An abstract Korovkin type theorem and applications

Abstract

We obtain some Korovkin type theorems for the space \(C(X)\), where \( X \) is a compact metric space (Theorems 2 and 3).

The results are applied to the case when \(X\) is a compact subspace of a prehilbertian space and we obtain bounds for the difference \(  \| B_{n}(f)-f \| \), where \(B_{n}\) is the Bernstein-Lototsky-Schnabl operator.

Authors

Dorin Andrica
Babeș-Bolyai University, Romania

Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania

Keywords

Paper coordinates

D. Andrica, C. Mustăţa, An abstract Korovkin type theorem and applications, Studia Univ. ”Babeş-Bolyai” XXXIV, fasc. 2 (1989), 44-51.

PDF

About this paper

Journal

Studia

Publisher Name

Univ. Babes-Bolyai Math.

DOI
Print ISSN

1843-3855

Online ISSN

2065-9490

MR # 91j: 41043

google scholar link

[1] De Vore, Ronald A., The Approximation of Con tinuous Functions by Positive Linear Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[2] Mamedov, R.G., On the order lf the approximation of differentiable funcitons by linear operators (Russian), Doklady SSSR 128 (1959), 674-676.
[3] Shisha, O., Mond, B., The degree of convergence of sequences of linear pozitive operators,  Proc. Nat. Acad. Sci. USA 60 (1968), 1196-1200.
[4] Nishishiraho, T., The degree of convergence of positive linear operators, Tohoku Math. Journal 29 (1977), 81-89.
[5] Nishishiraho, T., Convergence of positive linear approximation processes, Tohoku Math. Journal 35 (1983), 441-458.

1989

Related Posts