## Abstract

We study the existence, localization and multiplicity of positive solutions for a nonlinear fourth-order two-point boundary value problem. The approach is based on critical point theorems in conical shells, Krasnoselskii’s compression-expansion theorem, and unilateral Harnack type inequalities.

## Authors

**Alberto Cabada
**Instituto de Matematicas, Facultade de Matem aticas, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain

**Radu Precup**

Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania

**Lorena Saavedra
**Instituto de Matematicas, Facultade de Matematicas, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain

**Stepan A. Tersian
**Department of Mathematics, University of Ruse, 7017 Ruse, Bulgaria.

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 – Sofia, Bulgaria

## Keywords

Fourth-order differential equation; boundary-value problem; positive solution; critical point; fixed point.

## Paper coordinates

A. Cabada, R. Precup, L. Saavedra, S. Tersian, *Multiple positive solutions to a fourth order boundary value problem*, Electron. J. Differential Equations 2016 (2016), No. 254, 1-18.

## About this paper

##### Journal

Electronic Journal Differential Equations

##### Publisher Name

##### Print ISSN

##### Online ISSN

1072-6691

google scholar link

[1] A. Cabada, J. A. Cid, B. M´aquez-Villamar´ın; Computation of Green’s functions for boundary value problems with Mathematica, Appl. Math. Comput. 219 (2012), 1919–1936.

[2] A. Cabada, S.Tersian; Multiplicity of solutions of a two point boundary value problem for a fourth-order equation, Appl. Math. Comput. 219 (2013), 5261–5267.

[3] X. Cai, Z. Guo, Existence of solutions of nonlinear fourth order discrete boundary value problem, J. Difference Equ. Appl. 12 (2006), 459–466.

[4] J. A. Cid, D. Franco, F. Minh´os; Positive fixed points and fourth-order equations, Bull. Lond. Math. Soc. 41 (2009), 72–78.

[5] R. Enguica, L. Sanchez; Existence and localization of solutions for fourth-order boundary value problems, Electron. J. Differential Equations 2007 (2007), No. 127, 1–10.

[6] J. R. Graef, L. Kong, Q. Kong, B. Yang; Positive solutions to a fourth order boundary value problem, Results Math. 59 (2011), 141–155.

[7] D. Guo, V. Lakshmikantham; Nonlinear Problems in Abstract Cones, Academic Press, 1988.

[8] D.-R. Herlea; Positive solutions for second-order boundary-value problems with phiLaplacian, Electron. J. Differential Equations 2016 (2016), No. 51, 1–8.

[9] M. A. Krasnosel’ski˘ı, P. P. Zabre˘ıko; Geometrical Methods of Nonlinear Analysis, Springer, 1984.

[10] F. Li, Q. Zhang, Z. Liang; Existence and multiplicity of solutions of a kind of fourth-order boundary value problem, Nonlinear Anal. 62 (2005), 803–816.

[11] S. Li and X. Zhang; Existence and uniqueness of monotone positive solutions for an elastic beam equation with nonlinear boundary conditions, Comput. Math. Appl. 63 (2012), 1355–1360.

[12] T. F. Ma; Positive solutions for a beam equation on a nonlinear elastic foundation, Math. Comput. Modelling 39 (2004), 1195–1201.

[13] R. Precup; Critical point theorems in cones and multiple positive solutions of elliptic problems, Nonlinear Anal. 75 (2012), 834–851.

[14] R. Precup; A compression type mountain pass theorem in conical shells, J. Math. Anal. Appl. 338 (2008), 1116–1130.

[15] M. I. Sonalla; Vibrations of cantevier beams with various initial conditions, Thesis, Ohio State University, 1989.

[16] S. A. Tersian, J. V. Chaparova; Periodic and homoclinic solutions of extended FisherKolmogorov equation, J. Math. Anal. Appl. 266 (2001), 490–506.

[17] L. Yang, H. Chen, X. Yang; The multiplicity of solutions for fourth-order equations generated from a boundary condition, Appl. Math. Letters 24 (2011), 1599–1603.

[18] J. R. L. Webb, G. Infante, D. Franco; Positive solutions of nonlinear fourth-order boundaryvalue problems with local and non-local boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 427–446.