Accurate spectral collocation computation of high order eigenvalues for singular Schrödinger equations


We are concerned with the study of some classical spectral collocation methods as well as with the new software system Chebfun in computing high order eigenpairs of singular and regular Schrodinger eigenproblems. We want to highlight both the qualities as well as the shortcomings of these methods and evaluate them in conjunction with the usual ones. In order to resolve a boundary singularity we use Chebfun with domain truncation. Although it is applicable with spectral collocation, a special technique to introduce boundary conditions as well as a coordinate transform, which maps an unbounded domain to a finite one, are the special ingredients. A challenging set of “hard”benchmark problems, for which usual numerical methods (f. d., f. e. m., shooting etc.) fail, are analyzed. In order to separate “good”and “bad”eigenvalues we estimate the drift of the set of eigenvalues of interest with respect to the order of approximation and/or scaling of domain parameter. It automatically provides us with a measure of the error within which the eigenvalues are computed and a hint on numerical stability. We pay a particular attention to problems with almost multiple eigenvalues as well as to problems with a mixed spectrum.


Calin-Ioan Gheorghiu
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy


spectral collocation; Chebfun; singular Schrodinger; high index eigenpairs; multiple eigenpairs; accuracy; numerical stability.


Cite this paper as:

C.I. Gheorghiu, Accurate spectral collocation computation of high order eigenvalues for singular Schrödinger equations, arXiv:2011.14920

About this paper



Publisher Name
Print ISSN

Not available yet.

Online ISSN

Not available yet.


[1] Driscoll, T. A., Bornemann, F., Trefethen, L.N. The CHEBOP System for Automatic Solution of Differential Equations. BIT 2008, 48 701–723
[2] Driscoll, T. A., Hale, N., Trefethen, L.N. Chebfun Guide. Pafnuty Publications, Oxford 2014
[3] Driscoll, T. A., Hale, N., Trefethen, L.N. Chebfun-numerical computing with functions. Accessed 15 November 2019
[4] Olver, S., Townsend, A. A fast and well-conditioned spectral method. SIAM Rev. 2013, 55, 462–489
[5] Trefethen, L.N., Birkisson, A., Driscoll, T. A. Exploring ODEs. SIAM, Philadelphia 2018
[6] Trefethen, L.N., Approximation Theory and Approximation Practice, Extended Edition. SIAM, Philadelphia 2019
[7] Gheorghiu, C.I., Spectral Methods for Non-Standard Eigenvalue Problems. Fluid and Structural Mechanics and Beyond. SpringerVerlag, Cham Heidelberg New-York Dondrecht London 2014
[8] Gheorghiu, C.I., Spectral Collocation Solutions to Problems on Unbounded Domains. Casa Cartii de Stiinta Publishing House, ClujNapoca, Romania 2018
[9] Weideman, J. A. C., Reddy, S. C., A MATLAB Differentiation Matrix Suite. ACM T. Math. Software 2000, 26, 465–519
[10] Roy, A.K. ,The generalized pseudospectral approach to the bound states of the Hulthen and the Yukawa potentials. PRAMANAjournal of physics 2005, 65, 1–15
[11] Shizgal, B.D., Pseudospectral Solution of the Fokker-Planck Equation with Equilibrium Bistable States: the Eigenvalue Spectrum and the Approach to Equilibrium. J. Stat. Phys. 2016.
[12] Birkhoff, G.; Rota, G-C. Ordinary Differential Equations, Fourth Edition, John Willey and Sons, New York Chichester Brisbane Toronto Singapore 1989; pp. 336–343
[13] Pruess, S.; Fulton, C. T. Mathematical Software for Sturm-Liouville Problem. ACM T. Math. Software 1993, 19 360–376
[14] Pruess, S.; Fulton, C. T.; Xie, Y. An Asymptotic Numerical Method for a Class of Singular Sturm-Liouville Problems. SIAM J. Numer. Anal. 1995, 32 1658–1676
[15] Marletta, M.; Pryce, J.D. LCNO Sturm-Liouville problems computational difficulties and examples. Numer. Math. 1995, 69 303–320
[16] Pryce, J.D.; Marletta, M. A new multi-purpose software package for Schrodinger and Sturm–Liouville computations. Comput. Phys. Comm. 1991, 62 42–54
[17] Bailey, P. B.; Everitt, W. N.; Zettl, A. Computing Eigenvalues of Singular Sturm-Liouville Problems. Results Math. 1991, 20 391–423
[18] Bailey, P.B.; Garbow, B.; Kaper, H.; Zettl, A. Algorithm 700: A FORTRAN software package for Sturm-Liouville problems. ACM T. Math. Software 1991, 17 500–501
[19] Ledoux, V.; Van Daele, M.; Vanden Berghe, G. MATSLISE: A MATLAB Package for the Numerical Solution of Sturm-Liouville and Schrodinger Equations. ACM T. Math. Software. 2005, 31 532–554
[20] Solomonoff, A.; Turkel, E. Global Properties of Pseudospectral Methods. J. Comput. Phys. 1989, 81 230–276
[21] Hoepffner, J. Implementation of boundary conditions.∼ hoepffner/boundarycondition.pdf. Accessed 25 Aug. 2012
[22] Gheorghiu, C.I., Pop, I.S. A Modified Chebyshev-Tau Method for a Hydrodynamic Stability Problem. Proceedings of the International Conference on Approximation and Optimization (Romania) – ICAOR Cluj-Napoca, July 29 – August 1, Vol. II, 119–126 (1996);
[23] Gheorghiu, C.I. On the numerical treatment of the eigenparameter dependent boundary conditions. Numer. Algor. 2018, 77 77–93
[24] Gheorghiu, C.I.; Hochstenbach, M.E.; PLestenjak, B.; Rommes, J. Spectral collocation solutions to multiparameter Mathieu’s system. Appl. Math. Comput. 2012, 218 11990–12000
[25] Plestenjak, B.; Gheorghiu, C.I.; Hochstenbach, M.E. Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems. J. Comput. Phys. 2015, 298 585–601
[26] Boyd, J. P. Traps and Snares in Eigenvalue Calculations with Application to Pseudospectral Computations of Ocean Tides in a Basin Bounded by Meridians. J. Comput. Phys. 1996, 126 11–20
[27] Ledoux, V.; Van Daele, M.; Vanden Berghe, G. Efficient computation of high index Sturm-Liouville eigenvalues for problems in physics. Comput. Phys. Commun. 2009, 180 241 250
[28] Ledoux, V.; Ixaru, L.Gr.; Rizea, M.; Van Daele, M.; Vanden Berghe, G. Solution of the Schrodinger equation over an infinite integration interval by perturbation methods, revisited. Comput. Phys. Commun. 2006, 175 612–619
[29] Schonfelder, J.L. Chebyshev Expansions for the Error and Related Functions. Math. Comput. 1978, 32 1232–1240
[30] von Winckel, G. Fast Chebyshev Transform (1D). fast-chebyshev-transform-1d. Accessed 15 May 2015
[31] Mitra, A.K. On the interaction of the type νx2 1+µx2 . J. Math. Phys. 1978, 19 2018–2022
[32] Simos, T.E. Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrodinger equations. J. Math. Chem. 1998, 24 23–37
[33] Simos, T.E. An accurate finite difference method for the numerical solution of the Schrodinger equation. J. Comput Appl. Math. 1998, 91 47–61
[34] Trif, D. Matlab package for the Schr¨odinger equation. J. Math. Chem. 2008, 43 1163–1176

Related Posts