Abstract
We obtain some Korovkin type theorems for the space \(C(X)\), where \( X \) is a compact metric space (Theorems 2 and 3).
The results are applied to the case when \(X\) is a compact subspace of a prehilbertian space and we obtain bounds for the difference \( \| B_{n}(f)-f \| \), where \(B_{n}\) is the Bernstein-Lototsky-Schnabl operator.
Authors
Dorin Andrica
Babeș-Bolyai University, Romania
Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania
Keywords
Paper coordinates
D. Andrica, C. Mustăţa, An abstract Korovkin type theorem and applications, Studia Univ. ”Babeş-Bolyai” XXXIV, fasc. 2 (1989), 44-51.
About this paper
Journal
Studia
Publisher Name
Univ. Babes-Bolyai Math.
DOI
Print ISSN
1843-3855
Online ISSN
2065-9490
MR # 91j: 41043
google scholar link
[1] De Vore, Ronald A., The Approximation of Con tinuous Functions by Positive Linear Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[2] Mamedov, R.G., On the order lf the approximation of differentiable funcitons by linear operators (Russian), Doklady SSSR 128 (1959), 674-676.
[3] Shisha, O., Mond, B., The degree of convergence of sequences of linear pozitive operators, Proc. Nat. Acad. Sci. USA 60 (1968), 1196-1200.
[4] Nishishiraho, T., The degree of convergence of positive linear operators, Tohoku Math. Journal 29 (1977), 81-89.
[5] Nishishiraho, T., Convergence of positive linear approximation processes, Tohoku Math. Journal 35 (1983), 441-458.