[1] B. Ahmad, J.J. Nieto and N. Shahzad, The Bellman-Kalaba-Lakshmikantham quasilinearization method for Neumann problems, J. Math. Anal. Appl. 257 (2001), 356–363.
[2] M. Balasz and I. Muntean, A unification of Newton’s methods for solving equations, Mathematica (Cluj) 44 (1979), 117–122.
[3] R. Bellman and R. Kalaba, ”Quasilinearization and Nonlinear Boundary- Value Problems”’, American Elsevier, New York, 1965.
[4] A. Buica, Some remarks on monotone iterative technique, Rev. Anal. Numer. Theor. Approx., to appear.
[5] A. Buica, Monotone iterations for the initial value problem, Seminar on Fixed Point Theory Cluj-Napoca 3 (2002), 137–148.
[6] A. Buica and R. Precup, Monotone Newton-type iterations for nonlinear equations, Proc. Tiberiu Popoviciu Itinerant Seminar on Functional Equations, Approximation and Convexity, E. Popoviciu ed., Srima, Cluj, 2002, to appear.
[7] S. Carl and S. Heikkila, Operator and differential equations in ordered spaces, J. Math. Anal. Appl. 234 (1999), 31–54.
[8] S. Carl and V. Lakshmikantham, Generalized quasilinearization for quasilinear parabolic equations with nonlinearities of DC type,J. Optim. Theory Appl. 109 (2001), 27–50.
[9] G. Goldner and R. Trımbitas, A combined method for a two-point bondary value problem, Pure Math. Appl. 11 (2000), 255–264.
[10] S. Heikkila and V. Lakshmikantham, ”Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations”, Marcel Dekker, New York, 1994.
[11] G.S. Ladde, V. Lakshmikantham and A.S. Vatsala, ”Monotone Iterative Techniques for Nonlinear Differential Equations”, Pitman, Boston, 1985.
[12] V. Lakshmikantham, Further improvement of generalized quasilinearization, Nonlinear Anal. 27(1996), 223–227.
[13] V. Lakshmikantham, S. Leela and S. Sivasundaram, Extensions of the method of quasilinearization, J. Optim. Theory Appl. 87 (1995), 379–401.
[14] V. Lakshmikantham and S. Malek, Generalized quasilinearization, Nonlinear World 1 (1994), 59–63.
[15] V. Lakshmikantham and A.S. Vatsala, ”Generalized Quasilinearization for Nonlinear Problems”, Kluwer Academic Publishers, Dordrecht, 1998.
[16] F.A. Mc Rae, Generalized quasilinearization of stochastic initial-value problems, Stochastic Anal. Appl. 13 (1995), 205–210.
[17] J.J. Nieto, Generalized quasilinearization for a second order ordinary differential equation with Dirichlet boundary conditions, Proc. Amer. Math. Soc. 125(1997), 2599–2604.
[18] F.A. Potra, W.C. Rheinboldt, On the monotone convergence of Newton’s method, Computing 36 (1986), 81–90.
[19] R. Precup, Monotone technique to the initial value problem for a delay integral equation from biomathematics, Studia Univ. Babe¸s-Bolyai Math. 40 (1995), 63–73.
[20] R. Precup, Convexity and quadratic monotone approximation in delay differential equations, Proc. Sci. Comm. Meeting of Aurel Vlaicu Univ., Gh. Halic ed., Arad, 1997, 153–158.
[21] R. Precup, ”Methods in Nonlinear Integral Equations”, Kluwer Academic Publishers, Dordrecht-Boston-London, 2002.
[22] J.W. Schmidt and H. Schneider, Monoton einschlie¯ende Verfahren bei additiv zerlegbaren Gleichungen, Z. Angew. Math. Mech. 63 (1983), 3–11.
[23] J.E. Vandergraft, Newton’s method for convex operators in partially ordered spaces, SIAM J. Numer. Anal. 4 (1967), 406–432.