\|)(X,) is given by x ∣= x + φ ( x ) , x X x ∣= x + φ ( x ) , x X ||x∣=||x||+varphi(x),x in X\| x \mid= \|x\|+\varphi(x), x \in Xx∣=x+φ(x),xX where φ X , φ 0 φ X , φ 0 varphi inX^(**),varphi!=0\varphi \in X^{*}, \varphi \neq 0φX,φ0, (a linear and continuous functional on X X XXX ).
2. Linear and bounded functional on a linear space with asymmetric norm. Let ( X , ) ( X , ) (X,||||)(X,\| \|)(X,) be a space with asymmetric norm and f : X R f : X R f:X rarrRf: X \rightarrow \mathbb{R}f:XR a linear functional. The linear functional f f fff is called bounded if
(1) f | := sup { f ( x ) x < : x 0 } < . (1) f := sup f ( x ) x < : x 0 < . {:(1)||f|:=s u p{(f(x))/(||x∣) < oo:x!=0} < oo.:}:}\begin{equation*} \| f \left\lvert\,:=\sup \left\{\frac{f(x)}{\| x \mid}<\infty: x \neq 0\right\}<\infty .\right. \tag{1} \end{equation*}(1)f|:=sup{f(x)x<:x0}<.
(see [5], Ch.9, Sec.5, p.483). If f f fff is a linear and bounded functional, then
(2) f ( x ) | | f | | | x | , x X , (2) f ( x ) | | f | | | x | , x X , {:(2)f(x) <= ||f|*||x|","x in X",":}\begin{equation*} f(x) \leq||f| \cdot||x|, x \in X, \tag{2} \end{equation*}(2)f(x)||f|||x|,xX,
and, changing x x xxx with x x -x-xx, one obtains f ( x ) = f ( x ) f | x | f ( x ) = f ( x ) f | x | -f(x)=f(-x) <= ||f|*||-x|-f(x)=f(-x) \leq\|f|\cdot \|-x|f(x)=f(x)f|x|. Consequently
f | x | f ( x ) f | x | , x X f | x | f ( x ) f | x | , x X -||f|*||-x| <= f(x) <= ||f|*||x|,x in X-\|f|\cdot\|-x|\leq f(x) \leq\|f|\cdot \| x|, x \in Xf|x|f(x)f|x|,xX
and in general, f | f | f | f | ||-f|!=||f|:}\left\|-f|\neq \| f|\right.f|f|. Denote by X # X # X^(#)X^{\#}X# the algebraic dual of the linear space X X XXX and by X + X + X_(+)^(**)X_{+}^{*}X+ the set of all linear and bounded functional on the space X X XXX with an asymmetric norm |||.
For f , g X + f , g X + f,g inX_(+)^(**)f, g \in X_{+}^{*}f,gX+ one obtains f + g X + f + g X + f+g inX_(+)^(**)f+g \in X_{+}^{*}f+gX+ and λ f X + ( λ 0 ) ( λ f + μ g X + λ f X + ( λ 0 ) λ f + μ g X + lambda f inX_(+)^(**)(lambda >= 0)(lambda f+mu g inX_(+)^(**):}\lambda f \in X_{+}^{*}(\lambda \geq 0)\left(\lambda f+\mu g \in X_{+}^{*}\right.λfX+(λ0)(λf+μgX+, for all f , g , X + f , g , X + f,g,inX_(+)^(**)f, g, \in X_{+}^{*}f,g,X+ and all λ , μ 0 λ , μ 0 lambda,mu >= 0\lambda, \mu \geq 0λ,μ0 ). Consequently X + X + X_(+)^(**)X_{+}^{*}X+ is a convex cone in X # X # X^(#)X^{\#}X#.
The functional ∣: X + [ 0 , ) ∣: X + [ 0 , ) ||*∣:X_(+)^(**)rarr[0,oo)\| \cdot \mid: X_{+}^{*} \rightarrow[0, \infty)∣:X+[0,) defined by formula (1) satisfies the axioms 1) - 3) of an asymmetric norm. Indeed, if f 0 f 0 f!=0f \neq 0f0 then there exists x X , x 0 x X , x 0 x in X,x!=0x \in X, x \neq 0xX,x0 such that f ( x ) > 0 f ( x ) > 0 f(x) > 0f(x)>0f(x)>0 or f ( x ) > 0 f ( x ) > 0 f(-x) > 0f(-x)>0f(x)>0. It follows that f = sup ( f ( x ) / x ) > 0 f = sup ( f ( x ) / x ) > 0 ||f||=s u p(f(x)//||x||) > 0\|f\|=\sup (f(x) /\|x\|)>0f=sup(f(x)/x)>0. If λ 0 λ 0 lambda >= 0\lambda \geq 0λ0 then λ f | = λ f | λ f | = λ f | ||lambda f|=lambda||f|\|\lambda f|=\lambda \| f|λf|=λf| and | | f + g | | | f | + | | g | | | f + g | | | f | + | | g | ||f+g| <= ||f|+||g|||f+g| \leq||f|+||g|||f+g|||f|+||g| are evidently fullfielled.
Finally, observe that the function d : X × X [ 0 , ) d : X × X [ 0 , ) d:X xx X rarr[0,oo)d: X \times X \rightarrow[0, \infty)d:X×X[0,) defined by
(3) d ( x , y ) = x y , x , y X (3) d ( x , y ) = x y , x , y X {:(3)d(x","y)=||x-y∣","quad x","y in X:}\begin{equation*} d(x, y)=\| x-y \mid, \quad x, y \in X \tag{3} \end{equation*}(3)d(x,y)=xy,x,yX
where X X XXX is a space with asymmetric norm ||*||\|\cdot\|, is a quasi-metric on X X XXX, i.e. d d ddd satisfies the conditions:
a) d ( x , y ) = 0 x = y d ( x , y ) = 0 x = y d(x,y)=0Longleftrightarrow x=yd(x, y)=0 \Longleftrightarrow x=yd(x,y)=0x=y;
b) d ( x , y ) d ( x , z ) + d ( z , y ) , x , y , z X ( d ( x , y ) d ( x , z ) + d ( z , y ) , x , y , z X ( d(x,y) <= d(x,z)+d(z,y),quad x,y,z in X(d(x, y) \leq d(x, z)+d(z, y), \quad x, y, z \in X(d(x,y)d(x,z)+d(z,y),x,y,zX( see [6] ) ) )))
For f X + f X + f inX_(+)^(**)f \in X_{+}^{*}fX+ and all x , y X x , y X x,y in Xx, y \in Xx,yX, we have f ( x y ) f | x y | f ( x y ) f | x y | f(x-y) <= ||f|*||x-y|f(x-y) \leq\|f|\cdot \| x-y|f(xy)f|xy|, so that
(4) f ( x ) f ( y ) f | x y | , x , y X . (4) f ( x ) f ( y ) f | x y | , x , y X . {:(4)f(x)-f(y) <= ||f|*||x-y|","quad x","y in X.:}\begin{equation*} f(x)-f(y) \leq\|f|\cdot \| x-y|, \quad x, y \in X . \tag{4} \end{equation*}(4)f(x)f(y)f|xy|,x,yX.
The last inequality means that every bounded linear functional f f fff on ( X , ) ( X , ) (X,||*||)(X,\|\cdot\|)(X,) is semiLipschitz (see [11]) i.e. X + S Lip 0 X X + S Lip 0 X X_(+)^(**)sub SLip_(0)XX_{+}^{*} \subset S \operatorname{Lip}_{0} XX+SLip0X where
S Lip 0 X = { f : X R , f ( 0 ) = 0 , sup ( f ( x ) f ( y ) ) 0 x y < } S Lip 0 X = f : X R , f ( 0 ) = 0 , sup ( f ( x ) f ( y ) ) 0 x y < SLip_(0)X={f:X rarrR,f(0)=0,s u p((f(x)-f(y))vv0)/(||x-y||) < oo}S \operatorname{Lip}_{0} X=\left\{f: X \rightarrow \mathbb{R}, f(0)=0, \sup \frac{(f(x)-f(y)) \vee 0}{\|x-y\|}<\infty\right\}SLip0X={f:XR,f(0)=0,sup(f(x)f(y))0xy<}
is the semi-linear space of semi-Lipschitz real functions defined on ( X , ) ( X , ) (X,||*||)(X,\|\cdot\|)(X,) (see [11]). Because X + S Lip 0 X X + S Lip 0 X X_(+)^(**)sub SLip_(0)XX_{+}^{*} \subset S \operatorname{Lip}_{0} XX+SLip0X, for every f X + f X + f inX_(+)^(**)f \in X_{+}^{*}fX+, we have
(5) sup x 0 f ( x ) 0 x = sup x 0 f ( x ) x and sup x y 0 f ( x ) f ( y ) x y = f | (5) sup x 0 f ( x ) 0 x = sup x 0 f ( x ) x  and  sup x y 0 f ( x ) f ( y ) x y = f {:(5)s u p_(x!=0)(f(x)vv0)/(||x∣)=s u p_(x!=0)(f(x))/(||x||)quad" and "{: quads u p_(x-y!=0)(f(x)-f(y))/(||x-y||)=||f|:}\begin{equation*} \sup _{x \neq 0} \frac{f(x) \vee 0}{\| x \mid}=\sup _{x \neq 0} \frac{f(x)}{\|x\|} \quad \text { and } \left.\quad \sup _{x-y \neq 0} \frac{f(x)-f(y)}{\|x-y\|}=\| f \right\rvert\, \tag{5} \end{equation*}(5)supx0f(x)0x=supx0f(x)x and supxy0f(x)f(y)xy=f|
i.e. the asymmetric norm of f X + f X + f inX_(+)^(**)f \in X_{+}^{*}fX+ is the smallest semi-Lipschitz constant of f f fff.
Let Y Y YYY be a subspace of the linear space X X XXX with asymmetric norm ||*∣\| \cdot \mid and let f Y + f Y + f inY_(+)^(**)f \in Y_{+}^{*}fY+. Then f S Lip 0 Y f S Lip 0 Y f in SLip_(0)Yf \in S \operatorname{Lip}_{0} YfSLip0Y and, by an analogue of an extension theorem of McShane ([7]), there exists at least one function F S F S F in SF \in SFS Lip 0 X 0 X _(0)X_{0} X0X such that F | Y = f F Y = f F|_(Y)=f\left.F\right|_{Y}=fF|Y=f and F | = f | F | = f | ||F|=||f|\|F|=\| f|F|=f| (see [8], Th.2). In our case the following result holds:
Theorem 1. ([5]). Let X X XXX be a real linear space with the asymmetric norm ||*∣\| \cdot \mid and Y Y YYY be a subspace of X X XXX. Then for every f Y + f Y + f inY_(+)^(**)f \in Y_{+}^{*}fY+ there exists F X + F X + F inX_(+)^(**)F \in X_{+}^{*}FX+ such that
a) F | Y = f F Y = f F|_(Y)=f\left.F\right|_{Y}=fF|Y=f,
b) F | = f | F | = f | ||F|=||f|\|F|=\| f|F|=f|.
Proof. If f Y + f Y + f inY_(+)^(**)f \in Y_{+}^{*}fY+ let p : X R p : X R p:X rarrRp: X \rightarrow \mathbb{R}p:XR be defined by p ( x ) = f | x | p ( x ) = f | x | p(x)=||f|*||x|p(x)=\|f|\cdot \| x|p(x)=f|x|. Then f ( y ) f | y | = p ( y ) , y Y f ( y ) f | y | = p ( y ) , y Y f(y) <= ||f|*||y|=p(y),y <= Yf(y) \leq\| f|\cdot \| y|= p(y), y \leq Yf(y)f|y|=p(y),yY, and by Hahn-Banach theorem, there exists F X F X F inX^(**)F \in X^{*}FX such that
F | Y = f and F ( x ) f | x | , x X . F Y = f  and  F ( x ) f | x | , x X . F|_(Y)=f" and "F(x) <= ||f|*||x|,quad x in X.\left.F\right|_{Y}=f \text { and } F(x) \leq\|f|\cdot \| x|, \quad x \in X .F|Y=f and F(x)f|x|,xX.
Then
F ( x ) x f | , x X , x 0 F ( x ) x f , x X , x 0 {:(F(x))/(||x||) <= ||f|,x in X,x!=0\left.\frac{F(x)}{\|x\|} \leq \| f \right\rvert\,, x \in X, x \neq 0F(x)xf|,xX,x0
and taking the supremum with respect to x X x X x in Xx \in XxX one obtains F | f | F | f | ||F| <= ||f|\|F|\leq \| f|F|f|. On the other hand
F = sup { F ( x ) x , x X , x 0 } sup { F ( y ) y , y Y , y 0 } = (6) = sup { f ( y ) y , y Y , y 0 } = f | F = sup F ( x ) x , x X , x 0 sup F ( y ) y , y Y , y 0 = (6) = sup f ( y ) y , y Y , y 0 = f {:[||F∣=s u p{(F(x))/(||x∣),x in X,x!=0} >= s u p{(F(y))/(||y∣),y in Y,y!=0}=],[(6){:=s u p{(f(y))/(||y∣),y in Y,y!=0}=||f|]:}\begin{align*} \| F \mid & =\sup \left\{\frac{F(x)}{\| x \mid}, x \in X, x \neq 0\right\} \geq \sup \left\{\frac{F(y)}{\| y \mid}, y \in Y, y \neq 0\right\}= \\ & \left.=\sup \left\{\frac{f(y)}{\| y \mid}, y \in Y, y \neq 0\right\}=\| f \right\rvert\, \tag{6} \end{align*}F=sup{F(x)x,xX,x0}sup{F(y)y,yY,y0}=(6)=sup{f(y)y,yY,y0}=f|
and, consequently F | = f | F | = f | ||F|=||f|\|F|=\| f|F|=f|.
By Theorem 1 it follows that if Y Y YYY is a subspace of ( X , X , X,||*∣X, \| \cdot \midX, ) then for every f Y + f Y + f inY_(+)^(**)f \in Y_{+}^{*}fY+ the set
(6) E ( f ) = { F X + : F | Y = f and F | = f | } (6) E ( f ) = F X + : F Y = f  and  F | = f | } {:(6)E(f)={F inX_(+)^(**):F|_(Y)=f" and "||F|=||f|}:}:}\begin{equation*} \mathcal{E}(f)=\left\{F \in X_{+}^{*}:\left.F\right|_{Y}=f \text { and }\|F|=\| f|\}\right. \tag{6} \end{equation*}(6)E(f)={FX+:F|Y=f and F|=f|}
is nonvoid.
Observe that, for every f Y + f Y + f inY_(+)^(**)f \in Y_{+}^{*}fY+, the set E ( f ) E ( f ) E(f)\mathcal{E}(f)E(f) of all extensions of f f fff, is included in S ( 0 ) := { F X + : F | = f | } S ( 0 ) := F X + : F | = f | } S(0):={F inX_(+)^(**):||F|=||f|}:}S(0):=\left\{F \in X_{+}^{*}:\|F|=\| f|\}\right.S(0):={FX+:F|=f|} and E ( f ) E ( f ) E(f)\mathcal{E}(f)E(f) is convex.
Indeed, if F 1 , F 2 E ( f ) F 1 , F 2 E ( f ) F_(1),F_(2)inE(f)F_{1}, F_{2} \in \mathcal{E}(f)F1,F2E(f) and λ [ 0 , 1 ] λ [ 0 , 1 ] lambda in[0,1]\lambda \in[0,1]λ[0,1] then f = λ F 1 | Y + ( 1 λ ) F 2 | Y f = λ F 1 Y + ( 1 λ ) F 2 Y f= lambdaF_(1)|_(Y)+(1-lambda)F_(2)|_(Y)f=\left.\lambda F_{1}\right|_{Y}+\left.(1-\lambda) F_{2}\right|_{Y}f=λF1|Y+(1λ)F2|Y and
f | = λ F 1 | Y + ( 1 λ ) F 2 | λ F 1 + ( 1 λ ) F 2 | λ F 1 | + ( 1 λ ) F 2 | = = λ f | + ( 1 λ ) f | = f | so that λ F 1 + ( 1 λ ) F 2 E ( f ) . f = λ F 1 Y + ( 1 λ ) F 2 λ F 1 + ( 1 λ ) F 2 λ F 1 + ( 1 λ ) F 2 = = λ f + ( 1 λ ) f | = f |  so that  λ F 1 + ( 1 λ ) F 2 E ( f ) . {:[||f|=|| lambdaF_(1)|_(Y)+(1-lambda)F_(2)| <= ||lambdaF_(1)+(1-lambda)F_(2)| <= lambda||F_(1)|+(1-lambda)||F_(2)|=:}],[quad=lambda||f|+(1-lambda)||f|=||f|" so that "lambdaF_(1)+(1-lambda)F_(2)inE(f).:}]:}\begin{aligned} & \left\|f \left|=\left\|\left.\lambda F_{1}\right|_{Y}+(1-\lambda) F_{2}\left|\leq\left\|\lambda F_{1}+(1-\lambda) F_{2}\left|\leq \lambda\left\|F_{1}\left|+(1-\lambda) \| F_{2}\right|=\right.\right.\right.\right.\right.\right.\right. \\ & \quad=\lambda\left\|f \left|+(1-\lambda)\left\|f|=\| f| \text { so that } \lambda F_{1}+(1-\lambda) F_{2} \in \mathcal{E}(f) .\right.\right.\right. \end{aligned}f|=λF1|Y+(1λ)F2|λF1+(1λ)F2|λF1|+(1λ)F2|==λf|+(1λ)f|=f| so that λF1+(1λ)F2E(f).

3. Extension and approximation

In [10] R.R. Phelps made a connection between the set of the extensions of a linear and continuous functional f Y ( Y f Y Y f inY^(**)(Y^(**):}f \in Y^{*}\left(Y^{*}\right.fY(Y is the algebraic - topological dual of the subspace Y Y YYY of a normed space ( X , ) ) ( X , ) ) (X,||*||))(X,\|\cdot\|))(X,)) and the set of elements of best approximation of a functional F X F X F inX^(**)F \in X^{*}FX by the elements of the annihilator Y = { G X : G | Y = 0 } Y = G X : G Y = 0 Y^(_|_)={G inX^(**):G|_(Y)=0}Y^{\perp}=\left\{G \in X^{*}:\left.G\right|_{Y}=0\right\}Y={GX:G|Y=0}.
If F X F X F inX^(**)F \in X^{*}FX then the set of elements of best approximation of F F FFF in Y Y Y^(_|_)Y^{\perp}Y is P Y ( F ) = F E ( F | Y ) P Y ( F ) = F E F Y P_(Y^(_|_))(F)=F-E(F|_(Y))P_{Y^{\perp}}(F)= F-\mathcal{E}\left(\left.F\right|_{Y}\right)PY(F)=FE(F|Y) where E ( F | Y ) = { H X : H | Y = F | Y E F Y = H X : H Y = F Y E(F|_(Y))={H inX^(**):H|_(Y)=F|_(Y):}\mathcal{E}\left(\left.F\right|_{Y}\right)=\left\{H \in X^{*}:\left.H\right|_{Y}=\left.F\right|_{Y}\right.E(F|Y)={HX:H|Y=F|Y and H = F | Y } H = F Y {:||H||=||F|_(Y)||}\left.\|H\|=\left\|\left.F\right|_{Y}\right\|\right\}H=F|Y}. The extension of a functional f Y f Y f inY^(**)f \in Y^{*}fY is unique if and only if Y Y Y^(_|_)Y^{\perp}Y is a Chebyshevian subspace of X X X^(**)X^{*}X.
In the proof of R.R. Phelps'result one uses an essential fact: together with F X F X F inX^(**)F \in X^{*}FX the functional F G F G F-GF-GFG belongs to X X X^(**)X^{*}X, for every G E ( F | Y ) G E F Y G inE(F|_(Y))G \in \mathcal{E}\left(\left.F\right|_{Y}\right)GE(F|Y), i.e. the fact that X X X^(**)X^{*}X has a structure of linear space.
Because X + X + X_(+)^(**)X_{+}^{*}X+ has only a structure of a convex cone, it could exist a linear and bounded functional F X + F X + F inX_(+)^(**)F \in X_{+}^{*}FX+, such that for certain extensions G G GGG from E ( F | Y ) E F Y E(F|_(Y))\mathcal{E}\left(\left.F\right|_{Y}\right)E(F|Y), or for all of them, we could have F G F G F-GF-GFG unbounded, i.e. F G X + F G X + F-G!inX_(+)^(**)F-G \notin X_{+}^{*}FGX+. Some additional definitions are necessary. For a cone K K K\mathcal{K}K in a linear space V V V\mathcal{V}V and x , y V x , y V x,y inVx, y \in \mathcal{V}x,yV, we will write x y x y x <= yx \leq yxy if and only if y x K y x K y-x inKy-x \in \mathcal{K}yxK.
Let M M M\mathcal{M}M be a non-empty subset of the cone X + X + X_(+)^(**)X_{+}^{*}X+ and F X + F X + F inX_(+)^(**)F \in X_{+}^{*}FX+. We say that F F FFF admits minorants in M M M\mathcal{M}M if there exists G M G M G inMG \in \mathcal{M}GM such that F G F G F >= GF \geq GFG (i.e. F G X + F G X + F-G inX_(+)^(**)F-G \in X_{+}^{*}FGX+ ) and we say that F F FFF majorizes the set M M M\mathcal{M}M if F G F G F >= GF \geq GFG for every G M G M G inMG \in \mathcal{M}GM. (i.e. F M X + F M X + F-MsubX_(+)^(**)F-\mathcal{M} \subset X_{+}^{*}FMX+ ). Obviously, if F X + F X + F inX_(+)^(**)F \in X_{+}^{*}FX+ and majorizes M M M\mathcal{M}M, then F F FFF admits minorants in M M M\mathcal{M}M.
For a subspace Y Y YYY of the space X X XXX with asymmetric norm, we denote by Y + Y + Y_(+)^(_|_)Y_{+}^{\perp}Y+ the annihilator of Y Y YYY in X + X + X_(+)^(**)X_{+}^{*}X+ i.e., the set
(7) Y + = { G X + : G | Y = 0 } . (7) Y + = G X + : G Y = 0 . {:(7)Y_(+)^(_|_)={G inX_(+)^(**):G|_(Y)=0}.:}\begin{equation*} Y_{+}^{\perp}=\left\{G \in X_{+}^{*}:\left.G\right|_{Y}=0\right\} . \tag{7} \end{equation*}(7)Y+={GX+:G|Y=0}.
We state the following problem of best approximation:
For F X + F X + F inX_(+)^(**)F \in X_{+}^{*}FX+ find G 0 Y + G 0 Y + G_(0)inY_(+)^(_|_)G_{0} \in Y_{+}^{\perp}G0Y+ such that F G 0 ∣= d + ( F , Y + ) F G 0 ∣= d + F , Y + ||F-G_(0)∣=d_(+)(F,Y_(+)^(_|_))\| F-G_{0} \mid=d_{+}\left(F, Y_{+}^{\perp}\right)FG0∣=d+(F,Y+) where
(8) d + ( F , Y + ) = inf { F G ∣: G Y + , F G } . (8) d + F , Y + = inf F G ∣: G Y + , F G . {:(8)d_(+)(F,Y_(+)^(**))=i n f{||F-G∣:G inY_(+)^(_|_),F >= G}.:}\begin{equation*} d_{+}\left(F, Y_{+}^{*}\right)=\inf \left\{\| F-G \mid: G \in Y_{+}^{\perp}, F \geq G\right\} . \tag{8} \end{equation*}(8)d+(F,Y+)=inf{FG∣:GY+,FG}.
Let
(9) P Y + ( F ) := { G Y + : F G , F G ∣= d + ( F , Y + ) } . (9) P Y + ( F ) := G Y + : F G , F G ∣= d + F , Y + . {:(9)P_(Y_(+)^(_|_))(F):={G inY_(+)^(**):F >= G,||F-G∣=d_(+)(F,Y_(+)^(_|_))}.:}\begin{equation*} P_{Y_{+}^{\perp}}(F):=\left\{G \in Y_{+}^{*}: F \geq G, \| F-G \mid=d_{+}\left(F, Y_{+}^{\perp}\right)\right\} . \tag{9} \end{equation*}(9)PY+(F):={GY+:FG,FG∣=d+(F,Y+)}.
We say that Y + Y + Y_(+)^(_|_)Y_{+}^{\perp}Y+ is F F FFF - proximinal if P Y + ( F ) P Y + ( F ) P_(Y_(+)^(_|_))(F)!=O/P_{Y_{+}^{\perp}}(F) \neq \emptysetPY+(F). If, in addition, card P Y + ( F ) = 1 P Y + ( F ) = 1 P_(Y_(+)^(_|_))(F)=1P_{Y_{+}^{\perp}}(F)=1PY+(F)=1 then Y + Y + Y_(+)^(_|_)Y_{+}^{\perp}Y+ is called F F FFF - Chebyshevian.
The following result is similar to Phelps'result([10]).
Theorem 2. Let X X XXX be a space with asymmetric norm, Y Y YYY a subspace of X X XXX, and F X + F X + F inX_(+)^(**)F \in X_{+}^{*}FX+. Let
(10) E ( F | Y ) = { H X + : H | Y = F | Y and H | = F | } (10) E F Y = H X + : H Y = F Y  and  H | = F | } {:(10)E(F|_(Y))={H inX_(+)^(**):H|_(Y)=F|_(Y)" and "||H|=||F|}:}:}\begin{equation*} \mathcal{E}\left(\left.F\right|_{Y}\right)=\left\{H \in X_{+}^{*}:\left.H\right|_{Y}=\left.F\right|_{Y} \text { and }\|H|=\| F|\}\right. \tag{10} \end{equation*}(10)E(F|Y)={HX+:H|Y=F|Y and H|=F|}
and
(11) E + ( F | Y ) = { H E ( F | Y ) : H F } (11) E + F Y = H E F Y : H F {:(11)E_(+)(F|_(Y))={H inE(F|_(Y)):H <= F}:}\begin{equation*} \mathcal{E}_{+}\left(\left.F\right|_{Y}\right)=\left\{H \in \mathcal{E}\left(\left.F\right|_{Y}\right): H \leq F\right\} \tag{11} \end{equation*}(11)E+(F|Y)={HE(F|Y):HF}
a) If E + ( F | Y ) E + F Y E_(+)(F|_(Y))!=O/\mathcal{E}_{+}\left(\left.F\right|_{Y}\right) \neq \emptysetE+(F|Y) then Y + Y + Y_(+)^(_|_)Y_{+}^{\perp}Y+ is F F FFF - proximinal and the following equality holds:
(12) d + ( F , Y + ) = F | Y (12) d + F , Y + = F Y {:(12)d_(+)(F,Y_(+)^(_|_))=||F|_(Y)∣:}\begin{equation*} d_{+}\left(F, Y_{+}^{\perp}\right)=\|\left. F\right|_{Y} \mid \tag{12} \end{equation*}(12)d+(F,Y+)=F|Y
b) If G 0 P Y + ( F ) G 0 P Y + ( F ) G_(0)inP_(Y_(+)^(_|_))(F)G_{0} \in P_{Y_{+}^{\perp}}(F)G0PY+(F) then F G 0 E + ( F | Y ) F G 0 E + F Y F-G_(0)inE_(+)(F|_(Y))F-G_{0} \in \mathcal{E}_{+}\left(\left.F\right|_{Y}\right)FG0E+(F|Y).
c) We have E + ( F | Y ) E + F Y E_(+)(F|_(Y))!=O/\mathcal{E}_{+}\left(\left.F\right|_{Y}\right) \neq \emptysetE+(F|Y) if and only if P Y + ( F ) P Y + ( F ) P_(Y_(+)^(_|_))(F)!=O/P_{Y_{+}^{\perp}}(F) \neq \emptysetPY+(F) and the following equality holds:
(13) F E + ( F | Y ) = P Y + ( F ) (13) F E + F Y = P Y + ( F ) {:(13)F-E_(+)(F|_(Y))=P_(Y_(+)^(_|_))(F):}\begin{equation*} F-\mathcal{E}_{+}\left(\left.F\right|_{Y}\right)=P_{Y_{+}^{\perp}}(F) \tag{13} \end{equation*}(13)FE+(F|Y)=PY+(F)
d) Y + Y + Y_(+)^(_|_)Y_{+}^{\perp}Y+ is F F FFF - Chebyshevian if and only quad\quad card E + ( F | Y ) = 1 E + F Y = 1 E_(+)(F|_(Y))=1\mathcal{E}_{+}\left(\left.F\right|_{Y}\right)=1E+(F|Y)=1.
e) F E + ( F | Y ) F E + F Y F inE_(+)(F|_(Y))F \in \mathcal{E}_{+}\left(\left.F\right|_{Y}\right)FE+(F|Y) if and only if 0 P Y + ( F ) 0 P Y + ( F ) 0inP_(Y_(+)^(_|_))(F)0 \in P_{Y_{+}^{\perp}}(F)0PY+(F).
Proof. Let G 0 G 0 G_(0)G_{0}G0 be a minorant of F F FFF in E ( F | Y ) ( G 0 E F Y G 0 E(F|_(Y))(G_(0):}\mathcal{E}\left(\left.F\right|_{Y}\right)\left(G_{0}\right.E(F|Y)(G0 exists, because E + ( F | Y ) E + F Y E_(+)(F|_(Y)!=O/)\mathcal{E}_{+}\left(\left.F\right|_{Y} \neq \emptyset\right)E+(F|Y). Then, F G 0 X + F G 0 X + F-G_(0)inX_(+)^(**)F-G_{0} \in X_{+}^{*}FG0X+ and
F | Y | = G 0 | = F ( F G 0 ) | d + ( F , Y + ) . F | Y = G 0 = F F G 0 d + F , Y + . ||F|_(Y)|=||G_(0)|=||F-(F-G_(0))| >= d_(+)(F,Y_(+)^(_|_)).:}\left\|F | _ { Y } \left|=\left\|G_{0}\left|=\| F-\left(F-G_{0}\right)\right| \geq d_{+}\left(F, Y_{+}^{\perp}\right) .\right.\right.\right.F|Y|=G0|=F(FG0)|d+(F,Y+).
On the other hand, for every G Y + ( F G ) G Y + ( F G ) G inY_(+)^(_|_)(F >= G)G \in Y_{+}^{\perp}(F \geq G)GY+(FG) we have
F | Y | = F | Y G | Y | F G | F | Y = F Y G Y | F G | ||F|_(Y)|=||F|_(Y)-G|_(Y)| <= ||F-G|:}\left\|F | _ { Y } \left|=\left\|\left.F\right|_{Y}-\left.G\right|_{Y}|\leq \| F-G|\right.\right.\right.F|Y|=F|YG|Y|FG|
Taking the infimum with respect to G Y + ( F G ) G Y + ( F G ) G inY_(+)^(_|_)(F >= G)G \in Y_{+}^{\perp}(F \geq G)GY+(FG) we find
F | Y ∣≤ d + ( F , Y + ) F Y ∣≤ d + F , Y + ||F|_(Y)∣≤d_(+)(F,Y_(+)^(_|_))\|\left. F\right|_{Y} \mid \leq d_{+}\left(F, Y_{+}^{\perp}\right)F|Y∣≤d+(F,Y+)
Therefore, the formula (12) holds, and Y + Y + Y_(+)^(_|_)Y_{+}^{\perp}Y+ is F F FFF - proximinal.
b) Let G 0 P Y + ( F ) G 0 P Y + ( F ) G_(0)inP_(Y_(+)^(_|_))(F)G_{0} \in P_{Y_{+}^{\perp}}(F)G0PY+(F). Then F G 0 F G 0 F >= G_(0)F \geq G_{0}FG0 (according to the definition of P Y + ( F ) P Y + ( F ) P_(Y_(+)^(_|_))(F)P_{Y_{+}^{\perp}}(F)PY+(F) ), ( F G 0 ) | Y = F | Y F G 0 Y = F Y (F-G_(0))|_(Y)=F|_(Y)\left.\left(F-G_{0}\right)\right|_{Y}=\left.F\right|_{Y}(FG0)|Y=F|Y and
F G 0 | = inf { F G ∣: G Y + , F G } = d + ( F , Y + ) = F | Y F G 0 = inf F G ∣: G Y + , F G = d + F , Y + = F Y ||F-G_(0)|=i n f{||F-G∣:G inY_(+)^(_|_),F >= G}=d_(+)(F,Y_(+)^(_|_))=||F|_(Y)∣:}\left\|F-G_{0}\left|=\inf \left\{\| F-G \mid: G \in Y_{+}^{\perp}, F \geq G\right\}=d_{+}\left(F, Y_{+}^{\perp}\right)=\| F\right|_{Y} \mid\right.FG0|=inf{FG∣:GY+,FG}=d+(F,Y+)=F|Y
(according to a)). Thus F G 0 E + ( F | Y ) F G 0 E + F Y F-G_(0)inE_(+)(F|_(Y))F-G_{0} \in \mathcal{E}_{+}\left(\left.F\right|_{Y}\right)FG0E+(F|Y).
c) Follows from a ) and b ).
If H E + ( F | Y ) H E + F Y H inE_(+)(F|_(Y))H \in \mathcal{E}_{+}\left(\left.F\right|_{Y}\right)HE+(F|Y) then F H , ( F H ) | Y = 0 F H , ( F H ) Y = 0 F >= H,(F-H)|_(Y)=0F \geq H,\left.(F-H)\right|_{Y}=0FH,(FH)|Y=0 and
F ( F H ) | = H | = F | Y ∣= d + ( F , Y + ) F ( F H ) = H | = F | Y ∣= d + F , Y + ||F-(F-H)|=||H|=||F|_(Y)∣=d_(+)(F,Y_(+)^(_|_)):}\left\|F-(F-H)\left|=\left\|H|=\| F|_{Y} \mid=d_{+}\left(F, Y_{+}^{\perp}\right)\right.\right.\right.F(FH)|=H|=F|Y∣=d+(F,Y+)
and then F H P Y + ( F ) F H P Y + ( F ) F-H inP_(Y_(+)^(_|_))(F)F-H \in P_{Y_{+}^{\perp}}(F)FHPY+(F).
Conversely, G P Y + ( F ) G P Y + ( F ) G inP_(Y_(+)^(_|_))(F)G \in P_{Y_{+}^{\perp}}(F)GPY+(F) implies F G F G F >= GF \geq GFG, so that F G X + , ( F G ) | Y = F | Y F G X + , ( F G ) Y = F Y F-G inX_(+)^(**),(F-G)|_(Y)=F|_(Y)F-G \in X_{+}^{*},\left.(F-G)\right|_{Y}=\left.F\right|_{Y}FGX+,(FG)|Y=F|Y, and
F G | = F | Y ∣= d + ( F , P Y + ) F G | = F | Y ∣= d + F , P Y + ||F-G|=||F|_(Y)∣=d_(+)(F,P_(Y_(+)^(_|_))):}\left\|F-G|=\| F|_{Y} \mid=d_{+}\left(F, P_{Y_{+}^{\perp}}\right)\right.FG|=F|Y∣=d+(F,PY+)
It follows that F G E + ( F | Y ) F G E + F Y F-G inE_(+)(F|_(Y))F-G \in \mathcal{E}_{+}\left(\left.F\right|_{Y}\right)FGE+(F|Y), i.e. G F E + ( F | Y ) G F E + F Y G in F-E_(+)(F|_(Y))G \in F-\mathcal{E}_{+}\left(\left.F\right|_{Y}\right)GFE+(F|Y).
d) If Y + Y + Y_(+)^(_|_)Y_{+}^{\perp}Y+ is F F FFF - Chebyshevian, it results that there exists only one element G P Y + ( F ) G P Y + ( F ) G inP_(Y_(+)^(_|_))(F)G \in P_{Y_{+}^{\perp}}(F)GPY+(F) such that F G F G F >= GF \geq GFG, so that F G X + , ( F G ) | Y = F | Y F G X + , ( F G ) Y = F Y F-G inX_(+)^(**),(F-G)|_(Y)=F|_(Y)F-G \in X_{+}^{*},\left.(F-G)\right|_{Y}=\left.F\right|_{Y}FGX+,(FG)|Y=F|Y and
F G | = d + ( F , Y + ) = F | Y , F G = d + F , Y + = F Y , ||F-G|=d_(+)(F,Y_(+)^(_|_))=||F|_(Y)∣,:}\left\|F-G\left|=d_{+}\left(F, Y_{+}^{\perp}\right)=\| F\right|_{Y} \mid,\right.FG|=d+(F,Y+)=F|Y,
i.e. E + ( F | Y ) E + F Y E_(+)(F|_(Y))\mathcal{E}_{+}\left(\left.F\right|_{Y}\right)E+(F|Y) contains only one element, namely F G F G F-GF-GFG.
e) If F E + ( F | Y ) F E + F Y F inE_(+)(F|_(Y))F \in \mathcal{E}_{+}\left(\left.F\right|_{Y}\right)FE+(F|Y) then there exists H E + ( F | Y ) H E + F Y H inE_(+)(F|_(Y))H \in \mathcal{E}_{+}\left(\left.F\right|_{Y}\right)HE+(F|Y) such that F = H F = H F=HF=HF=H. Thus, according to c) F H = F F = 0 P Y + ( F ) F H = F F = 0 P Y + ( F ) F-H=F-F=0inP_(Y_(+)^(_|_))(F)F-H=F-F=0 \in P_{Y_{+}^{\perp}}(F)FH=FF=0PY+(F).
If 0 P Y + ( F ) 0 P Y + ( F ) 0inP_(Y_(+)^(_|_))(F)0 \in P_{Y_{+}^{\perp}}(F)0PY+(F) then F | = d + ( F , Y + ) = F | Y F = d + F , Y + = F Y ||F|=d_(+)(F,Y_(+)^(_|_))=||F|_(Y)∣:}\left\|F\left|=d_{+}\left(F, Y_{+}^{\perp}\right)=\| F\right|_{Y} \mid\right.F|=d+(F,Y+)=F|Y, so F E + ( F | Y ) F E + F Y F inE_(+)(F|_(Y))F \in \mathcal{E}_{+}\left(\left.F\right|_{Y}\right)FE+(F|Y).

REFERENCES

[1]Borodin, P.A.; The Banach-Mazur Theorem for Spaces with Asymetric Norm and Its Applications in Convex Analysis, Mathematical Notes vol. 69. Nr. 3 (2001), 298-305
[2] Dolzhenko, E.P. and E.A. Sevast'yanov, Approximation with sign-sensitive weights, Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Marh.] 62 (1998) no.6, 59-102 and 63 (1999) no. 3 77-48.
[3] Ferrer, J., Gregori, V. and C. Alegre, Quasi-uniform structures in linear lattices, Rocky Mountain J. Math. 23 (1993), 877-884
[4] Garćia - Raffi, L.M.; Romaguera S., and Sanchez Pérez E.A., Extension of Asymmetric Norms to Linear Spaces, Rend. Istit. Mat. Trieste XXXIII, 113-125 (2001)
[5] Krein, M.G. and A.A.Nudel'man, The Markov Moment Problem and Extremum Problems [in Russian], Nauka, Moscow, 1973.
[6] Kopperman, R.D., All topologies come from generalized metrics, Amer. Math. Monthly 95 (1988), 89-97
[7] McShane, E.J., Extension of Range of Functions, Bull. Amer. Math. Soc. 40 (1934), 847-842
[8] Mustăţa, C., Extensions of Semi-Lipschitz functions on quasi-Metric spaces, Rev. Anal. Numér. Théor. Approx.. 30 (2001) No.1, 61-67
[9] Mustăfa, C., Extensions of convex Semi-Lipschitz Functions on quasi-metric linear spaces, Séminaire de la Théorie de la Meileure Approximation Convexité et Optimization, Cluj-Napoca, le 29 november 2001, 85-92.
[10] Phelps, R.R., Uniqueness of Hahn - Banach Extension and Unique Best Approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
[11] Romaguera, S. and M. Sanchis, Semi-Lipschitz Functions and Best Approximation in quasi-Metric Spaces, J. Approx. Theory 103 (2000), 292-301.
Received: 1.09.2002
Department of Mathematics and Computer Science
North University of Baia Mare, Str. Victoriei nr. 76
4800 Baia Mare ROMANIA;
Email: mmustata@ubbcluj.ro
2002

Related Posts