Analysis of a contact problem with wear and unilateral constraint

Abstract

This paper represents a continuation of our previous work, where a mathematical model which describes the equilibrium of an elastic body in frictional contact with a moving foundation was considered. An existence and uniqueness result was proved, together with a convergence result. The proofs were carried out by using arguments of elliptic variational inequalities. In this current paper, we complete our model by taking into account the wear of the foundation. This makes the problem evolutionary and leads to a new and nonstandard mathematical model, which couples a time-dependent variational inequality with an integral equation. We provide the unique weak solvability of the model by using a fixed point argument, among others. Then, we penalize the unilateral contact condition and prove that the penalized problem has a unique solution which converges to the solution of the original problem, as the penalization parameter converges to zero.

Authors

Mircea Sofonea
(Laboratoire de MathΓ©matiques et Physique, UniversitΓ© de Perpignan)

Flavius Patrulescu
(Tiberiu Popoviciu Institute of Numerical Analysis,
Romanian Academy)

Yahyeh Souleiman
(Laboratoire de MathΓ©matiques et Physique, UniversitΓ© de Perpignan)

Keywords

elastic material, frictional contact, normal compliance, unilateral constraint, wear, weak solution, penalization

Cite this paper as

M. Sofonea, F. Pătrulescu, Y. Souleiman, Analysis of a contact problem with wear and unilateral constraint, Appl. Anal., vol. 95 no. 11 (2016), pp. 2590-2607,
DOI: 10.1080/00036811.2015.1102892

PDF

About this paper

Publisher Name

Taylor & Francis, Abingdon, Oxfordshire

Print ISSN

0003-6811

Online ISSN

1563-504X

MR

3546606

ZBL

1349.74281

Google Scholar

?
?

Paper (preprint) in HTML form

Analysis of a contact problem with wear and unilateral constraint

Mircea Sofonea a, Flavius Pătrulescu b,c and Yahyeh Souleiman a
a Laboratoire de MathΓ©matiques et Physique, UniversitΓ© de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; {}^{\text{b }} Tiberiu Popoviciu Institute of Numerical Analysis, P.O. Box 68-1 400110 Cluj-Napoca, Romania; c Faculty of Mathematics and Computer Science, Babeş-Bolyai University, KogΔƒlniceanu street No. 1, 400084 Cluj-Napoca, Romania
Abstract

This paper represents a continuation of our previous work, where a mathematical model which describes the equilibrium of an elastic body in frictional contact with a moving foundation was considered. An existence and uniqueness result was proved, together with a convergence result. The proofs were carried out by using arguments of elliptic variational inequalities. In this current paper, we complete our model by taking into account the wear of the foundation. This makes the problem evolutionary and leads to a new and nonstandard mathematical model, which couples a time-dependent variational inequality with an integral equation. We provide the unique weak solvability of the model by using a fixed point argument, among others. Then, we penalize the unilateral contact condition and prove that the penalized problem has a unique solution which converges to the solution of the original problem, as the penalization parameter converges to zero.

ARTICLE HISTORY

Received 11 May 2015
Accepted 27 September 2015

KEYWORDS

Elastic material; frictional contact; normal compliance; unilateral constraint; wear; weak solution; penalization

AMS SUBJECT CLASSIFICATIONS

74M15; 74G25; 74G30; 49J40

1. Introduction

Contact processes between deformable bodies or between a deformable body and a foundation abound in industry and everyday life. Their modeling is rather complex and, usually, leads to strongly nonlinear boundary value problems. Basic reference in the field includes [1-5] and, more recently.[69] There, the mathematical analysis of various models of contact is provided, including existence and uniqueness results of the solution. The references [2,3,7] deal also with the numerical analysis of various models of contact, including the study of fully discrete schemes, error estimates and numerical simulations.

Contact processes are accompanied by a number of phenomena among which the main one is the friction. Nevertheless, more is involved in contact than just friction. Indeed, during a contact process elastic or plastic deformations of the surface asperities may happen. Also, some or all of the following may take place: squeezing of oil or other fluids, breaking of the asperities’ tips and production of debris, motion of the debris, formation or welding of junctions, creeping, fracture, etc. Moreover, frictional contact is associated with heat generation, material damage, wear and adhesion of contacting surfaces.

As the contact process evolves, the contacting surfaces evolve too, via their wear. Wear in sliding systems is often very slow but it is persisting, continuous and cumulative. There may be increase in the conformity of the surfaces and their smoothness, or increase in the surface roughness, fogging of the surface, generation of scratches and grooves, initiation of cracks and generation of debris
which may change the contact characteristics. Asperities under large contact stresses may deform plastically or break. In the first case, the surface morphology changes and, therefore, both the contact stress and the friction traction are affected. These may be incorporated into a history or memorydependent friction coefficient. In the second case, when asperities break, the surfaces wear out, debris are produced, and again the surface structure changes over time. This must be taken into account if the long time behavior of the system is to be realistically predicted.

To model the wear of the contacting surfaces the wear function w=w(𝒙,t)w=w(\boldsymbol{x},t) is introduced, measuring the depth, in the normal direction, of the removed material. Therefore, it measures the change in the surface geometry, and represents the cumulative amount of material removed, per unit surface area, in the neighborhood of the point 𝒙\boldsymbol{x} up to time tt. Since the amounts of material removed are small, as an approximation, one may treat it as a change in the gap. It is usually assumed that the rate of wear of the surface is proportional to the contact pressure and to the relative slip rate, that is to the dissipated frictional power. This leads to the rate form of Archard’s law of surface wear,

wΛ™=k|σν|‖𝒗‖,\dot{w}=k\left|\sigma_{\nu}\right|\|\boldsymbol{v}\|, (1.1)

where kk is the wear coefficient, a very small positive constant in practice. Also, Οƒv\sigma_{v} represents the normal stress on the contact surface and ‖𝒗‖\|\boldsymbol{v}\| denotes the relative slip rate. The initial condition is w(𝒙,0)=w0(𝒙)w(\boldsymbol{x},0)=w_{0}(\boldsymbol{x}), and w0(𝒙)=0w_{0}(\boldsymbol{x})=0 when the surface is new or the initial shape is used as the reference configuration. The wear implies the evolution of contacting surfaces and these changes affect the contact process. Thus, due to its crucial role, there exists a large engineering and mathematical literature devoted to this topic. We resume to mention here the references [8,10-22], among others.

A mathematical model which describes the equilibrium of an elastic body in frictional contact with a moving foundation was recently considered in [23]. There, the contact was modeled with a normal compliance condition with unilateral constraints, associated to a sliding version of Coulomb’s law of dry friction. The unique weak solvability of the model was proved, by using arguments of elliptic quasivariational inequalities. The current paper represents a continuation of [23]. Here, we complete the model studied in [23] by taking into account the wear of the foundation. We model the wear process with a version of Archard’s law (1.1), as is customary in the mathematical literature. This leads to a new and interesting mathematical model which, in contrast to the model in [23], is evolutionary. Providing the variational analysis of this new model represents the main aim of this paper.

The rest of the manuscript is structured as follows. In Section 2, we present the notation and some preliminary material. In Section 3, we introduce the model of sliding frictional contact with wear, list the assumptions on the data and derive its variational formulation. The unique weak solvability of the contact problem is presented in Section 4. There, we state and prove our main existence and uniqueness result, Theorem 4.1. The proof is based on arguments on time-dependent variational inequalities and fixed point. Finally, in Section 5 we present our second result, Theorem 5.1. It states the convergence of the solution of a penalized frictional contact problem with wear to the solution of the contact model considered in Section 3, as the penalization parameter converges to zero.

2. Notations and preliminaries

In this section, we present the notation we shall use and some preliminary material. Everywhere in this paper we use the notation β„•\mathbb{N} for the set of positive integers and ℝ+\mathbb{R}_{+}will represent the set of nonnegative real numbers, i.e. ℝ+=[0,∞)\mathbb{R}_{+}=[0,\infty). For dβˆˆβ„•d\in\mathbb{N}, we denote by π•Šd\mathbb{S}^{d} the space of second-order symmetric tensors on ℝd\mathbb{R}^{d}. Moreover, the inner product and norm on ℝd\mathbb{R}^{d} and π•Šd\mathbb{S}^{d} are defined by

𝒖⋅𝒗=uivi,‖𝒗‖=(𝒗⋅𝒗)12βˆ€π’–,π’—βˆˆβ„dπˆβ‹…π‰=ΟƒijΟ„ij,‖𝝉‖=(𝝉⋅𝝉)12βˆ€πˆ,π‰βˆˆπ•Šd\begin{array}[]{lrrl}\boldsymbol{u}\cdot\boldsymbol{v}=u_{i}v_{i},&\|\boldsymbol{v}\|=(\boldsymbol{v}\cdot\boldsymbol{v})^{\frac{1}{2}}&\forall\boldsymbol{u},\boldsymbol{v}\in\mathbb{R}^{d}\\ \boldsymbol{\sigma}\cdot\boldsymbol{\tau}=\sigma_{ij}\tau_{ij},&\|\boldsymbol{\tau}\|=(\boldsymbol{\tau}\cdot\boldsymbol{\tau})^{\frac{1}{2}}&\forall\boldsymbol{\sigma},\boldsymbol{\tau}\in\mathbb{S}^{d}\end{array}

Let Ξ©βŠ‚β„d(d=1,2,3)\Omega\subset\mathbb{R}^{d}(d=1,2,3) be a bounded domain with Lipschitz continuous boundary Ξ“\Gamma and let Ξ“1\Gamma_{1}, Ξ“2\Gamma_{2}, and Ξ“3\Gamma_{3} be three measurable parts of Ξ“\Gamma such that meas (Ξ“1)>0\left(\Gamma_{1}\right)>0. We use the notation 𝒙=(xi)\boldsymbol{x}=\left(x_{i}\right) for a typical point in Ξ©βˆͺΞ“\Omega\cup\Gamma and we denote by 𝒗=(vi)\boldsymbol{v}=\left(v_{i}\right) the outward unit normal at Ξ“\Gamma. Also, we use standard notation for the Lebesgue and Sobolev spaces associated to Ξ©\Omega and Ξ“\Gamma. In particular, we recall that the inner products on the Hilbert spaces L2(Ξ©)dL^{2}(\Omega)^{d} and L2(Ξ“)dL^{2}(\Gamma)^{d} are given by

(𝒖,𝒗)L2(Ξ©)d=βˆ«Ξ©π’–β‹…π’—dx,(𝒖,𝒗)L2(Ξ“)d=βˆ«Ξ“π’–β‹…π’—da(\boldsymbol{u},\boldsymbol{v})_{L^{2}(\Omega)^{d}}=\int_{\Omega}\boldsymbol{u}\cdot\boldsymbol{v}\mathrm{d}x,\quad(\boldsymbol{u},\boldsymbol{v})_{L^{2}(\Gamma)^{d}}=\int_{\Gamma}\boldsymbol{u}\cdot\boldsymbol{v}\mathrm{d}a

and the associated norms will be denoted by βˆ₯β‹…βˆ₯L2(Ξ©)d\|\cdot\|_{L^{2}(\Omega)^{d}} and βˆ₯β‹…βˆ₯L2(Ξ“)d\|\cdot\|_{L^{2}(\Gamma)^{d}}, respectively. Moreover, we consider the spaces

V={π’—βˆˆH1(Ξ©)d:𝒗=𝟎 on Ξ“1}\displaystyle V=\left\{\boldsymbol{v}\in H^{1}(\Omega)^{d}:\boldsymbol{v}=\mathbf{0}\text{ on }\Gamma_{1}\right\}
Q={𝝉=(Ο„ij)∈L2(Ξ©)d:Ο„ij=Ο„ji}\displaystyle Q=\left\{\boldsymbol{\tau}=\left(\tau_{ij}\right)\in L^{2}(\Omega)^{d}:\tau_{ij}=\tau_{ji}\right\}

These are real Hilbert spaces endowed with the inner products

(𝒖,𝒗)V=∫Ω𝜺(𝒖)β‹…πœΊ(𝒗)dx,(𝝈,𝝉)Q=βˆ«Ξ©πˆβ‹…π‰dx(\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{\varepsilon}(\boldsymbol{u})\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})\mathrm{d}x,\quad(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q}=\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\tau}\mathrm{d}x

and the associated norms βˆ₯β‹…βˆ₯V\|\cdot\|_{V} and βˆ₯β‹…βˆ₯Q\|\cdot\|_{Q}, respectively. Here 𝜺\boldsymbol{\varepsilon} is the deformation operator given by

𝜺(𝒗)=(Ξ΅ij(𝒗)),Ξ΅ij(𝒗)=12(vi,j+vj,i)βˆ€π’—βˆˆH1(Ξ©)d.\boldsymbol{\varepsilon}(\boldsymbol{v})=\left(\varepsilon_{ij}(\boldsymbol{v})\right),\quad\varepsilon_{ij}(\boldsymbol{v})=\frac{1}{2}\left(v_{i,j}+v_{j,i}\right)\quad\forall\boldsymbol{v}\in H^{1}(\Omega)^{d}.

Recall that the completeness of the space (V,βˆ₯β‹…βˆ₯V)\left(V,\|\cdot\|_{V}\right) follows from the assumption meas (Ξ“1)>0\left(\Gamma_{1}\right)>0, which allows the use of Korn’s inequality.

For an element π’—βˆˆV\boldsymbol{v}\in V we still write 𝒗\boldsymbol{v} for the trace of 𝒗\boldsymbol{v} on the boundary Ξ“\Gamma. We denote by vΞ½v_{\nu} and 𝒗τ\boldsymbol{v}_{\tau} the normal and the tangential component of 𝒗\boldsymbol{v} on Ξ“\Gamma, respectively, defined by vΞ½=𝒗⋅𝒗,𝒗τ=π’—βˆ’π’—Ξ½π’—v_{\nu}=\boldsymbol{v}\cdot\boldsymbol{v},\quad\boldsymbol{v}_{\tau}=\boldsymbol{v}-\boldsymbol{v}_{\nu}\boldsymbol{v}. By the Sobolev trace theorem, there exists a positive constant c0c_{0} which depends on Ξ©\Omega, Ξ“1\Gamma_{1} and Ξ“3\Gamma_{3} such that

‖𝒗‖L2(Ξ“3)d≀c0‖𝒗‖Vβˆ€π’—βˆˆV.\|\boldsymbol{v}\|_{L^{2}\left(\Gamma_{3}\right)^{d}}\leq c_{0}\|\boldsymbol{v}\|_{V}\quad\forall\boldsymbol{v}\in V. (2.1)

For a regular function 𝝈:𝛀βˆͺΞ“β†’π•Šd\boldsymbol{\sigma}:\boldsymbol{\Omega}\cup\Gamma\rightarrow\mathbb{S}^{d} we denote by σν\sigma_{\nu} and πˆΟ„\boldsymbol{\sigma}_{\tau} the normal and the tangential components of the vector πˆπ’—\boldsymbol{\sigma}\boldsymbol{v} on Ξ“\Gamma, respectively, and we recall that σν=πˆπ’—β‹…π’—\sigma_{\nu}=\boldsymbol{\sigma}\boldsymbol{v}\cdot\boldsymbol{v} and πˆΟ„=πˆπ’—βˆ’ΟƒΞ½π’—\boldsymbol{\sigma}_{\tau}=\boldsymbol{\sigma}\boldsymbol{v}-\sigma_{\nu}\boldsymbol{v}. Moreover, the following Green’s formula holds:

βˆ«Ξ©πˆβ‹…πœΊ(𝒗)dx+∫ΩDivβ‘πˆβ‹…π’—dx=βˆ«Ξ“πˆπ’—β‹…π’—daβˆ€π’—βˆˆV\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})\mathrm{d}x+\int_{\Omega}\operatorname{Div}\boldsymbol{\sigma}\cdot\boldsymbol{v}\mathrm{d}x=\int_{\Gamma}\boldsymbol{\sigma}\boldsymbol{v}\cdot\boldsymbol{v}\mathrm{d}a\quad\forall\boldsymbol{v}\in V (2.2)

We end this section with two abstract results which will be used in the rest of the paper. The first one represents an existence, uniqueness, and convergence result for elliptic variational inequalities. To introduce it, we consider a real Hilbert space XX endowed with the inner product (β‹…,β‹…)X(\cdot,\cdot)_{X} and the associated norm βˆ₯β‹…βˆ₯X\|\cdot\|_{X}. We assume that:

K is a nonempty, closed, convex subset of X.\displaystyle K\text{ is a nonempty, closed, convex subset of }X\text{. } (2.3)
A:Xβ†’X is a strongly monotone Lipschtz continuous operator.\displaystyle A:X\rightarrow X\text{ is a strongly monotone Lipschtz continuous operator. } (2.4)
{(a)G:Xβ†’X is a monotone Lipschtz continuous operator. (b)(Gu,vβˆ’u)X≀0βˆ€u∈X,v∈K(c)Gu=0X iff u∈K\displaystyle\left\{\begin{array}[]{l}(a)G:X\rightarrow X\text{ is a monotone Lipschtz continuous operator. }\\ (b)(Gu,v-u)_{X}\leq 0\quad\forall u\in X,v\in K\text{. }\\ (c)Gu=0_{X}\text{ iff }u\in K\text{. }\end{array}\right. (2.5)
f∈X.\displaystyle f\in X\text{. } (2.6)

With these given data we consider the problem of finding an element uu such that

u∈K,(Au,vβˆ’u)Xβ‰₯(f,vβˆ’u)X,βˆ€v∈Ku\in K,\quad(Au,v-u)_{X}\geq(f,v-u)_{X},\quad\forall v\in K (2.7)

and, for each ρ>0\rho>0, we consider the problem of finding an element uρu_{\rho} such that

uρ∈X,Auρ+1ρGuρ=f.u_{\rho}\in X,\quad Au_{\rho}+\frac{1}{\rho}Gu_{\rho}=f. (2.8)

The following result, proved in [9], will be used in Sections 4 and 5 of this paper.
Theorem 2.1: Let XX be a Hilbert space and assume that (2.3)-(2.5) hold. Then:
(1) The variational inequality (2.7) has a unique solution.
(2) For each ρ>0\rho>0 there exists a unique element uρu_{\rho} which solves the nonlinear Equation (2.8).
(3) The solution uρu_{\rho} of (2.8) converges strongly to the solution uu of (2.7), i.e.

uρ→u in X as Οβ†’0.u_{\rho}\rightarrow u\quad\text{ in }X\quad\text{ as }\quad\rho\rightarrow 0. (2.9)

The second abstract result we need is a fixed point result. To introduce it we consider a Banach space XX. We use the notation C(ℝ+;X)C\left(\mathbb{R}_{+};X\right) for the space of continuous functions defined on ℝ+\mathbb{R}_{+}with values in XX and, for a subset KβŠ‚XK\subset X, we still use the symbol C(ℝ+;K)C\left(\mathbb{R}_{+};K\right) for the set of continuous functions defined on ℝ+\mathbb{R}_{+}with values in KK. We also use the notation C1(ℝ+;X)C^{1}\left(\mathbb{R}_{+};X\right) for the space of continuous differentiable functions defined on ℝ+\mathbb{R}_{+}with values in XX.

The following fixed-point result will be used in Section 5 of the paper.
Theorem 2.2: Let (X,βˆ₯β‹…βˆ₯X)\left(X,\|\cdot\|_{X}\right) be a real Banach space and let Ξ›:C(ℝ+;X)β†’C(ℝ+;X)\Lambda:C\left(\mathbb{R}_{+};X\right)\rightarrow C\left(\mathbb{R}_{+};X\right) be a nonlinear operator with the following property: for each nβˆˆβ„•n\in\mathbb{N} there exists cn>0c_{n}>0 such that

β€–Ξ›u(t)βˆ’Ξ›v(t)β€–X≀cn∫0tβ€–u(s)βˆ’v(s)β€–Xds\|\Lambda u(t)-\Lambda v(t)\|_{X}\leq c_{n}\int_{0}^{t}\|u(s)-v(s)\|_{X}\mathrm{~d}s (2.10)

for all u,v∈C(ℝ+;X)u,v\in C\left(\mathbb{R}_{+};X\right) and for all t∈[0,n]t\in[0,n]. Then the operator Ξ›\Lambda has a unique fixed point Ξ·βˆ—βˆˆC(ℝ+;X)\eta^{*}\in C\left(\mathbb{R}_{+};X\right).

Theorem 2.2 represents a simplified version of Corollary 2.5 in [24]. We underline that in (2.10) and below, the notation Λη(t)\Lambda\eta(t) represents the value of the function Λη\Lambda\eta at the point tt, i.e. Λη(t)=(Λη)(t)\Lambda\eta(t)=(\Lambda\eta)(t).

3. The model

In this section we introduce the contact problem, list the assumptions on the data and derive its variational formulation.

The physical setting is as follows. An elastic body occupies a bounded domain Ξ©βŠ‚β„d(d=2,3)\Omega\subset\mathbb{R}^{d}(d=2,3) with a Lipschitz continuous boundary Ξ“\Gamma, divided into three measurable parts Ξ“1,Ξ“2\Gamma_{1},\Gamma_{2}, and Ξ“3\Gamma_{3} such that meas (Ξ“1)>0\left(\Gamma_{1}\right)>0 and, in addition, Ξ“3\Gamma_{3} is plane. The body is subject to the action of body forces of density 𝒇0\boldsymbol{f}_{0}. It is fixed on Ξ“1\Gamma_{1} and surfaces tractions of density 𝒇2\boldsymbol{f}_{2} act on Ξ“2\Gamma_{2}. On Ξ“3\Gamma_{3}, the body is in frictional contact with a moving obstacle, the so-called foundation. We denote by π’—βˆ—\boldsymbol{v}^{*} the velocity of the foundation, which is supposed to be a non-vanishing time-dependent function in the plane of Ξ“3\Gamma_{3}. The friction implies the wear of the foundation that we model with a surface variable, the wear function. Its evolution is governed by a simplified version of Archard’s law that we shall describe below. Moreover, we assume that the foundation is deformable and, therefore, its penetration is allowed. We model the contact with a normal compliance condition with unilateral constraint, which takes into account the wear of the foundation. We associate this condition to a sliding version of Coulomb’s law of dry friction. We adopt the framework of the small strain theory and we assume
that the contact process is quasistatic and it is studied in the interval of time ℝ+=[0,∞)\mathbb{R}_{+}=[0,\infty). Then, the classical formulation of the contact problem under consideration is the following.
Problem 𝒫\mathcal{P}. Find a stress field 𝝈:Ω×ℝ+β†’π•Šd\boldsymbol{\sigma}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d}, a displacement field 𝒖:Ω×ℝ+→ℝd\boldsymbol{u}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d}, and a wear function w:Ξ“3×ℝ+→ℝ+w:\Gamma_{3}\times\mathbb{R}_{+}\rightarrow\mathbb{R}_{+}such that

𝝈(t)=β„±πœΊ(𝒖(t))\displaystyle\boldsymbol{\sigma}(t)=\mathcal{F}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)) in Ξ©,\displaystyle\text{ in }\Omega, (3.1)
Div⁑𝝈(t)+𝒇0(t)=𝟎\displaystyle\operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0} in Ξ©,\displaystyle\text{ in }\Omega, (3.2)
𝒖(t)=𝟎\displaystyle\boldsymbol{u}(t)=\mathbf{0} on Ξ“1,\displaystyle\text{ on }\Gamma_{1}, (3.3)
𝝈(t)𝒗=𝒇2(t)\displaystyle\boldsymbol{\sigma}(t)\boldsymbol{v}=\boldsymbol{f}_{2}(t) on Ξ“2,\displaystyle\text{ on }\Gamma_{2}, (3.4)
uv(t)≀g,Οƒv(t)+p(uv(t)βˆ’w(t))≀0,\displaystyle u_{v}(t)\leq g,\sigma_{v}(t)+p\left(u_{v}(t)-w(t)\right)\leq 0, on Ξ“3,\displaystyle\text{ on }\Gamma_{3}, (3.5)
(uv(t)βˆ’g)(Οƒv(t)+p(uv(t)βˆ’w(t)))=0}\displaystyle\left.\left(u_{v}(t)-g\right)\left(\sigma_{v}(t)+p\left(u_{v}(t)-w(t)\right)\right)=0\right\} on Ξ“3,\displaystyle\text{ on }\Gamma_{3}, (3.6)
βˆ’πˆΟ„(t)=ΞΌp(uv(t)βˆ’w(t))π’βˆ—(t)\displaystyle-\boldsymbol{\sigma}_{\tau}(t)=\mu p\left(u_{v}(t)-w(t)\right)\boldsymbol{n}^{*}(t) on Ξ“3,\displaystyle\text{ on }\Gamma_{3}, (3.7)

for all tβˆˆβ„+t\in\mathbb{R}_{+}and, in addition,

w(0)=0 on Ξ“3.w(0)=0\quad\text{ on }\quad\Gamma_{3}. (3.8)

Here and below, for simplicity, we do not indicate explicitly the dependence of various functions on the spatial variable 𝒙\boldsymbol{x}. Moreover, the functions π’βˆ—\boldsymbol{n}^{*} and Ξ±\alpha are given by

π’βˆ—(t)=βˆ’π’—βˆ—(t)β€–π’—βˆ—(t)β€–,Ξ±(t)=kβ€–π’—βˆ—(t)β€–βˆ€tβˆˆβ„+\boldsymbol{n}^{*}(t)=-\frac{\boldsymbol{v}^{*}(t)}{\left\|\boldsymbol{v}^{*}(t)\right\|},\quad\alpha(t)=k\left\|\boldsymbol{v}^{*}(t)\right\|\quad\forall t\in\mathbb{R}_{+} (3.9)

where kk represents the wear coefficient.
We now provide a brief explanation for the equations and conditions in Problem 𝒫\mathcal{P}. First, Equation (3.1) represents the elastic constitutive law of the material in which β„±\mathcal{F} denotes a given nonlinear operator. Equation (3.2) is the equilibrium equation in which Div represents the divergence operator for tensor-valued functions. Conditions (3.3) and (3.4) are the displacement and traction boundary conditions, respectively.

Next, condition (3.5) represents the contact condition in which g>0g>0 and pp is a positive Lipschitz continuous increasing function which vanishes for a negative argument. This condition can be derived in the following way. First, we assume that the obstacle is made of a hard material covered by a layer of soft material of thickness gg. Thus, at each moment tt, the normal stress has an additive decomposition of the form

Οƒv(t)=ΟƒvR(t)+ΟƒvS(t) on Ξ“3\sigma_{v}(t)=\sigma_{v}^{R}(t)+\sigma_{v}^{S}(t)\quad\text{ on }\Gamma_{3} (3.10)

in which the function ΟƒvR(t)\sigma_{v}^{R}(t) describes the reaction to penetration of the hard material and ΟƒvS(t)\sigma_{v}^{S}(t) describes the reaction of the soft material. The hard material does not wear and is perfectly rigid. Therefore, the penetration is limited by the bound gg and σνR\sigma_{\nu}^{R} satisfies the Signorini condition in the form with a gap function, i.e.

uv(t)≀g,ΟƒvR(t)≀0,ΟƒvR(t)(uv(t)βˆ’g)=0 on Ξ“3.u_{v}(t)\leq g,\quad\sigma_{v}^{R}(t)\leq 0,\quad\sigma_{v}^{R}(t)\left(u_{v}(t)-g\right)=0\quad\text{ on }\Gamma_{3}. (3.11)

The soft material is elastic and could wear. Therefore, we assume that σνS(t)\sigma_{\nu}^{S}(t) satisfies a normal compliance contact condition with wear, that is

βˆ’ΟƒvS(t)=p(uv(t)βˆ’w(t)) on Ξ“3-\sigma_{v}^{S}(t)=p\left(u_{v}(t)-w(t)\right)\quad\text{ on }\Gamma_{3} (3.12)

This condition shows that at each moment tt, the reaction of the soft layer depends on the current value of the penetration, represented by uv(t)βˆ’w(t)u_{v}(t)-w(t). Indeed, we assume that a wear process of the
soft layer of the foundation takes place and the debris are immediately removed from the system. Thus, the penetration becomes uΞ½(t)βˆ’w(t)u_{\nu}(t)-w(t), instead of uΞ½(t)u_{\nu}(t) as in the case without wear. Condition (3.12) describes the fact that the surface geometry of foundation is affected by wear, see [8] for details. We now combine (3.10) and (3.12) to see that

ΟƒvR(t)=Οƒv(t)+p(uv(t)βˆ’w(t)) on Ξ“3.\sigma_{v}^{R}(t)=\sigma_{v}(t)+p\left(u_{v}(t)-w(t)\right)\quad\text{ on }\Gamma_{3}. (3.13)

Then we substitute equality (3.13) in (3.11) to obtain the contact condition (3.5).
We now describe the frictional contact condition (3.6). First, we recall the classical Coulomb law of dry friction,

β€–πˆΟ„(t)‖≀μ|σν(t)|βˆ’πˆΟ„(t)=ΞΌ|σν(t)|𝒖˙τ(t)βˆ’π’—βˆ—(t)‖𝒖˙τ(t)βˆ’π’—βˆ—(t)β€– if π’–Λ™Ο„(t)βˆ’π’—βˆ—(t)β‰ πŸŽ} on Ξ“3.\left.\begin{array}[]{l}\left\|\boldsymbol{\sigma}_{\tau}(t)\right\|\leq\mu\left|\sigma_{\nu}(t)\right|\\ -\boldsymbol{\sigma}_{\tau}(t)=\mu\left|\sigma_{\nu}(t)\right|\frac{\dot{\boldsymbol{u}}_{\tau}(t)-\boldsymbol{v}^{*}(t)}{\left\|\dot{\boldsymbol{u}}_{\tau}(t)-\boldsymbol{v}^{*}(t)\right\|}\text{ if }\dot{\boldsymbol{u}}_{\tau}(t)-\boldsymbol{v}^{*}(t)\neq\mathbf{0}\end{array}\right\}\quad\text{ on }\Gamma_{3}.

Here ΞΌ\mu represents the friction coefficient, 𝒖˙τ(t)\dot{\boldsymbol{u}}_{\tau}(t) is the tangential velocity, and 𝒖˙τ(t)βˆ’π’—βˆ—(t)\dot{\boldsymbol{u}}_{\tau}(t)-\boldsymbol{v}^{*}(t) represents the relative tangential velocity or the relative slip rate. We assume that at each moment tt the velocity of the foundation, π’—βˆ—(t)\boldsymbol{v}^{*}(t), is large in comparison with the tangential velocity 𝒖˙τ(t)\dot{\boldsymbol{u}}_{\tau}(t) and, for this reason, we approximate the relative slip rate by π’—βˆ—(t)\boldsymbol{v}^{*}(t). Therefore, using the approximations 𝒖˙τ(t)βˆ’π’—βˆ—(t)β‰ˆβˆ’π’—βˆ—(t)β‰ πŸŽ,‖𝒖˙τ(t)βˆ’π’—βˆ—(t)β€–β‰ˆβ€–π’—βˆ—(t)β€–\dot{\boldsymbol{u}}_{\tau}(t)-\boldsymbol{v}^{*}(t)\approx-\boldsymbol{v}^{*}(t)\neq\mathbf{0},\left\|\dot{\boldsymbol{u}}_{\tau}(t)-\boldsymbol{v}^{*}(t)\right\|\approx\left\|\boldsymbol{v}^{*}(t)\right\|, the friction law (3.14) implies that

πˆΟ„(t)=ΞΌ|σν(t)|π’—βˆ—(t)β€–π’—βˆ—(t)β€– on Ξ“3\boldsymbol{\sigma}_{\tau}(t)=\mu\left|\sigma_{\nu}(t)\right|\frac{\boldsymbol{v}^{*}(t)}{\left\|\boldsymbol{v}^{*}(t)\right\|}\quad\text{ on }\Gamma_{3}

Therefore, using the definition (3.9) of the vector π’βˆ—(t)\boldsymbol{n}^{*}(t) yields

βˆ’πˆΟ„(t)=ΞΌ|σν(t)|π’βˆ—(t) on Ξ“3.-\boldsymbol{\sigma}_{\tau}(t)=\mu\left|\sigma_{\nu}(t)\right|\boldsymbol{n}^{*}(t)\quad\text{ on }\Gamma_{3}. (3.15)

Next, we note that as far as the contact of the elastic body is in the status of normal compliance (i.e. uΞ½(t)<gu_{\nu}(t)<g ), condition (3.5) shows that

βˆ’ΟƒΞ½(t)=p(uΞ½(t)βˆ’w(t)) on Ξ“3-\sigma_{\nu}(t)=p\left(u_{\nu}(t)-w(t)\right)\quad\text{ on }\Gamma_{3} (3.16)

and, therefore, substituting this equality in (3.15) we deduce that (3.6) holds. We extend this condition to the case when the contact is unilateral, i.e. when uΞ½(t)=gu_{\nu}(t)=g. In this way, we fully justify the friction law (3.6).

Next, to obtain the differential Equation (3.7) we start from the Archard’s law, (1.1), i.e.

wΛ™(t)=k|Οƒv(t)|‖𝒖˙τ(t)βˆ’π’—βˆ—(t)β€– on Ξ“3.\dot{w}(t)=k\left|\sigma_{v}(t)\right|\left\|\dot{\boldsymbol{u}}_{\tau}(t)-\boldsymbol{v}^{*}(t)\right\|\quad\text{ on }\Gamma_{3}. (3.17)

Then, using again the approximation ‖𝒖˙τ(t)βˆ’π’—βˆ—(t)β€–β‰ˆβ€–π’—βˆ—(t)β€–\left\|\dot{\boldsymbol{u}}_{\tau}(t)-\boldsymbol{v}^{*}(t)\right\|\approx\left\|\boldsymbol{v}^{*}(t)\right\|, Equation (3.17) leads to

wΛ™(t)=k|σν(t)|β€–π’—βˆ—(t)β€– on Ξ“3.\dot{w}(t)=k\left|\sigma_{\nu}(t)\right|\left\|\boldsymbol{v}^{*}(t)\right\|\quad\text{ on }\Gamma_{3}.

We now use the definition (3.9) of the function Ξ±\alpha to obtain

wΛ™(t)=Ξ±(t)|σν(t)| on Ξ“3\dot{w}(t)=\alpha(t)\left|\sigma_{\nu}(t)\right|\quad\text{ on }\Gamma_{3} (3.18)

Next, we note that as far as the contact of the elastic body is in the status of normal compliance (3.16) holds and, therefore, substituting this equality in (3.18) we deduce (3.7). We extend this equality in the case of the unilateral contact, i.e. in the case when uΞ½(t)=gu_{\nu}(t)=g. In this way we fully justify the differential Equation (3.7) which governs the evolution of the wear function.

Finally (3.8) represents the initial condition for the wear function, which shows that at the initial moment the foundation is new.

We note that considering an arbitrary contact surface Ξ“3\Gamma_{3} and a thickness g=g(𝒙)g=g(\boldsymbol{x}) depending on the spatial variable does not cause additional mathematical difficulties in the analysis of Problem 𝒫\mathcal{P}. Nevertheless, we decided to assume that Ξ“3\Gamma_{3} is plane and gg is a constant since these assumptions arise in a large number of the industrial process and lead to a simple geometry which helps the reader to better understand the wear phenomenon.

We now turn to the variational formulation of Problem 𝒫\mathcal{P} and, to this end, we list the assumptions on the data. First, we assume that the elasticity operator β„±\mathcal{F} and the normal compliance function satisfy the following condition.

{ (a) β„±:Ξ©Γ—π•Šdβ†’π•Šd. (b) There exists Lβ„±>0 such that β€–β„±(𝒙,𝜺1)βˆ’β„±(𝒙,𝜺2)‖≀Lβ„±β€–πœΊ1βˆ’πœΊ2β€–βˆ€πœΊ1,𝜺2βˆˆπ•Šd, a.e. π’™βˆˆΞ©. (c) There exists mβ„±>0 such that (β„±(𝒙,𝜺1)βˆ’β„±(𝒙,𝜺2))β‹…(𝜺1βˆ’πœΊ2)β‰₯mβ„±β€–πœΊ1βˆ’πœΊ2β€–2βˆ€πœΊ1,𝜺2βˆˆπ•Šd, a.e. π’™βˆˆΞ©. (d) The mapping π’™β†¦β„±(𝒙,𝜺) is measurable on Ξ©,βˆ€πœΊβˆˆπ•Šd. (e) The mapping π’™β†¦β„±(𝒙,𝟎) belongs to Q.\left\{\begin{array}[]{l}\text{ (a) }\mathcal{F}:\Omega\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}.\\ \text{ (b) There exists }L_{\mathcal{F}}>0\text{ such that }\\ \quad\left\|\mathcal{F}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{1}\right)-\mathcal{F}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{2}\right)\right\|\leq L_{\mathcal{F}}\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|\\ \quad\forall\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\text{ a.e. }\boldsymbol{x}\in\Omega.\\ \text{ (c) There exists }m_{\mathcal{F}}>0\text{ such that }\\ \quad\left(\mathcal{F}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{1}\right)-\mathcal{F}\left(\boldsymbol{x},\boldsymbol{\varepsilon}_{2}\right)\right)\cdot\left(\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right)\geq m_{\mathcal{F}}\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|^{2}\\ \quad\forall\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\text{ a.e. }\boldsymbol{x}\in\Omega.\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto\mathcal{F}(\boldsymbol{x},\boldsymbol{\varepsilon})\text{ is measurable on }\Omega,\forall\boldsymbol{\varepsilon}\in\mathbb{S}^{d}.\\ \text{ (e) The mapping }\boldsymbol{x}\mapsto\mathcal{F}(\boldsymbol{x},\mathbf{0})\text{ belongs to }Q.\end{array}\right.
{ (a) p:Ξ“3×ℝ→ℝ+(b) There exists Lp>0 such that |p(𝒙,r1)βˆ’p(𝒙,r2)|≀Lp|r1βˆ’r2|βˆ€r1,r2βˆˆβ„, a.e. π’™βˆˆΞ“3. (c) (p(𝒙,r1)βˆ’p(𝒙,r2))(r1βˆ’r2)β‰₯0βˆ€r1,r2βˆˆβ„, a.e. π’™βˆˆΞ“3. (d) The mapping π’™β†¦p(𝒙,r) is measurable on Ξ“3,βˆ€rβˆˆβ„. (e) p(𝒙,r)=0 for all r≀0, a.e. π’™βˆˆΞ“3.\left\{\begin{array}[]{l}\text{ (a) }p:\Gamma_{3}\times\mathbb{R}\rightarrow\mathbb{R}_{+}\\ \text{(b) There exists }L_{p}>0\text{ such that }\\ \quad\left|p\left(\boldsymbol{x},r_{1}\right)-p\left(\boldsymbol{x},r_{2}\right)\right|\leq L_{p}\left|r_{1}-r_{2}\right|\\ \quad\forall r_{1},r_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (c) }\left(p\left(\boldsymbol{x},r_{1}\right)-p\left(\boldsymbol{x},r_{2}\right)\right)\left(r_{1}-r_{2}\right)\geq 0\\ \quad\forall r_{1},r_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto p(\boldsymbol{x},r)\text{ is measurable on }\Gamma_{3},\forall r\in\mathbb{R}.\\ \text{ (e) }p(\boldsymbol{x},r)=0\text{ for all }r\leq 0,\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\end{array}\right.

The densities of body forces and surface tractions have the regularity

𝒇0∈C(ℝ+;L2(Ξ©)d),𝒇2∈C(ℝ+;L2(Ξ“2)d).\boldsymbol{f}_{0}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right),\quad\boldsymbol{f}_{2}\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{2}\right)^{d}\right). (3.21)

Finally, the friction coefficient, the wear coefficient, and the foundation velocity verify

μ∈L∞(Ξ“3),ΞΌ(𝒙)β‰₯0 a.e. π’™βˆˆΞ“3\displaystyle\mu\in L^{\infty}\left(\Gamma_{3}\right),\quad\mu(\boldsymbol{x})\geq 0\text{ a.e. }\boldsymbol{x}\in\Gamma_{3} (3.22)
k∈L∞(Ξ“3),k(𝒙)β‰₯0 a.e. π’™βˆˆΞ“3\displaystyle k\in L^{\infty}\left(\Gamma_{3}\right),\quad k(\boldsymbol{x})\geq 0\text{ a.e. }\boldsymbol{x}\in\Gamma_{3} (3.23)
π’—βˆ—βˆˆC(ℝ+;ℝd) and there exists v>0 such that β€–π’—βˆ—(t)β€–β‰₯v,βˆ€tβˆˆβ„+.\displaystyle\boldsymbol{v}^{*}\in C\left(\mathbb{R}_{+};\mathbb{R}^{d}\right)\text{ and there exists }v>0\text{ such that }\left\|\boldsymbol{v}^{*}(t)\right\|\geq v,\forall t\in\mathbb{R}_{+}. (3.24)

Note that assumption (3.24) is compatible with the physical setting described above since, at each time moment, the velocity of the foundation is assumed to be large enough. In addition, (3.9), (3.23), and (3.24) imply that

π’βˆ—βˆˆC(ℝ+;ℝd),α∈C(ℝ+;L∞(Ξ“3))\boldsymbol{n}^{*}\in C\left(\mathbb{R}_{+};\mathbb{R}^{d}\right),\quad\alpha\in C\left(\mathbb{R}_{+};L^{\infty}\left(\Gamma_{3}\right)\right) (3.25)

and, moreover,

Ξ±(t)β‰₯0 a:e: on Ξ“3, for all tβˆˆβ„+.\alpha(t)\geq 0\quad\text{ a:e: on }\Gamma_{3},\quad\text{ for all }t\in\mathbb{R}_{+}. (3.26)

Next, we introduce the set of admissible displacements fields defined by

U={π’—βˆˆV:vv≀g on Ξ“3}.U=\left\{\boldsymbol{v}\in V:v_{v}\leq g\text{ on }\Gamma_{3}\right\}. (3.27)

In addition, we use the Riesz representation theorem to define the function 𝒇:ℝ+β†’V\boldsymbol{f}:\mathbb{R}_{+}\rightarrow V by equality

(𝒇(t),𝒗)V=(𝒇0(t),𝒗)L2(Ξ©)d+(𝒇2(t),𝒗)L2(Ξ“2)d(\boldsymbol{f}(t),\boldsymbol{v})_{V}=\left(\boldsymbol{f}_{0}(t),\boldsymbol{v}\right)_{L^{2}(\Omega)^{d}}+\left(\boldsymbol{f}_{2}(t),\boldsymbol{v}\right)_{L^{2}\left(\Gamma_{2}\right)^{d}} (3.28)

for all π’—βˆˆV\boldsymbol{v}\in V and tβˆˆβ„+t\in\mathbb{R}_{+}. It follows from assumption (3.21) that 𝒇\boldsymbol{f} has the regularity

π’‡βˆˆC(ℝ+;V)\boldsymbol{f}\in C\left(\mathbb{R}_{+};V\right) (3.29)

Assume in what follows that ( 𝝈,𝒖,w\boldsymbol{\sigma},\boldsymbol{u},w ) are sufficiently regular functions which satisfy (3.1)-(3.8) and let π’—βˆˆU\boldsymbol{v}\in U and t>0t>0 be given. We use Green formula (2.2) and the equilibrium Equation (3.2) to obtain

∫Ω𝝈(t)(𝜺(𝒗)βˆ’πœΊ(𝒖(t)))dxβˆ’βˆ«Ξ©π’‡0(t)(π’—βˆ’π’–(t))dx=βˆ«Ξ“πˆ(t)𝒗⋅(π’—βˆ’π’–(t))daβˆ€π’—βˆˆU\int_{\Omega}\boldsymbol{\sigma}(t)(\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))\mathrm{d}x-\int_{\Omega}\boldsymbol{f}_{0}(t)(\boldsymbol{v}-\boldsymbol{u}(t))\mathrm{d}x=\int_{\Gamma}\boldsymbol{\sigma}(t)\boldsymbol{v}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))\mathrm{d}a\quad\forall\boldsymbol{v}\in U

Next, we split the boundary integral over Ξ“1,Ξ“2\Gamma_{1},\Gamma_{2}, and Ξ“3\Gamma_{3}. Since π’—βˆ’π’–(t)=𝟎\boldsymbol{v}-\boldsymbol{u}(t)=\mathbf{0} on Ξ“1,𝝈(t)𝒗=𝒇2(t)\Gamma_{1},\boldsymbol{\sigma}(t)\boldsymbol{v}=\boldsymbol{f}_{2}(t) on Ξ“2\Gamma_{2}, taking into account (3.28) we deduce that

(𝝈(t),𝜺(𝒗)βˆ’πœΊ(𝒖(t)))Q=(𝒇(t),π’—βˆ’π’–(t))V+βˆ«Ξ“3𝝈(t)𝒗⋅(π’—βˆ’π’–(t))da(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}=(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}+\int_{\Gamma_{3}}\boldsymbol{\sigma}(t)\boldsymbol{v}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))\mathrm{d}a (3.30)

Note that

𝝈(t)𝒗⋅(π’—βˆ’π’–(t))=Οƒv(t)(vvβˆ’uv(t))+πˆΟ„(t)β‹…(π’—Ο„βˆ’π’–Ο„(t)) on Ξ“3\boldsymbol{\sigma}(t)\boldsymbol{v}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))=\sigma_{v}(t)\left(v_{v}-u_{v}(t)\right)+\boldsymbol{\sigma}_{\tau}(t)\cdot\left(\boldsymbol{v}_{\tau}-\boldsymbol{u}_{\tau}(t)\right)\quad\text{ on }\Gamma_{3} (3.31)

and, using contact condition (3.5) and the definition (3.27) of the set UU, we have

Οƒv(t)(vvβˆ’uv(t))=(Οƒv(t)+p(uv(t)βˆ’w(t)))(vvβˆ’g)\displaystyle\sigma_{v}(t)\left(v_{v}-u_{v}(t)\right)=\left(\sigma_{v}(t)+p\left(u_{v}(t)-w(t)\right)\right)\left(v_{v}-g\right)
+(Οƒv(t)+p(uv(t)βˆ’w(t)))(gβˆ’uv(t))βˆ’p(uv(t)βˆ’w(t))(vvβˆ’uv(t))\displaystyle\quad+\left(\sigma_{v}(t)+p\left(u_{v}(t)-w(t)\right)\right)\left(g-u_{v}(t)\right)-p\left(u_{v}(t)-w(t)\right)\left(v_{v}-u_{v}(t)\right)
β‰₯βˆ’p(uv(t)βˆ’w(t))(vvβˆ’uv(t)) on Ξ“3\displaystyle\quad\geq-p\left(u_{v}(t)-w(t)\right)\left(v_{v}-u_{v}(t)\right)\quad\text{ on }\quad\Gamma_{3} (3.32)

Therefore, taking into account identity (3.31), inequality (3.32), and the friction law (3.6) we obtain that

βˆ«Ξ“3𝝈(t)𝒗⋅(π’—βˆ’π’–(t))daβ‰₯βˆ’βˆ«Ξ“3p(uv(t)βˆ’w(t))(vvβˆ’uv(t))da\displaystyle\int_{\Gamma_{3}}\boldsymbol{\sigma}(t)\boldsymbol{v}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))\mathrm{d}a\geq-\int_{\Gamma_{3}}p\left(u_{v}(t)-w(t)\right)\left(v_{v}-u_{v}(t)\right)\mathrm{d}a
βˆ’βˆ«Ξ“3ΞΌp(uv(t)βˆ’w(t))π’βˆ—(t)β‹…(π’—Ο„βˆ’π’–Ο„(t))da\displaystyle\quad-\int_{\Gamma_{3}}\mu p\left(u_{v}(t)-w(t)\right)\boldsymbol{n}^{*}(t)\cdot\left(\boldsymbol{v}_{\tau}-\boldsymbol{u}_{\tau}(t)\right)\mathrm{d}a (3.33)

We now combine (3.30) and (3.33) to obtain that

(𝝈(t),𝜺(𝒗)βˆ’πœΊ(𝒖(t)))Q+βˆ«Ξ“3p(uv(t)βˆ’w(t))(vvβˆ’uv(t))da\displaystyle(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}+\int_{\Gamma_{3}}p\left(u_{v}(t)-w(t)\right)\left(v_{v}-u_{v}(t)\right)\mathrm{d}a
+βˆ«Ξ“3ΞΌp(uv(t)βˆ’w(t))π’βˆ—(t)β‹…(π’—Ο„βˆ’π’–Ο„(t))daβ‰₯(𝒇(t),π’—βˆ’π’–(t))Vβˆ€π’—βˆˆU\displaystyle\quad+\int_{\Gamma_{3}}\mu p\left(u_{v}(t)-w(t)\right)\boldsymbol{n}^{*}(t)\cdot\left(\boldsymbol{v}_{\tau}-\boldsymbol{u}_{\tau}(t)\right)\mathrm{d}a\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}\quad\forall\boldsymbol{v}\in U (3.34)

In addition, we note that the boundary condition (3.3), the first inequality in (3.5) and (3.27) imply that 𝒖(t)∈U\boldsymbol{u}(t)\in U. Finally, we integrate the differential Equation (3.7) with the initial condition (3.8) to obtain that

w(t)=∫0tΞ±(s)p(uΞ½(s)βˆ’w(s))dsw(t)=\int_{0}^{t}\alpha(s)p\left(u_{\nu}(s)-w(s)\right)\mathrm{d}s (3.35)

We now gather the constitutive law (3.1), the variational inequality (3.34), and the integral Equation (3.35) to obtain the following variational formulation of the contact problem 𝒫\mathcal{P}.

Problem 𝒫V\mathcal{P}^{V}. Find a stress field 𝝈:ℝ+β†’Q\boldsymbol{\sigma}:\mathbb{R}_{+}\rightarrow Q, a displacement field 𝒖:ℝ+β†’U\boldsymbol{u}:\mathbb{R}_{+}\rightarrow U, and a wear function w:ℝ+β†’L2(Ξ“3)w:\mathbb{R}_{+}\rightarrow L^{2}\left(\Gamma_{3}\right) such that

𝝈(t)=β„±πœΊ(𝒖(t))\displaystyle\boldsymbol{\sigma}(t)=\mathcal{F}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)) (3.36)
(𝝈(t),𝜺(𝒗)βˆ’πœΊ(𝒖(t)))Q+βˆ«Ξ“3p(uv(t)βˆ’w(t))(vvβˆ’uv(t))da\displaystyle\quad(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}+\int_{\Gamma_{3}}p\left(u_{v}(t)-w(t)\right)\left(v_{v}-u_{v}(t)\right)\mathrm{d}a
+βˆ«Ξ“3ΞΌp(uv(t)βˆ’w(t))π’βˆ—(t)β‹…(π’—Ο„βˆ’π’–Ο„(t))daβ‰₯(𝒇(t),π’—βˆ’π’–(t))Vβˆ€π’—βˆˆU\displaystyle\quad+\int_{\Gamma_{3}}\mu p\left(u_{v}(t)-w(t)\right)\boldsymbol{n}^{*}(t)\cdot\left(\boldsymbol{v}_{\tau}-\boldsymbol{u}_{\tau}(t)\right)\mathrm{d}a\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}\quad\forall\boldsymbol{v}\in U (3.37)
w(t)=∫0tΞ±(s)p(uv(s)βˆ’w(s))ds\displaystyle w(t)=\int_{0}^{t}\alpha(s)p\left(u_{v}(s)-w(s)\right)\mathrm{d}s (3.38)

for all tβˆˆβ„+t\in\mathbb{R}_{+}.
The unique solvability of Problem 𝒫V\mathcal{P}^{V} will be proved in the next section. A triple ( 𝝈,𝒖,w\boldsymbol{\sigma},\boldsymbol{u},w ) which satisfy (3.36)-(3.38) is called weak solution of Problem 𝒫\mathcal{P}.

We end this section with some additional comments on our contact model. Assume that (3.1)(3.8) has a classical solution. Then, since Ξ±\alpha and pp are positive functions, it follows from (3.7) what wΛ™(t)β‰₯0\dot{w}(t)\geq 0 for all tt, i.e. the wear is increasing, in each point of the contact surface. Moreover, if at a moment t0t_{0} we have w(t0)=gw\left(t_{0}\right)=g, then, using Equation (3.7) and the properties (3.20) of the function pp, it can be easily proved that w(t0)=gw\left(t_{0}\right)=g for all tβ‰₯t0t\geq t_{0}. This behavior shows that the wear of the foundation is limited by the constraint w(t)≀gw(t)\leq g, which fits with the assumption that rigid layer of the foundation does not wear.

4. An existence and uniqueness result

In this section, we state and prove the following existence and uniqueness result.
Theorem 4.1: Assume that (3.19)-(3.24) hold. Then there exists a constant ΞΌ0\mu_{0} which depends only on Ξ©,Ξ“1,Ξ“3,β„±\Omega,\Gamma_{1},\Gamma_{3},\mathcal{F}, and pp such that, if

β€–ΞΌβ€–L∞(Ξ“3)<ΞΌ0\|\mu\|_{L^{\infty}\left(\Gamma_{3}\right)}<\mu_{0} (4.1)

then Problem 𝒫V\mathcal{P}^{V} has a unique solution. Moreover, the solution has the regularity

𝝈∈C(ℝ+;Q),π’–βˆˆC(ℝ+;U),w∈C1(ℝ+;L2(Ξ“3))\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q\right),\quad\boldsymbol{u}\in C\left(\mathbb{R}_{+};U\right),\quad w\in C^{1}\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{3}\right)\right) (4.2)

and, in addition,

w(t)β‰₯0 a.e. on Ξ“3, for all tβˆˆβ„+.w(t)\geq 0\quad\text{ a.e. on }\Gamma_{3},\text{ for all }t\in\mathbb{R}_{+}. (4.3)

We conclude from above that Problem 𝒫\mathcal{P} has a unique weak solution, provided that assumptions of Theorem 4.1 are satisfied. In addition, note that condition (4.1) represents a smallness condition on the coefficient of friction which is frequently needed in the study of static or quasistatic frictional contact problems with elastic materials. The question if this condition describes an intrinsic feature of the frictional contact process or it represents a limitation of our mathematical tools represents an open question which, clearly, has to be investigated in the future.

The proof of Theorem 4.1 will be carried out in several steps. We assume in the rest of this section that (3.19)-(3.24) hold. In the first step, we consider a given wear function w∈C(ℝ+;L2(Ξ“3))w\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{3}\right)\right) and we construct the following intermediate variational problem.

Problem 𝒫wV\mathcal{P}_{w}^{V}. Find a displacement field 𝒖w:ℝ+β†’U\boldsymbol{u}_{w}:\mathbb{R}_{+}\rightarrow U such that

(β„±πœΊ(𝒖w(t)),𝜺(𝒗)βˆ’πœΊ(𝒖w(t)))Q+βˆ«Ξ“3p(uwv(t)βˆ’w(t))(vvβˆ’uwv(t))da\displaystyle\left(\mathcal{F}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{w}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{w}(t)\right)\right)_{Q}+\int_{\Gamma_{3}}p\left(u_{wv}(t)-w(t)\right)\left(v_{v}-u_{wv}(t)\right)\mathrm{d}a
+βˆ«Ξ“3ΞΌp(uwv(t)βˆ’w(t))π’βˆ—(t)β‹…(π’—Ο„βˆ’π’–wΟ„(t))daβ‰₯(𝒇(t),π’—βˆ’π’–w(t))Vβˆ€π’—βˆˆU,\displaystyle\quad+\int_{\Gamma_{3}}\mu p\left(u_{wv}(t)-w(t)\right)\boldsymbol{n}^{*}(t)\cdot\left(\boldsymbol{v}_{\tau}-\boldsymbol{u}_{w\tau}(t)\right)\mathrm{d}a\geq\left(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}_{w}(t)\right)_{V}\quad\forall\boldsymbol{v}\in U, (4.4)

for all tβˆˆβ„+t\in\mathbb{R}_{+}.
In the study of Problem 𝒫wV\mathcal{P}_{w}^{V}, we have the following existence and uniqueness result.
Lemma 4.2: There exists a constant ΞΌ0\mu_{0} which depends only on Ξ©,Ξ“1,Ξ“3,β„±\Omega,\Gamma_{1},\Gamma_{3},\mathcal{F}, and pp such that, if (4.1) holds, then there exists a unique solution to Problem 𝒫wV\mathcal{P}_{w}^{V} which satisfies 𝒖w∈C(ℝ+;U)\boldsymbol{u}_{w}\in C\left(\mathbb{R}_{+};U\right).
Proof: Let tβˆˆβ„+t\in\mathbb{R}_{+}and consider the operator Awt:Vβ†’VA_{wt}:V\rightarrow V defined by

(Awt𝒖,𝒗)V=(β„±πœΊ(𝒖),𝜺(𝒗))Q+βˆ«Ξ“3p(uvβˆ’w(t))vvda\displaystyle\left(A_{wt}\boldsymbol{u},\boldsymbol{v}\right)_{V}=(\mathcal{F}\boldsymbol{\varepsilon}(\boldsymbol{u}),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\int_{\Gamma_{3}}p\left(u_{v}-w(t)\right)v_{v}\mathrm{~d}a
+βˆ«Ξ“3ΞΌp(uvβˆ’w(t))π’βˆ—(t)⋅𝒗τdaβˆ€π’–,π’—βˆˆV\displaystyle\quad+\int_{\Gamma_{3}}\mu p\left(u_{v}-w(t)\right)\boldsymbol{n}^{*}(t)\cdot\boldsymbol{v}_{\tau}\mathrm{d}a\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (4.5)

We use assumptions (3.19), (3.20), (3.22), and inequality (2.1) to see that the operator AwtA_{wt} is Lipschitz continuous, i.e. it verifies the inequality

β€–Awt𝒖1βˆ’Awt𝒖2β€–V≀(Lβ„±+c02Lp(1+β€–ΞΌβ€–L∞(Ξ“3)))‖𝒖1βˆ’π’–2β€–V,\left\|A_{wt}\boldsymbol{u}_{1}-A_{wt}\boldsymbol{u}_{2}\right\|_{V}\leq\left(L_{\mathcal{F}}+c_{0}^{2}L_{p}\left(1+\|\mu\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)\right)\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\|_{V}, (4.6)

for all 𝒖1,𝒖2∈V\boldsymbol{u}_{1},\boldsymbol{u}_{2}\in V. Next, we introduce the constant ΞΌ0\mu_{0} defined by

ΞΌ0=mβ„±c02Lp\mu_{0}=\frac{m_{\mathcal{F}}}{c_{0}^{2}L_{p}} (4.7)

and note that it depends only on Ξ©,Ξ“1,Ξ“3,β„±\Omega,\Gamma_{1},\Gamma_{3},\mathcal{F}, and pp. Assume that (4.1) holds. Then, we obtain

c02Lpβ€–ΞΌβ€–L∞(Ξ“3)<mβ„±c_{0}^{2}L_{p}\|\mu\|_{L^{\infty}\left(\Gamma_{3}\right)}<m_{\mathcal{F}} (4.8)

We use again assumptions (3.19), (3.20), and (3.20) and inequalities (2.1) and (4.8) to deduce that the operator AwtA_{wt} is strongly monotone, i.e. it satisfies the inequality

(Awt𝒖1βˆ’Awt𝒖2,𝒖1βˆ’π’–2)Vβ‰₯(mβ„±βˆ’c02Lpβ€–ΞΌβ€–L∞(Ξ“3))‖𝒖1βˆ’π’–2β€–V2\left(A_{wt}\boldsymbol{u}_{1}-A_{wt}\boldsymbol{u}_{2},\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)_{V}\geq\left(m_{\mathcal{F}}-c_{0}^{2}L_{p}\|\mu\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\|_{V}^{2} (4.9)

for all 𝒖1,𝒖2∈V\boldsymbol{u}_{1},\boldsymbol{u}_{2}\in V.
Using these ingredients, by Theorem 2.1(1), we deduce that there exists a unique element 𝒖wt∈U\boldsymbol{u}_{wt}\in U such that

(Awt𝒖wt,π’—βˆ’π’–wt)Vβ‰₯(𝒇(t),π’—βˆ’π’–wt)Vβˆ€π’—βˆˆU\left(A_{wt}\boldsymbol{u}_{wt},\boldsymbol{v}-\boldsymbol{u}_{wt}\right)_{V}\geq\left(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}_{wt}\right)_{V}\quad\forall\boldsymbol{v}\in U (4.10)

Denote 𝒖wt=𝒖w(t)\boldsymbol{u}_{wt}=\boldsymbol{u}_{w}(t). Then, it follows from (4.10) and (4.5) that the element 𝒖w(t)∈U\boldsymbol{u}_{w}(t)\in U is the unique element which solves the variational inequality (4.4).

We now prove the continuity of the function t↦𝒖w(t):ℝ+β†’Vt\mapsto\boldsymbol{u}_{w}(t):\mathbb{R}_{+}\rightarrow V. To this end, let t1,t2βˆˆβ„+t_{1},t_{2}\in\mathbb{R}_{+} and denote 𝒖i=𝒖w(ti),wi=w(ti),𝒇i=𝒇(ti),𝒏iβˆ—=π’βˆ—(ti)\boldsymbol{u}_{i}=\boldsymbol{u}_{w}\left(t_{i}\right),w_{i}=w\left(t_{i}\right),\boldsymbol{f}_{i}=\boldsymbol{f}\left(t_{i}\right),\boldsymbol{n}_{i}^{*}=\boldsymbol{n}^{*}\left(t_{i}\right), for i=1,2i=1,2. We use standard
arguments in (4.4) to find that

(β„±πœΊ(𝒖1)βˆ’β„±πœΊ(𝒖2),𝜺(𝒖1)βˆ’πœΊ(𝒖2))Q≀(𝒇1βˆ’π’‡2,𝒖1βˆ’π’–2)V\displaystyle\left(\mathcal{F}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{1}\right)-\mathcal{F}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{2}\right),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{1}\right)-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{2}\right)\right)_{Q}\leq\left(\boldsymbol{f}_{1}-\boldsymbol{f}_{2},\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)_{V}
+βˆ«Ξ“3[p(u1vβˆ’w1)βˆ’p(u2vβˆ’w2)][(u2vβˆ’w2)βˆ’(u1vβˆ’w1)]da\displaystyle\quad+\int_{\Gamma_{3}}\left[p\left(u_{1v}-w_{1}\right)-p\left(u_{2v}-w_{2}\right)\right]\left[\left(u_{2v}-w_{2}\right)-\left(u_{1v}-w_{1}\right)\right]\mathrm{d}a
+βˆ«Ξ“3[p(u1vβˆ’w1)βˆ’p(u2vβˆ’w2)](w2βˆ’w1)da\displaystyle\quad+\int_{\Gamma_{3}}\left[p\left(u_{1v}-w_{1}\right)-p\left(u_{2v}-w_{2}\right)\right]\left(w_{2}-w_{1}\right)\mathrm{d}a
+βˆ«Ξ“3ΞΌ[p(u1vβˆ’w1)𝒏1βˆ—βˆ’p(u2vβˆ’w2)𝒏1βˆ—]β‹…(𝒖2Ο„βˆ’π’–1Ο„)da\displaystyle\quad+\int_{\Gamma_{3}}\mu\left[p\left(u_{1v}-w_{1}\right)\boldsymbol{n}_{1}^{*}-p\left(u_{2v}-w_{2}\right)\boldsymbol{n}_{1}^{*}\right]\cdot\left(\boldsymbol{u}_{2\tau}-\boldsymbol{u}_{1\tau}\right)\mathrm{d}a
+βˆ«Ξ“3ΞΌ[p(u2vβˆ’w2)𝒏1βˆ—βˆ’p(u2vβˆ’w2)𝒏2βˆ—]β‹…(𝒖2Ο„βˆ’π’–1Ο„)da\displaystyle\quad+\int_{\Gamma_{3}}\mu\left[p\left(u_{2v}-w_{2}\right)\boldsymbol{n}_{1}^{*}-p\left(u_{2v}-w_{2}\right)\boldsymbol{n}_{2}^{*}\right]\cdot\left(\boldsymbol{u}_{2\tau}-\boldsymbol{u}_{1\tau}\right)\mathrm{d}a

Therefore, (3.19), (3.20), (3.22), and (2.1) yield

(mβ„±\displaystyle\left(m_{\mathcal{F}}\right. βˆ’c02Lpβˆ₯ΞΌβˆ₯L∞(Ξ“3))βˆ₯𝒖1βˆ’π’–2βˆ₯V2\displaystyle\left.-c_{0}^{2}L_{p}\|\mu\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\|_{V}^{2}
≀\displaystyle\leq (c0Lp(1+βˆ₯ΞΌβˆ₯L∞(Ξ“3))βˆ₯w1βˆ’w2βˆ₯L2(Ξ“3)+βˆ₯𝒇1βˆ’π’‡2βˆ₯V\displaystyle\left(c_{0}L_{p}\left(1+\|\mu\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)\left\|w_{1}-w_{2}\right\|_{L^{2}\left(\Gamma_{3}\right)}+\left\|\boldsymbol{f}_{1}-\boldsymbol{f}_{2}\right\|_{V}\right.
+c0p(g)βˆ₯ΞΌβˆ₯L∞(Ξ“3)βˆ₯𝒏1βˆ—βˆ’π’2βˆ—βˆ₯)βˆ₯𝒖1βˆ’π’–2βˆ₯V+Lpβˆ₯w1βˆ’w2βˆ₯L2(Ξ“3)2\displaystyle\left.\quad+c_{0}p(g)\|\mu\|_{L^{\infty}\left(\Gamma_{3}\right)}\left\|\boldsymbol{n}_{1}^{*}-\boldsymbol{n}_{2}^{*}\right\|\right)\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\|_{V}+L_{p}\left\|w_{1}-w_{2}\right\|_{L^{2}\left(\Gamma_{3}\right)}^{2}

We now use (4.8) and the elementary inequality

x,y,zβ‰₯0 and x2≀yx+z⟹x2≀y2+2zx,y,z\geq 0\text{ and }x^{2}\leq yx+z\Longrightarrow x^{2}\leq y^{2}+2z

to deduce that

‖𝒖1βˆ’π’–2β€–V2\displaystyle\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\|_{V}^{2}
≀a(β€–w1βˆ’w2β€–L2(Ξ“3)+‖𝒇1βˆ’π’‡2β€–+‖𝒏1βˆ—βˆ’π’2βˆ—β€–)2+bβ€–w1βˆ’w2β€–L2(Ξ“3)2\displaystyle\quad\leq a\left(\left\|w_{1}-w_{2}\right\|_{L^{2}\left(\Gamma_{3}\right)}+\left\|\boldsymbol{f}_{1}-\boldsymbol{f}_{2}\right\|+\left\|\boldsymbol{n}_{1}^{*}-\boldsymbol{n}_{2}^{*}\right\|\right)^{2}+b\left\|w_{1}-w_{2}\right\|_{L^{2}\left(\Gamma_{3}\right)}^{2} (4.11)

where aa and bb denote two positive constants which do not depend on t1t_{1} and t2t_{2}. This inequality combined with (3.25), (3.29), and the regularity w∈C(ℝ+;L2(Ξ“3))w\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{3}\right)\right) show that 𝒖w∈C(ℝ+;V)\boldsymbol{u}_{w}\in C\left(\mathbb{R}_{+};V\right). Thus, we conclude the existence part in Lemma 4.2. The uniqueness part follows from the unique solvability of (4.10) for each tβˆˆβ„+t\in\mathbb{R}_{+}.

We assume in what follows that (4.1), (4.7) hold and we consider the operator Ξ›:C(ℝ+;L2(Ξ“3))β†’C(ℝ+;L2(Ξ“3))\Lambda:C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{3}\right)\right)\rightarrow C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{3}\right)\right) defined by

Ξ›w(t)=∫0tΞ±(s)p(uwv(s)βˆ’w(s))ds\Lambda w(t)=\int_{0}^{t}\alpha(s)p\left(u_{wv}(s)-w(s)\right)\mathrm{d}s (4.12)

for all w∈C(ℝ+;L2(Ξ“3))w\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{3}\right)\right), where 𝒖w\boldsymbol{u}_{w} is the unique solution of Problem 𝒫wV\mathcal{P}_{w}^{V}. We have the following fixed point result, which represents the second step in the proof of Theorem 4.1.
Lemma 4.3: The operator Ξ›\Lambda has a unique fixed point wβˆ—βˆˆC(ℝ+;L2(Ξ“3))w^{*}\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{3}\right)\right).
Proof: Let w1,w2∈C(ℝ+;L2(Ξ“3))w_{1},w_{2}\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{3}\right)\right). For simplicity we denote by 𝒖i,i=1,2\boldsymbol{u}_{i},i=1,2 the solutions of problems 𝒫wiV\mathcal{P}_{w_{i}}^{V}, i.e. 𝒖i=𝒖wi\boldsymbol{u}_{i}=\boldsymbol{u}_{w_{i}}. Let nβˆˆβ„•n\in\mathbb{N} and let t∈[0,n]t\in[0,n]. Taking into account (4.12), (3.9), and (3.20) we deduce that

β€–Ξ›w1(t)βˆ’Ξ›w2(t)β€–L2(Ξ“3)\displaystyle\left\|\Lambda w_{1}(t)-\Lambda w_{2}(t)\right\|_{L^{2}\left(\Gamma_{3}\right)}
≀vnβˆ—(c0∫0t‖𝒖1(s)βˆ’π’–2(s)β€–Vds+∫0tβ€–w1(s)βˆ’w2(s)β€–L2(Ξ“3)ds)\displaystyle\quad\leq v_{n}^{*}\left(c_{0}\int_{0}^{t}\left\|\boldsymbol{u}_{1}(s)-\boldsymbol{u}_{2}(s)\right\|_{V}\mathrm{~d}s+\int_{0}^{t}\left\|w_{1}(s)-w_{2}(s)\right\|_{L^{2}\left(\Gamma_{3}\right)}\mathrm{d}s\right) (4.13)

where

vnβˆ—=Lpβ€–kβ€–L∞(Ξ“3)maxr∈[0,n]β‘β€–π’—βˆ—(r)β€–v_{n}^{*}=L_{p}\|k\|_{L^{\infty}\left(\Gamma_{3}\right)}\max_{r\in[0,n]}\left\|\boldsymbol{v}^{*}(r)\right\|

On the other hand, using arguments similar to those used in the proof of (4.11) yield

‖𝒖1(t)βˆ’π’–2(t)β€–V≀a+bβ€–w1(t)βˆ’w2(t)β€–L2(Ξ“3)\left\|\boldsymbol{u}_{1}(t)-\boldsymbol{u}_{2}(t)\right\|_{V}\leq\sqrt{a+b}\left\|w_{1}(t)-w_{2}(t)\right\|_{L^{2}\left(\Gamma_{3}\right)} (4.14)

We now combine the inequalities (4.13) and (4.14) to deduce that

β€–Ξ›w1(t)βˆ’Ξ›w2(t)β€–L2(Ξ“3)≀vnβˆ—(c0a+b+1)∫0tβ€–w1(s)βˆ’w2(s)β€–L2(Ξ“3)\left\|\Lambda w_{1}(t)-\Lambda w_{2}(t)\right\|_{L^{2}\left(\Gamma_{3}\right)}\leq v_{n}^{*}\left(c_{0}\sqrt{a+b}+1\right)\int_{0}^{t}\left\|w_{1}(s)-w_{2}(s)\right\|_{L^{2}\left(\Gamma_{3}\right)} (4.15)

Lemma 4.3 is now a direct consequence of Theorem 2.2.
We now have all ingredients needed to provide the proof of our main existence and uniqueness result.
Proof of Theorem 4.1: Existence. Let wβˆ—βˆˆC(ℝ+;L2(Ξ“3))w^{*}\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{3}\right)\right) be the unique fixed point of the operator Ξ›\Lambda and let π’–βˆ—,πˆβˆ—\boldsymbol{u}^{*},\boldsymbol{\sigma}^{*} defined by

π’–βˆ—(t)\displaystyle\boldsymbol{u}^{*}(t) =𝒖wβˆ—(t)\displaystyle=\boldsymbol{u}_{w^{*}}(t) (4.16)
πˆβˆ—(t)\displaystyle\boldsymbol{\sigma}^{*}(t) =β„±πœΊ(π’–βˆ—(t))\displaystyle=\mathcal{F}\boldsymbol{\varepsilon}\left(\boldsymbol{u}^{*}(t)\right) (4.17)

for all tβˆˆβ„+t\in\mathbb{R}_{+}. We recall that wβˆ—=Ξ›wβˆ—w^{*}=\Lambda w^{*} and using equalities (4.12) and (4.16) we deduce that

wβˆ—(t)=∫0tΞ±(s)p(uwvβˆ—(s)βˆ’wβˆ—(s))dsw^{*}(t)=\int_{0}^{t}\alpha(s)p\left(u_{wv}^{*}(s)-w^{*}(s)\right)\mathrm{d}s (4.18)

for all tβˆˆβ„+t\in\mathbb{R}_{+}. We show that the triple ( πˆβˆ—,π’–βˆ—,wβˆ—\boldsymbol{\sigma}^{*},\boldsymbol{u}^{*},w^{*} ) satisfies (3.36)-(3.38). First, we note that (3.36) is a direct consequence of (4.17). Then, we write the inequality (4.4) for w=wβˆ—w=w^{*} and use the notation (4.16), (4.17) to see that (3.37) holds. Finally, (3.38) follows from (4.18). We conclude from above that the triple (πˆβˆ—,π’–βˆ—,wβˆ—)\left(\boldsymbol{\sigma}^{*},\boldsymbol{u}^{*},w^{*}\right) represents a solution of Problem 𝒫V\mathcal{P}^{V}, as claimed. The regularity expressed in (4.2) is a direct consequence of the Lemma 4.2 combined with assumption (3.19) and formula (4.18). Finally, condition (4.3) follows from (4.18), since Ξ±\alpha and pp are positive functions, as it results from (3.26) and (3.20)(a).

Uniqueness. The uniqueness of the solution follows from the unique solvability of Problem 𝒫wV\mathcal{P}_{w}^{V}, provided in Lemma 4.2, combined with the uniqueness of the fixed point of operator Ξ›\Lambda defined by (4.12).

5. A convergence result

In this section we provide a convergence result in the study of Problem 𝒫\mathcal{P}, based on the penalization of the unilateral constraint and arguments similar to those used in [25]. To this end, we assume in what follows that (3.19)-(3.24) and (4.1) hold where, recall, ΞΌ0\mu_{0} is given by (4.7). Then, it follows from Theorem 4.1 that Problem 𝒫V\mathcal{P}^{V} has a unique solution ( 𝝈,𝒖,w\boldsymbol{\sigma},\boldsymbol{u},w ), with regularity (4.2). Next, for each ρ>0\rho>0 we consider the following contact problem.

Problem 𝒫ρ\mathcal{P}_{\rho}. Find a stress field 𝝈ρ:Ω×ℝ+β†’π•Šd\boldsymbol{\sigma}_{\rho}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d}, a displacement field 𝒖ρ:Ω×ℝ+→ℝd\boldsymbol{u}_{\rho}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d}, and a wear function wρ:Ξ“3×ℝ+→ℝ+w_{\rho}:\Gamma_{3}\times\mathbb{R}_{+}\rightarrow\mathbb{R}_{+}such that

𝝈ρ(t)=β„±πœΊ(𝒖ρ(t))\displaystyle\boldsymbol{\sigma}_{\rho}(t)=\mathcal{F}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right) in Ξ©,\displaystyle\text{ in }\Omega, (5.1)
Div⁑𝝈ρ(t)+𝒇0(t)=𝟎\displaystyle\operatorname{Div}\boldsymbol{\sigma}_{\rho}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0} in Ξ©,\displaystyle\text{ in }\Omega, (5.2)
𝒖ρ(t)=𝟎\displaystyle\boldsymbol{u}_{\rho}(t)=\mathbf{0} on Ξ“1,\displaystyle\text{ on }\Gamma_{1}, (5.3)
𝝈ρ(t)𝒗=𝒇2(t)\displaystyle\boldsymbol{\sigma}_{\rho}(t)\boldsymbol{v}=\boldsymbol{f}_{2}(t) on Ξ“2,\displaystyle\text{ on }\Gamma_{2}, (5.4)
σρv(t)+p(uρv(t)βˆ’wρ(t))+1ρp(uρv(t)βˆ’g)=0\displaystyle\sigma_{\rho v}(t)+p\left(u_{\rho v}(t)-w_{\rho}(t)\right)+\frac{1}{\rho}p\left(u_{\rho v}(t)-g\right)=0 on Ξ“3,\displaystyle\text{ on }\Gamma_{3}, (5.5)
βˆ’πˆΟΟ„(t)=ΞΌp(uρv(t)βˆ’wρ(t))π’βˆ—(t)\displaystyle-\boldsymbol{\sigma}_{\rho\tau}(t)=\mu p\left(u_{\rho v}(t)-w_{\rho}(t)\right)\boldsymbol{n}^{*}(t) on Ξ“3,\displaystyle\text{ on }\Gamma_{3}, (5.6)
w˙ρ(t)=Ξ±(t)p(uρv(t)βˆ’wρ(t))\displaystyle\dot{w}_{\rho}(t)=\alpha(t)p\left(u_{\rho v}(t)-w_{\rho}(t)\right) on Ξ“3,\displaystyle\text{ on }\Gamma_{3}, (5.7)

for all tβˆˆβ„+t\in\mathbb{R}_{+}and, in addition,

wρ(0)=0 on Ξ“3.w_{\rho}(0)=0\quad\text{ on }\quad\Gamma_{3}. (5.8)

Note that here and below uρνu_{\rho\nu} is the normal component of the displacement field 𝒖ρ\boldsymbol{u}_{\rho} and σρν\sigma_{\rho\nu}, πˆΟΟ„\boldsymbol{\sigma}_{\rho\tau} represent the normal and tangential components of the stress tensor 𝝈ρ\boldsymbol{\sigma}_{\rho}, respectively. Moreover, recall that the functions π’βˆ—\boldsymbol{n}^{*} and Ξ±\alpha are defined by (3.9). The equations and boundary conditions in problem (5.1)-(5.8) have a similar interpretation as those in problem (3.1)-(3.8). The difference arises in the fact that here we replace the contact condition (3.5) with condition (5.5), i.e. we remove the unilateral constraint. In (5.5) ρ\rho represents a penalization parameter which may be interpreted as a deformability coefficient of the foundation, and then 1ρ\frac{1}{\rho} is the surface stiffness coefficient.

In order to provide the variational formulation of Problem 𝒫ρ\mathcal{P}_{\rho} we define the operator G:Vβ†’VG:V\rightarrow V by equality

(G𝒖,𝒗)V=βˆ«Ξ“3p(uvβˆ’g)vvdaβˆ€π’–,π’—βˆˆV(G\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Gamma_{3}}p\left(u_{v}-g\right)v_{v}\mathrm{~d}a\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (5.9)

Then, using the assumptions (3.20) on the normal compliance function, we deduce that the operator GG has the following properties:

{(a)G:Vβ†’V is a monotone Lipschitz continuous operator. (b)(G𝒖,π’—βˆ’π’–)V≀0βˆ€π’–βˆˆV,π’—βˆˆU.(c)G𝒖=𝟎V iff π’–βˆˆU.\left\{\begin{array}[]{l}(a)G:V\rightarrow V\text{ is a monotone Lipschitz continuous operator. }\\ (b)(G\boldsymbol{u},\boldsymbol{v}-\boldsymbol{u})_{V}\leq 0\quad\forall\boldsymbol{u}\in V,\boldsymbol{v}\in U.\\ (c)G\boldsymbol{u}=\mathbf{0}_{V}\text{ iff }\boldsymbol{u}\in U.\end{array}\right.

The proof of these properties is straightforward and, therefore, we skip it.
Next, using notation (5.9) and arguments similar to those used in Section 3 we obtain the following variational formulation of Problem 𝒫ρ\mathcal{P}_{\rho}.
Problem 𝒫ρV\mathcal{P}_{\rho}^{V}. Find a stress field σρ:ℝ+β†’Q\sigma_{\rho}:\mathbb{R}_{+}\rightarrow Q, a displacement field 𝒖ρ:ℝ+β†’V\boldsymbol{u}_{\rho}:\mathbb{R}_{+}\rightarrow V, and a wear function wρ:ℝ+β†’L2(Ξ“3)w_{\rho}:\mathbb{R}_{+}\rightarrow L^{2}\left(\Gamma_{3}\right) such that

𝝈ρ(t)=β„±πœΊ(𝒖ρ(t))\displaystyle\boldsymbol{\sigma}_{\rho}(t)=\mathcal{F}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right) (5.11)
(𝝈ρ(t),𝜺(𝒗))Q+βˆ«Ξ“3p(uρv(t)βˆ’wρ(t))vvda\displaystyle\quad\left(\boldsymbol{\sigma}_{\rho}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q}+\int_{\Gamma_{3}}p\left(u_{\rho v}(t)-w_{\rho}(t)\right)v_{v}\mathrm{~d}a
+βˆ«Ξ“3ΞΌp(uρv(t)βˆ’wρ(t))π’βˆ—(t)⋅𝒗τda+1ρ(G𝒖ρ(t),𝒗)V=(𝒇(t),𝒗)Vβˆ€π’—βˆˆV\displaystyle\quad+\int_{\Gamma_{3}}\mu p\left(u_{\rho v}(t)-w_{\rho}(t)\right)\boldsymbol{n}^{*}(t)\cdot\boldsymbol{v}_{\tau}\mathrm{d}a+\frac{1}{\rho}\left(G\boldsymbol{u}_{\rho}(t),\boldsymbol{v}\right)_{V}=(\boldsymbol{f}(t),\boldsymbol{v})_{V}\quad\forall\boldsymbol{v}\in V (5.12)
wρ(t)=∫0tΞ±(s)p(uρv(s)βˆ’wρ(s))ds\displaystyle w_{\rho}(t)=\int_{0}^{t}\alpha(s)p\left(u_{\rho v}(s)-w_{\rho}(s)\right)\mathrm{d}s (5.13)

for all tβˆˆβ„+t\in\mathbb{R}_{+}.

The following theorem states the unique solvability of Problem 𝒫ρV\mathcal{P}_{\rho}^{V} and describes the behavior of its solution as ρ→0\rho\rightarrow 0.
Theorem 5.1: Assume that (3.19)-(3.24) and (4.1) hold, with ΞΌ0\mu_{0} given by (4.7). Then:
(1) For each ρ>0\rho>0 there exists a unique solution of Problem 𝒫ρV\mathcal{P}_{\rho}^{V}. Moreover, the solution has the regularity

𝝈ρ∈C(ℝ+;Q),π’–ΟβˆˆC(ℝ+;V),wρ∈C1(ℝ+;L2(Ξ“3)).\boldsymbol{\sigma}_{\rho}\in C\left(\mathbb{R}_{+};Q\right),\quad\boldsymbol{u}_{\rho}\in C\left(\mathbb{R}_{+};V\right),\quad w_{\rho}\in C^{1}\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{3}\right)\right). (5.14)

(2) For each nβˆˆβ„•n\in\mathbb{N} there exists Ο‰n>0\omega_{n}>0 such that

‖𝒖ρ(t)β€–V≀ωnβˆ€t∈[0,n],βˆ€Ο>0.\left\|\boldsymbol{u}_{\rho}(t)\right\|_{V}\leq\omega_{n}\quad\forall t\in[0,n],\forall\rho>0. (5.15)

(3) The solution (𝝈ρ,𝒖ρ,wρ)\left(\boldsymbol{\sigma}_{\rho},\boldsymbol{u}_{\rho},w_{\rho}\right) of the Problem 𝒫ρV\mathcal{P}_{\rho}^{V} converges to the solution (𝝈,𝒖,w)(\boldsymbol{\sigma},\boldsymbol{u},w) of the Problem 𝒫V\mathcal{P}^{V}, that is

β€–πˆΟ(t)βˆ’πˆ(t)β€–Q+‖𝒖ρ(t)βˆ’π’–(t)β€–V+β€–wρ(t)βˆ’w(t)β€–L2(Ξ“3)β†’0 as Οβ†’0\left\|\boldsymbol{\sigma}_{\rho}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}+\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}+\left\|w_{\rho}(t)-w(t)\right\|_{L^{2}\left(\Gamma_{3}\right)}\rightarrow 0\quad\text{ as }\quad\rho\rightarrow 0 (5.16)

for all tβˆˆβ„+t\in\mathbb{R}_{+}.
The proof of Theorem 5.1 will be carried out in several steps. We assume in what follows that (3.19)-(3.24) and (4.1) hold. Recall that everywhere below ww represents the third component of the solution of Problem 𝒫V\mathcal{P}^{V}, provided by Theorem 4.1. Therefore, ww is fixed and, moreover, it satisfies condition (4.3). In the first step, we consider the following intermediate variational problem.
Problem 𝒫~wρV\widetilde{\mathcal{P}}_{w\rho}^{V}. Find a displacement field 𝒖~ρ:ℝ+β†’V\widetilde{\boldsymbol{u}}_{\rho}:\mathbb{R}_{+}\rightarrow V such that

(β„±πœΊ(𝒖~ρ(t)),𝜺(𝒗))Q+βˆ«Ξ“3p(u~ρv(t)βˆ’w(t))vvda\displaystyle\left(\mathcal{F}\boldsymbol{\varepsilon}\left(\widetilde{\boldsymbol{u}}_{\rho}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q}+\int_{\Gamma_{3}}p\left(\widetilde{u}_{\rho v}(t)-w(t)\right)v_{v}\mathrm{~d}a
+βˆ«Ξ“3ΞΌp(u~ρv(t)βˆ’w(t))π’βˆ—(t)⋅𝒗τda+1ρ(G𝒖~ρ(t),𝒗)V=(𝒇(t),𝒗)Vβˆ€π’—βˆˆV\displaystyle\quad+\int_{\Gamma_{3}}\mu p\left(\widetilde{u}_{\rho v}(t)-w(t)\right)\boldsymbol{n}^{*}(t)\cdot\boldsymbol{v}_{\tau}\mathrm{d}a+\frac{1}{\rho}\left(G\widetilde{\boldsymbol{u}}_{\rho}(t),\boldsymbol{v}\right)_{V}=(\boldsymbol{f}(t),\boldsymbol{v})_{V}\quad\forall\boldsymbol{v}\in V

for all tβˆˆβ„+t\in\mathbb{R}_{+}.
Note that Problem 𝒫~wρV\widetilde{\mathcal{P}}_{w\rho}^{V} is similar to Problem 𝒫wV\mathcal{P}_{w}^{V} considered in Section 4. Its solution depends on ρ\rho and ww but, for simplicity, we do not indicate explicitly its dependence with respect to ww.

We have the following existence, uniqueness, and convergence result.

Lemma 5.2:

(1) For each ρ>0\rho>0 Problem 𝒫~wρV\widetilde{\mathcal{P}}_{w\rho}^{V} has a unique solution which satisfies 𝒖~ρ∈C(ℝ+;V)\widetilde{\boldsymbol{u}}_{\rho}\in C\left(\mathbb{R}_{+};V\right).
(2) For each nβˆˆβ„•n\in\mathbb{N} there exists Ο‰n>0\omega_{n}>0 which does not depend on ww such that

‖𝒖~ρ(t)β€–V≀ωnβˆ€t∈[0,n],βˆ€Ο>0\left\|\widetilde{\boldsymbol{u}}_{\rho}(t)\right\|_{V}\leq\omega_{n}\quad\forall t\in[0,n],\forall\rho>0 (5.17)

(3) The solution 𝒖~ρ\tilde{\boldsymbol{u}}_{\rho} of Problem 𝒫~wρV\tilde{\mathcal{P}}_{w\rho}^{V} converges to the second component of the solution of the Problem 𝒫V\mathcal{P}^{V}, that is

‖𝒖~ρ(t)βˆ’π’–(t)β€–Vβ†’0 as Οβ†’0\left\|\widetilde{\boldsymbol{u}}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\rightarrow 0\quad\text{ as }\quad\rho\rightarrow 0 (5.18)

for all tβˆˆβ„+t\in\mathbb{R}_{+}.
Proof: (1) Let ρ>0\rho>0 be fixed and let tβˆˆβ„+t\in\mathbb{R}_{+}. Using the definition (4.5) of the operator AwtA_{wt}, we deduce that the variational Equation (5.17) is equivalent to equation

𝒖~ρ(t)∈V,Awt𝒖~ρ(t)+1ρG𝒖~ρ(t)=𝒇(t).\tilde{\boldsymbol{u}}_{\rho}(t)\in V,\quad A_{wt}\tilde{\boldsymbol{u}}_{\rho}(t)+\frac{1}{\rho}G\tilde{\boldsymbol{u}}_{\rho}(t)=\boldsymbol{f}(t). (5.19)

Recall that inequalities (4.6), (4.8) and (4.9) show that AwtA_{wt} is a strongly monotone Lipschitz continuous operator on VV. Therefore, taking into account (5.10), we are in a position to apply Theorem 2.1(2) with X=VX=V and K=UK=U. In this way, we deduce the existence of a unique element 𝒖~ρ(t)\widetilde{\boldsymbol{u}}_{\rho}(t) which solves (5.19). The continuity of the function t↦𝒖~ρ(t):ℝ+β†’Vt\mapsto\widetilde{\boldsymbol{u}}_{\rho}(t):\mathbb{R}_{+}\rightarrow V follows from estimates similar to those used in the proof of Lemma 4.2.
(2) Let nβˆˆβ„•n\in\mathbb{N} and let t∈[0,n]t\in[0,n] be fixed. Also, let ρ>0\rho>0. We use Equation (5.19) to deduce that

(Awt𝒖~ρ(t),𝒖~ρ(t))V+1ρ(G𝒖~ρ(t),𝒖~ρ(t))V=(𝒇(t),𝒖~ρ(t))V\left(A_{wt}\tilde{\boldsymbol{u}}_{\rho}(t),\tilde{\boldsymbol{u}}_{\rho}(t)\right)_{V}+\frac{1}{\rho}\left(G\tilde{\boldsymbol{u}}_{\rho}(t),\tilde{\boldsymbol{u}}_{\rho}(t)\right)_{V}=\left(\boldsymbol{f}(t),\tilde{\boldsymbol{u}}_{\rho}(t)\right)_{V}

Next, we use the properties (5.10)(a) and (c) of the operator GG to see that

(G𝒖~ρ(t),𝒖~ρ(t))Vβ‰₯0\left(G\widetilde{\boldsymbol{u}}_{\rho}(t),\widetilde{\boldsymbol{u}}_{\rho}(t)\right)_{V}\geq 0

and, therefore,

(Awt𝒖~ρ(t),𝒖~ρ(t))V≀(𝒇(t),𝒖~ρ(t))V\left(A_{wt}\tilde{\boldsymbol{u}}_{\rho}(t),\tilde{\boldsymbol{u}}_{\rho}(t)\right)_{V}\leq\left(\boldsymbol{f}(t),\tilde{\boldsymbol{u}}_{\rho}(t)\right)_{V} (5.20)

We now use inequality (4.9) with 𝒖1=𝒖~ρ(t)\boldsymbol{u}_{1}=\widetilde{\boldsymbol{u}}_{\rho}(t) and 𝒖2=𝟎V\boldsymbol{u}_{2}=\mathbf{0}_{V} to see that

(Awt𝒖~ρ(t)βˆ’Awt𝟎V,𝒖~ρ(t))Vβ‰₯(mβ„±βˆ’c02Lpβ€–ΞΌβ€–L∞(Ξ“3))‖𝒖~ρ(t)β€–V2\left(A_{wt}\tilde{\boldsymbol{u}}_{\rho}(t)-A_{wt}\mathbf{0}_{V},\tilde{\boldsymbol{u}}_{\rho}(t)\right)_{V}\geq\left(m_{\mathcal{F}}-c_{0}^{2}L_{p}\|\mu\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)\left\|\tilde{\boldsymbol{u}}_{\rho}(t)\right\|_{V}^{2} (5.21)

Therefore, using (5.20), (5.21), (4.1), and (4.7) yields

‖𝒖~ρ(t)β€–V≀c(‖𝒇(t)β€–V+β€–Awt𝟎Vβ€–V)\left\|\widetilde{\boldsymbol{u}}_{\rho}(t)\right\|_{V}\leq c\left(\|\boldsymbol{f}(t)\|_{V}+\left\|A_{wt}\mathbf{0}_{V}\right\|_{V}\right) (5.22)

where c>0c>0 is a constant which is independent on n,t,ρn,t,\rho, and ww. Also, since ww satisfies (4.3), by the definition (4.5) of the operator AwtA_{wt} and the property (3.20)(e) of the function pp it follows that

β€–Awt𝟎Vβ€–Vβ‰€β€–β„±πœΊ(𝟎V)β€–Q.\left\|A_{wt}\mathbf{0}_{V}\right\|_{V}\leq\left\|\mathcal{F}\boldsymbol{\varepsilon}\left(\mathbf{0}_{V}\right)\right\|_{Q}. (5.23)

Inequality (5.17) follows now from inequalities (5.22), (5.23), and the regularity (3.29).
(3) Let ρ>0\rho>0 be fixed and let tβˆˆβ„+t\in\mathbb{R}_{+}. We substitute (3.36) in (3.37) then we use the definition (4.5) of the operator AwtA_{wt} to see that

𝒖(t)∈U,(Awt𝒖(t),π’—βˆ’π’–(t))Vβ‰₯(𝒇(t),π’—βˆ’π’–(t))V,βˆ€π’—βˆˆU\boldsymbol{u}(t)\in U,\quad\left(A_{wt}\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t)\right)_{V}\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V},\quad\forall\boldsymbol{v}\in U (5.24)

The convergence (5.18) is now a direct consequence of (5.19), (5.24), and Theorem 2.1(3).
We are now in a position to provide the main result in this section.
Proof of Theorem 5.1: (1) The unique solvability of Problem 𝒫ρV\mathcal{P}_{\rho}^{V} follows from arguments similar to those used in the proof of Theorem 4.1 and, therefore, we skip it. Nevertheless, we note that the main ingredient of the proof is an existence and uniqueness result similar to that in Lemma 5.2, combined with the fixed point argument in Theorem 2.2.
(2) We note that (5.11) and (5.12) imply that the function 𝒖ρ\boldsymbol{u}_{\rho} satisfies an inequality of the from (5.17) in which ww is replaced by wρw_{\rho}. Therefore, using the same arguments as those in the proof of (5.17), we deduce that inequality (5.15) holds.
(3) Let tβˆˆβ„+t\in\mathbb{R}_{+}and let nβˆˆβ„•n\in\mathbb{N} be such that t∈[0,n]t\in[0,n]. Also, let ρ>0\rho>0. Using the triangle inequality we obtain that

‖𝒖ρ(t)βˆ’π’–(t)β€–V≀‖𝒖~ρ(t)βˆ’π’–Ο(t)β€–V+‖𝒖~ρ(t)βˆ’π’–(t)β€–V\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left\|\widetilde{\boldsymbol{u}}_{\rho}(t)-\boldsymbol{u}_{\rho}(t)\right\|_{V}+\left\|\widetilde{\boldsymbol{u}}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V} (5.25)

On the other hand, arguments similar to those used in the proof of (4.14) yield

‖𝒖~ρ(t)βˆ’π’–Ο(t)β€–V≀a+bβ€–wρ(t)βˆ’w(t)β€–L2(Ξ“3)\left\|\widetilde{\boldsymbol{u}}_{\rho}(t)-\boldsymbol{u}_{\rho}(t)\right\|_{V}\leq\sqrt{a+b}\left\|w_{\rho}(t)-w(t)\right\|_{L^{2}\left(\Gamma_{3}\right)} (5.26)

where aa and bb represent positive constants which do not depend on n,tn,t, and ρ\rho. Moreover, using the integral Equations (3.38), (5.13), the hypothesis (3.20) on the normal compliance function pp, the regularity (3.25) on Ξ±\alpha and the Gronwall’s argument we obtain that

β€–wρ(t)βˆ’w(t)β€–L2(Ξ“3)≀cn∫0t‖𝒖ρ(s)βˆ’π’–(s)β€–Vds\left\|w_{\rho}(t)-w(t)\right\|_{L^{2}\left(\Gamma_{3}\right)}\leq c_{n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}\mathrm{~d}s (5.27)

Here and below cnc_{n} represents a positive constant which depends on nn but does not depend on tt and ρ\rho, and whose value may change from line to line.

Combining now inequalities (5.26) and (5.27) yields

‖𝒖~ρ(t)βˆ’π’–Ο(t)β€–V≀cn∫0t‖𝒖ρ(s)βˆ’π’–(s)β€–Vds\left\|\widetilde{\boldsymbol{u}}_{\rho}(t)-\boldsymbol{u}_{\rho}(t)\right\|_{V}\leq c_{n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}\mathrm{~d}s (5.28)

Therefore, from (5.25) and (5.28), we have

‖𝒖ρ(t)βˆ’π’–(t)β€–V≀cn∫0t‖𝒖ρ(s)βˆ’π’–(s)β€–Vds+‖𝒖~ρ(t)βˆ’π’–(t)β€–V\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq c_{n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}\mathrm{~d}s+\left\|\widetilde{\boldsymbol{u}}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V} (5.29)

We use again a Gronwall’s argument to deduce that

‖𝒖ρ(t)βˆ’π’–(t)β€–V≀‖𝒖~ρ(t)βˆ’π’–(t)β€–V+cn∫0tecn(tβˆ’s)‖𝒖~ρ(s)βˆ’π’–(s)β€–Vds\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left\|\widetilde{\boldsymbol{u}}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}+c_{n}\int_{0}^{t}e^{c_{n}(t-s)}\left\|\widetilde{\boldsymbol{u}}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}\mathrm{~d}s (5.30)

Note that ecn(tβˆ’s)≀ecnt≀encne^{c_{n}(t-s)}\leq e^{c_{n}t}\leq e^{nc_{n}} for all s∈[0,t]s\in[0,t] and, therefore, (5.30) implies that

‖𝒖ρ(t)βˆ’π’–(t)β€–V≀‖𝒖~ρ(t)βˆ’π’–(t)β€–V+cnencn∫0t‖𝒖~ρ(s)βˆ’π’–(s)β€–Vds\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left\|\widetilde{\boldsymbol{u}}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}+c_{n}e^{nc_{n}}\int_{0}^{t}\left\|\widetilde{\boldsymbol{u}}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}\mathrm{~d}s (5.31)

On the other hand, (5.17) and (5.18) allow us to use Lebesgue’s convergence theorem to find that

∫0t‖𝒖~ρ(s)βˆ’π’–(s)β€–Vdsβ†’0 as Οβ†’0\int_{0}^{t}\left\|\widetilde{\boldsymbol{u}}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}\mathrm{~d}s\rightarrow 0\quad\text{ as }\quad\rho\rightarrow 0 (5.32)

Therefore, using (5.31), (5.18), and (5.32) we conclude that

‖𝒖ρ(t)βˆ’π’–(t)β€–Vβ†’0 as Οβ†’0\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\rightarrow 0\quad\text{ as }\quad\rho\rightarrow 0 (5.33)

Next, we use (3.36), (5.11), and the properties (3.19) of operator β„±\mathcal{F} to obtain that

βˆ₯𝝈ρ(t)βˆ’πˆ(t)βˆ₯Q≀Lβ„±βˆ₯(t)π’–Οβˆ’π’–(t)βˆ₯V\left\|\boldsymbol{\sigma}_{\rho}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}\leq L_{\mathcal{F}}\left\|{}_{\boldsymbol{u}_{\rho}}(t)-\boldsymbol{u}(t)\right\|_{V} (5.34)

We now combine inequalities (5.34) and (5.27) to see that

β€–πˆΟ(t)βˆ’πˆ(t)β€–Q+‖𝒖ρ(t)βˆ’π’–(t)β€–V+β€–wρ(t)βˆ’w(t)β€–L2(Ξ“3)\displaystyle\left\|\boldsymbol{\sigma}_{\rho}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}+\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}+\left\|w_{\rho}(t)-w(t)\right\|_{L^{2}\left(\Gamma_{3}\right)}
≀cn(‖𝒖ρ(t)βˆ’π’–(t)β€–V+∫0t‖𝒖ρ(s)βˆ’π’–(s)β€–Vds)\displaystyle\quad\leq c_{n}\left(\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}+\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}\mathrm{~d}s\right) (5.35)

Finally, (5.15) and (5.33) allow us to use Lebesgue’s convergence theorem. Thus, we pass to the limit in (5.35) as ρ→0\rho\rightarrow 0 to obtain (5.16).

In addition to the mathematical interest in the convergence result (5.16) it is important from the mechanical point of view, since it shows that the weak solution of the elastic contact problem with
deformability coefficient.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The work of the first two authors has been partially supported by project LEA MATH MODE 2014/2015. The work of the second author has been partially supported by project POSDRU/159/1.5/S/132400: Young successful researchersprofessional development in an international and interdisciplinary environment at Babeş-Bolyai University.

References

[1] Duvaut G, Lions J-L. Inequalities in mechanics and physics. Berlin: Springer-Verlag; 1976.
[2] HlavΓ‘cΔ›k I, Haslinger J, Nečas J, et al. Solution of variational inequalities in mechanics. New York (NY): SpringerVerlag; 1988.
[3] Kikuchi N, Oden JT. Contact problems in elasticity: a study of variational inequalities and finite element methods. Philadelphia (PA): SIAM; 1988.
[4] Panagiotopoulos PD. Inequality problems in mechanics and applications. Boston: Birkhauser; 1985.
[5] Panagiotopoulos PD. Hemivariational inequalities, applications in mechanics and engineering. Berlin: SpringerVerlag; 1993.
[6] Eck C, Jaruőek J, Krbeč M. Unilateral contact problems: variational methods and existence theorems. Vol. 270, Pure and applied mathematics. New York (NY): Chapman/CRC Press; 2005.
[7] Han W, Sofonea M. Quasistatic contact problems in viscoelasticity and viscoplasticity. Vol. 30, Studies in advanced mathematics. Providence (RI): American Mathematical Society; Somerville (MA): International Press; 2002.
[8] Shillor M, Sofonea M, Telega JJ. Models and analysis of quasistatic contact. Vol. 655, Lecture notes in physics. Berlin: Springer; 2004.
[9] Sofonea M, Matei A. Mathematical models in contact mechanics. Vol. 398, London mathematical society lecture note series. Cambridge: Cambridge University Press; 2012.
[10] Andrews KT, Klarbring A, Shillor M, et al. A dynamic contact problem with friction and wear. Int. J. Eng. Sci. 1997;35:1291-1309.
[11] Bartosz K. Hemivariational inequalities approach to the dynamic viscoelastic sliding contact problem with wear. Nonlinear Anal. Theory Methods Appl. 2006;65:546-566.
[12] Chudzikiewicz A, MyΕ›liΕ„ski A. Thermoelastic wheel-rail contact problem with elastic graded-materials. Wear. 2011;271:417-425.
[13] Gu RJ, Kuttler KL, Shillor M. Frictional wear of a thermoelastic beam. J. Math. Anal. Appl. 2000;242:212-236.
[14] Gu RJ, Shillor M. Thermal and wear analysis of an elastic beam in sliding contact. Int. J. Solids Struct. 2001;38:2323-2333.
[15] Kuttler KL, Shillor M. Dynamic contact with normal compliance wear and discontinuous friction coefficient. SIAM J. Math. Anal. 2002;34:1-27.
[16] Rochdi M, Shillor M, Sofonea M. Quasistatic viscoelastic contact with normal compliance and friction. J. Elast. 1998;51:105-126.
[17] Rodriguez-ArΓ³s A, ViaΓ±o JM, Sofonea M. Asymptotic analysis of a quasistatic frictional contact problem with wear. J. Math. Anal. Appl. 2013;401:641-653.
[18] Rojek J, Telega JJ. Numerical simulation of bone-implant systems using a more realistic model of the contact interfaces with adhesion. J. Theor. Appl. Mech. 1999;37:659-686.
[19] Rojek J, Telega JJ, Stupkiewicz S. Contact problems with friction, adhesion and wear in orthopaedic biomechanics. II: Numerical implementation and application to implanted knee joints. J. Theor. Appl. Mech. 2001;39:679-706.
[20] Shillor M, Sofonea M. A quasistatic viscoelastic contact problem with friction. Int. J. Eng. Sci. 2000;38:1517-1533.
[21] StrΓΆmberg N, Johansson L, Klarbring A. Derivation and analysis of a generalized standard model for contact, friction and wear. Int. J. Solids Structures. 1996;33:1817-1836.
[22] Zmitrowicz A. Variational descriptions of wearing out solids and wear particles in contact mechanics. J. Theor. Appl. Mech. 2001;39:791-808.
[23] Sofonea M, Souleiman Y. Analysis of a sliding frictional contact problem with unilateral constraint. Math. Mech. Solids. Forthcoming. doi:10.1177/1081286515591304.
[24] Sofonea M, Avramescu C, Matei A. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Commun. Pure Appl. Anal. 2008;7:645-658.
[25] Sofonea M, Pătrulescu F. Penalization of history-dependent variational inequalities. Eur. J. Appl. Math. 2014;25:155-176.

2016

Related Posts