## Abstract

We consider a mathematical model which describes the quasistatic contact between a viscoelastic body and a deformable obstacle, the so-called foundation. The material’s behaviour is modelled with a viscoelastic constitutive law with long memory. The contact is frictionless and is defined using a multivalued normal compliance condition. We present a regularization method in the study of a class of variational inequalities involving history-dependent operators. Finally, we apply the abstract results to analyse the contact problem.

## Authors

Flavius **Patrulescu**

Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

## Keywords

## Cite this paper as:

F. Pătrulescu, *A regularization method for a viscoelastic contact problem*, Math. Mech. Solids, vol. 23, no. 2 (2018), pp. 181-194

Not available yet.

## About this paper

##### Publisher Name

SAGE Publications, Thousand Oaks, CA

##### Print ISSN

1081-2865

##### Online ISSN

1741-3028

## MR

3763367

## ZBL

1391.74180

[1] C. Baiocchi, A. Capelo, *Variational and quasivariational inequalities: applications to free-boundary problems*, John Wiley, Chichester (1984).

[2] V. Barbu, *Optimal control of variational inequalities*, Pitman, Boston (1984).

[3] H. Brezis, *Equations et inequations non lineaires dans les **espaces vectoriels en dualite*, Ann. Inst.Fourier, 18 (1968), 115-175.

[4] H. Brezis, *Problemes unilateraux*, J. Math. Pures Appl., 51 (1972), 1-168.

[5] G. Duvaut, J.L. Lions, *Inequalities in mechanics and physics*, Springer-Verlag, Berlin (1976).

[6] C. Eck, J. Jarusek, *Existence results for the semicoercive static contact problem with Coulomb friction*, Nonlinear Anal., 42 (2000), 961-976.

[7] R. Glowinski, J.L. Lions, R. Tremolieres, *Numerical analysis of variational inequalities*, North-Holland Publishing Company, Amsterdam (1981).

[8] R. Glowinski, *Numerical methods for nonlinear variational problems*, Springer-Verlag, New York (1984).

[9] W. Han, M. Sofonea, *Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity*, Studies in Advanced Mathematics, 30, American Mathematical Society–International Press, Sommerville, MA (2002).

[10] J. Haslinger, I. Hlavacek, J.Necas, *Numerical methods for unilateral problems in solid mechanics,* In Handbook of Numerical Analysis, vol. IV, P.G. Ciarlet and J.-L. Lions (eds.), North-Holland, Amsterdam (1996).

[11] I. Hlavacek, J. Haslinger, J. Necas et al.,* Solution of variational inequalities in mechanics,* Springer-Verlag, New-York, 1988.

[12] N. Kikuchi, J.T. Oden, *Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods*, SIAM, Philadelphia, 1988.

[13] N. Kikuchi, J.T. Oden, *Theory of variational inequalities with applications to problems of flow through porous media*, Int. J. Engng. Sci., 18 (1980), 1173-1284.

[14] D. Kinderlehrer, G. Stampacchia, *An introduction to variational inequalities and their applications*, SIAM, Philadelphia, 2000.

[15] J.T. Oden, J.A.C. Martins, *Models and computational methods for dynamic friction phenomena*, Computer Methods in Applied Mechanics and Engineering, 52 (1985), 527-634.

[16] M. Shillor, M. Sofonea, J.J. Telega, *Models and Analysis of Quasistatic Contact,* Lecture Notes in Physics, 655, Springer, Berlin (2004).

[17] M. Sofonea, A. Matei, *Mathematical Models in Contact Mechanics*, London Mathematical Society Lecture Note Series, 398, Cambridge University Press, Cambridge (2012).

[18] M. Sofonea, A. Matei. *History-dependent quasivariational inequalities arising in Contact Mechanics*, Eur. J. Appl. Math., 22 (2011), 471-491.

[19] P. Wriggers, *Computational Contact Mechanics*, Wiley, Chichester (2002).

[20] M. Sofonea, W. Han, M. Barboteu, *Analysis of a viscoelastic contact problem with multivalued normal compliance and unilateral constraint*, Comput. Methods Appl. Mech. Engrg., 26 (2013), 12-22.

[21] M. Sofonea, F. Patrulescu, *Penalization of history-dependent variational inequalities*, Eur. J. Appl. Math., 25 (2014), 155-176.

[22] A. Klarbring, A. Mikelic, M. Shillor, Frictional contact problems with normal compliance, Int. J. Engng. Sci., 26 (1988), 811-832.

[23] A. Klarbring, A. Mikelic, M. Shillor, *On friction problems with normal compliance*, Nonlinear Analysis, 13 (1989), 935-955.

[24] P.D. Panagiotopoulos, *Inequality problems in mechanics and applications*, Birkhauser, Boston (1985).

[25] F. Patrulescu, A. Ramadan, *Convergence results for contact problems with memory term*, Math. Rep., 17 (67) (2015), 24-41.

soon