Analysis of aggregation-based multigrid

Abstract

Aggregation-based multigrid with standard piecewise constant like prolongation is investigated. Unknowns are aggregated either by pairs or by quadruplets; in the latter case the grouping may be either linewise or boxwise. A Fourier analysis is developed for a model twodimensional anisotropic problem. Most of the results are stated for an arbitrary smoother (which fits with the Fourier analysis framework). It turns out that the convergence factor of two-grid schemes can be bounded independently of the grid size. With a sensible choice of the (linewise or boxwise) coarsening, the bound is also uniform with respect to the anisotropy ratio, without requiring a specialized smoother. The bound is too large to guarantee optimal convergence properties with the V-cycle or the standard W-cycle, but a W-cycle scheme accelerated by the recursive use of the conjugate gradient method exhibits near grid independent convergence

Authors

Adrian C. Muresan
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Yvan Notay
Universite Libre de Bruxelles, Service de Metrologie Nucleaire (C.P. 165/84), 50, Av. F.D. Roosevelt, B-1050 Brussels, Belgium

Keywords

multigrid; aggregation; Fourier analysis; Krylov subspace method; conjugate gradient; preconditioning

References

See the expanding block below.

Paper coordinates

A.C. Muresan, Y. Notay,  Analysis of aggregation-based multigrid, SIAM J. SCI. COMPUT. c 2008 Society for Industrial and Applied Mathematics, Vol. 30, No. 2, pp. 1082–1103, 10.1137/060678397

 

PDF

http://doi.org/10.1137/060678397

About this paper

Journal

SIAM Journal  on Scientific Computing

Publisher Name

SIAM

Print ISSN

??

Online ISSN

??

Google Scholar Profile
2008

Related Posts