Accurate spectral collocation computation of high order eigenvalues for singular Schrödinger equations


We are concerned with the study of some classical spectral collocation methods, mainly Chebyshev and sinc as well as with the new software system Chebfun in computing high order eigenpairs of singular and regular Schrödinger eigenproblems. We want to highlight both the qualities as well as the shortcomings of these methods and evaluate them in conjunction with the usual ones. In order to resolve a boundary singularity, we use Chebfun with domain truncation. Although it is applicable with spectral collocation, a special technique to introduce boundary conditions as well as a coordinate transform, which maps an unbounded domain to a finite one, are the special ingredients. A challenging set of “hard” benchmark problems, for which usual numerical methods (FD, FEM, shooting, etc.) fail, were analyzed. In order to separate “good” and “bad”eigenvalues, we have estimated the drift of the set of eigenvalues of interest with respect to the order of approximation and/or scaling of domain parameter. It automatically provides us with a measure of the error within which the eigenvalues are computed and a hint on numerical stability. We pay a particular attention to problems with almost multiple eigenvalues as well as to problems with a mixed spectrum.


Calin-Ioan Gheorghiu
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy


spectral collocation; Chebfun; singular Schrödinger; high index eigenpairs; multiple eigenpairs; accuracy; numerical stability


Cite this paper as:

C.I. Gheorghiu, Accurate spectral collocation computation of high order eigenvalues for singular Schrödinger equations, Computation, 9 (2021) 2, 19 pp.

About this paper


MDPI Computation

Publisher Name


Print ISSN

Not available yet.

Online ISSN

ISSN 2079-3197

Google Scholar Profile


[1] Driscoll, T. A., Bornemann, F.,Trefethen, L.N. , The CHEBOP System for Automatic Solution of Differential Equations. BIT 2008, 48, 701–723.
[2] Driscoll, T. A., Hale, N., Trefethen, L.N. Chebfun Guide; Pafnuty Publications: Oxford, UK, 2014
[3] Driscoll, T. A., Hale, N., Trefethen, L.N., Chebfun-Numerical Computing with Functions. Available online: http://www.chebfun. org (accessed on 15 November 2019).
[4] Olver, S., Townsend, A.,  A fast and well-conditioned spectral method. SIAM Rev. 2013, 55, 462–489.
[5] Trefethen, L.N.; Birkisson, A.; Driscoll, T. A.,  Exploring ODEs; SIAM: Philadelphia, PA, USA, 2018
[6] Trefethen, L.N., Approximation Theory and Approximation Practice; Extended Edition; SIAM: Philadelphia, PA, USA, 2019
[7] Gheorghiu, C.I., Spectral Methods for Non-Standard Eigenvalue Problems. Fluid and Structural Mechanics and Beyond; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2014.
[8] Gheorghiu, C.I., Spectral Collocation Solutions to Problems on Unbounded Domains; Casa Cartii de Stiinta Publishing House: Cluj-Napoca, Romania 2018
[9] Weideman, J. A. C., Reddy, S. C.,  A MATLAB Differentiation Matrix Suite. ACM Trans. Math. Softw. 2000, 26, 465–519.
[10] Roy, A.K.,  The generalized pseudospectral approach to the bound states of the Hulthén and the Yukawa potentials. PRAMANA J. Phys. 2005, 65, 1–15. [CrossRef]
[11] Shizgal, B.D., Pseudospectral Solution of the Fokker–Planck Equation with Equilibrium Bistable States: the Eigenvalue Spectrum and the Approach to Equilibrium. J. Stat. Phys. 2016.
[12] Birkhoff, G., Rota, G-C., Ordinary Differential Equations, 4th ed.; John Willey and Sons: New York, NY, USA, 1989; pp. 336–343.
[13] Cesarano, C., Fornaro, C., Vazquez, L.,  Operational results in bi-orthogonal Hermite functions. Acta Math. Univ. Comen. 2016, 85, 43–68.
[14] Cesarano, C. A, Note on Bi-Orthogonal Polynomials and Functions . Fluids 2020, 5, 105. doi:10.3390/fluids5030105
[15] Pruess, S., Fulton, C. T., Mathematical Software for Sturm–Liouville Problem. ACM Trans. Math. Softw. 1993, 19, 360–376.
[16] Pruess, S.; Fulton, C. T., Xie, Y., An Asymptotic Numerical Method for a Class of Singular Sturm–Liouville Problems. SIAM J. Numer. Anal. 1995, 32, 1658–1676.
[17] Pryce, J.D.,  A Test Package for Sturm–Liouville Solvers ACM Trans. Math. Softw. 1999, 25, 21—57.
[18] Pryce, J.D., Marletta, M.,  A new multi-purpose software package for Schrödinger and Sturm–Liouville computations. Comput. Phys. Comm. 1991, 62, 42–54.
[19] Bailey, P. B., Everitt, W. N., Zettl, A.,  Computing Eigenvalues of Singular Sturm–Liouville Problems. Results Math. 1991, 20 391–423
[20] Bailey, P.B.; Garbow, B.; Kaper, H.; Zettl, A.,  Algorithm 700: A FORTRAN software package for Sturm–Liouville problems. ACM Trans. Math. Softw. 1991, 17, 500–501.
[21] Ledoux, V., Van Daele, M., Vanden Berghe, G. , MATSLISE: A MATLAB Package for the Numerical Solution of Sturm–Liouville and Schrödinger Equations. ACM Trans. Math. Softw. 2005, 31, 532–554.
[22] Solomonoff, A., Turkel, E.,  Global Properties of Pseudospectral Methods. J. Comput. Phys. 1989, 81 230–276
[23] Hoepffner, J.,  Implementation of Boundary Conditions. Available online: pdf (accessed on 25 August 2012).
[24] Gheorghiu, C.I., Pop, I.S.,  A Modified Chebyshev-Tau Method for a Hydrodynamic Stability Problem. In Proceedings of the International Conference on Approximation and Optimization (Romania)—ICAOR, Cluj-Napoca, Romania, 29 July–1August 1996; Volume II, pp. 119–126.
[25] Gheorghiu, C.I.,  On the numerical treatment of the eigenparameter dependent boundary conditions. Numer. Algor. 2018, 77, 77–93.
[26] Gheorghiu, C.I., Hochstenbach, M.E.; Plestenjak, B.; Rommes, J.,  Spectral collocation solutions to multiparameter Mathieu’s system. Appl. Math. Comput. 2012, 218, 11990–12000.
[27] Plestenjak, B., Gheorghiu, C.I., Hochstenbach, M.E.,  Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems. J. Comput. Phys. 2015, 298, 585–601.
[28] Boyd, J. P.,  Traps and Snares in Eigenvalue Calculations with Application to Pseudospectral Computations of Ocean Tides in a Basin Bounded by Meridians. J. Comput. Phys. 1996, 126, 11–20.
[29] Ledoux, V., Van Daele, M., Vanden Berghe, G.,  Efficient computation of high index Sturm–Liouville eigenvalues for problems in physics. Comput. Phys. Commun. 2009, 180, 241–250.
[30] Ledoux, V., Ixaru, L.Gr., Rizea, M., Van Daele, M.; Vanden Berghe, G.,  Solution of the Schrödinger equation over an infinite integration interval by perturbation methods, revisited. Comput. Phys. Commun. 2006, 175, 612–619.
[31] Schonfelder, J.L.,  Chebyshev Expansions for the Error and Related Functions. Math. Comput. 1978, 32, 1232–1240.
[32] Von Winckel, G.,  Fast Chebyshev Transform (1D). Available online: 4591-fast-chebyshev-transform-1d (accessed on 15 May 2015).
[33] Mitra, A.K.,  On the interaction of the type νx 2/1+µx 2. J. Math. Phys. 1978, 19, 2018–2022.
[34] Simos, T.E.,  Some embedded modified Runge–Kutta methods for the numerical solution of some specific Schrödinger equations. J. Math. Chem. 1998, 24, 23–37.
[35] Simos, T.E.,  An accurate finite difference method for the numerical solution of the Schrödinger equation. J. Comput Appl. Math. 1998, 91, 47–61.
[36] Trif, D.,  Matlab package for the Schrödinger equation. J. Math. Chem. 2008, 43, 1163–1176.
[37] Szalay, V., Czakó, G., Nagy, A., Furtenbacher, T., Császár, A.G.,  On one-dimensional discrete variable representations with general basis functions. J. Chem. Phys. 2003, 119, 10512–10518.


Related Posts