Applications of fibre contraction principle to some classes of functional integral equations

Abstract

Let \(a<c<b)\) real numbers, \((\mathbb{B},|\cdot|)\) a (real or complex) Banach space, \(H\in C([a,b]\times [a,c]\times\mathbb{B},\mathbb{B})\), \(K\in C([a,b]^{2}\times\mathbb{B},\mathbb{B})\),  \(g\in C([a,b]),\mathbb{B}
,A:C([a,c],\mathbb{B})\rightarrow C([a,c],\mathbb{B})\) and \(B:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B})\).

In this paper we study the following functional integral equation,
\[
x (t) =\int_a^c H( t,s,A) ( x) ( s)) ds \int_a^t K (t,s,B) (x) (s))ds g(t), \quad t\in [a,b]
\]

By a new variant of fibre contraction principle (A. Petrusel, I.A. Rus, M.A. Serban, Some variants of fibre contraction principle and applications: from existence to the convergence of successive approximations, Fixed Point Theory, 22 (2021), no. 2, 795-808) we give existence, uniqueness and convergence of successive approximations results for this equation.

In the case of ordered Banach space \(\mathbb{B}\), Gronwall-type and comparison-type results are also given.

Authors

Veronica Ilea
Babes-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania

Diana Otrocol
Technical University of Cluj-Napoca, Cluj-Napoca, Romania,
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania

Ioan A. Rus
Babes-Bolyai University, Faculty of Mathematics and Computer Science,Cluj-Napoca, Romania

Marcel-Adrian Serban
Babes-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania

Keywords

Functional integral equation, Volterra operator, Picard operator, fibre contraction principle, Gronwall lemma, comparison lemma.

Paper coordinates

V. Ilea, D. Otrocol, I.A. Rus, M.-A. Serban, Applications of fibre contraction principle to some classes of functional integral equations, Fixed Point Theory, 23 (2022) no. 1, 279-292, http://doi.org/10.24193/fpt-ro.2022.1.18

PDF

About this paper

Journal

Fixed Point Theory

Publisher Name

Casa Cărţii de Ştiinţă Cluj-Napoca
(House of the Book of Science Cluj-Napoca)

Print ISSN

1583-5022

Online ISSN

2066-9208

google scholar link

[1] S. Andras, Fibre ϕ−contraction on generalized metric spaces and applications, Mathematica, 45(68)(2003), no. 1, 3-8.
[2] C. Avramescu, C. Vladimirescu, Fixed points for some non-obviously contractive operators defined in a space of continuous functions, Electronic J. Qualit. Th. Diff, Eq., 2004, no. 3, 1-7.
[3] C. Bacotiu, Fibre Picard operators on generalized metric spaces, Sem. Fixed Point Theory Cluj-Napoca, 1(2000), 5-8.
[4] D.D. Bainov, S. Hristova, Differential Equations with Maxima, Chapman & Hall/CRC Pure and Applied Mathematics, 2011.
[5] O.-M. Bolojan, Fixed Point Methods for Nonlinear Differential Systems with Nonlocal Conditions, Casa C˘art¸ii de S¸tiint¸˘a, Cluj-Napoca, 2013.
[6] A. Boucherif, R. Precup, On the nonlocal initial value problem for first order differential equations, Fixed Point Theory, 4(2003), 205-212.
[7] T.A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publ. New York, 2006.
[8] T.A. Burton, A note on existence and uniqueness for integral equations with sum of two operators: progressive contractions, Fixed Point Theory, 20(2019), no. 1, 107-112.
[9] C. Corduneanu, Abstract Volterra equations: a survey, Math. and Computer Model, 32(11-13)(2000), 1503-1528.
[10] E. Egri, On First and Second Order Iterative Functional Differential Equations and Systems, Presa Univ. Clujeana, Cluj-Napoca, 2008.
[11] W.M. Hirsch, C.C. Pugh, Stable manifolds and hyperbolic sets, Proc. Symp. in Pure Math., 14(1970), 133-163.
[12] V. Ilea, D. Otrocol, On the Burton method of progressive contractions for Volterra integral equations, Fixed Point Theory, 21(2020), no. 2, 585-594.
[13] V. Ilea, D. Otrocol, Functional differential equations with maxima, via step by step contraction principle, Carpathian J. Math., 37(2021), no. 2, 195-202.
[14] V. Muresan, Functional Integral Equations, Mediamira, Cluj-Napoca, 2003.
[15] D. Otrocol, I.A. Rus, Functional-differential equations with maxima of mixed type argument, Fixed Point Theory, 9(2008), no. 1, 207-220.
[16] E. De Pascale, L. De Pascale, Fixed points for some norm-obviously contractive operators, Proc. Amer. Math. Soc., 130(2002), no. 11, 3249-3254.
[17] E. De Pascale, P.P. Zabreiko, Fixed point theorems for operators in spaces of continuous functions, Fixed Point Theory, 5(2004), no. 1, 117-129.
[18] A. Petrusel, I.A. Rus, M.A. S¸erban, Fixed points for operators on generalized metric spaces, CUBO – A Mathematical Journal, 10(2008), no. 4, 45-66.
[19] A. Petrusel, I.A. Rus, M.A. S¸erban, Some variants of fibre contraction principle and applications: from existence to the convergence of successive approximations, Fixed Point Theory, 22(2021), no. 2, 795-808.
[20] I.A. Rus, A fibre generalized contraction theorem and applications, Mathematica, 41(1999), no.1, 85-90.
[21] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japon., 58(2003), no. 1, 191-219.
[22] I.A. Rus, Abstract models of step method which imply the convergence of successive approximations, Fixed Point Theory, 9(2008), no. 1, 293-307.
[23] I.A. Rus, Fibre Picard operators and applications, Stud. Univ. Babe¸s-Bolyai Math., 44(1999), 89-98.
[24] I.A. Rus, Fibre Picard operators on generalized metric spaces and applications, Scripta Sc. Math., 1(1999), 326-334.
[25] I.A. Rus, Generalized Contractions and Applications, Cluj University Press Cluj-Napoca, 2001.
[26] I.A. Rus, Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math., 26(2010), no. 2, 230-258.
[27] I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babes-Bolyai Math., 61(2016), no. 3, 343-358.
[28] I.A. Rus, Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle, Advances in the Theory of Nonlinear Analysis and its Applications, 3(2019) no. 3, 111-120.
[29] I.A. Rus, Weakly Picard operators and applications, Seminar on Fixed Point Theory, ClujNapoca, 2(2001), 41-58.
[30] I.A. Rus, A. Petrusel, G. Petrusel, Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008.
[31] I.A. Rus, M.A. Serban, Operators on infinite dimensional Cartesian product, Analele Univ. Vest, Timisoara, Math.-Inf., 48(2010), 253-263.
[32] I.A. Rus, M.A. Serban, Some generalizations of a Cauchy lemma and applications, Topics in Mathematics, Computer Science and Philosophy, Ed. S¸t. Cobza¸s, Cluj University Press, 2008, 173-181.
[33] M.A. Serban, Fibre ϕ−contractions, Stud. Univ. Babes-Bolyai, Math., 44(1999), no. 3, 99-108.
[34] M.A. Serban, Fixed Point Theory for Operators on Cartesian Product, (in Romanian), Cluj University Press, Cluj-Napoca, 2002.
[35] M.A. Serban, I.A. Rus, A, Petrusel, A class of abstract Volterra equations, via weakly Picard operators technique, Math. Ineq. Appl., 13(2010), no. 2, 255-269.
[36] E.S. Zhukovskii, M.J. Alves, Abstract Volterra operators, Russian Mathematics (Iz. VUZ), 52(2008), no. 3, 1-14.

Applications of fibre contraction principle to some classes of functional integral equations

Veronica Ilea, Diana Otrocol∗∗, Ioan A. Rus∗∗∗, Marcel-Adrian Şerban∗∗∗∗

Fixed Point Theory, 23(2022), No.1, 279-292

http://www.math.ubbcluj.ro/nodeacj/sfptcj.html

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Str. M. Kogălniceanu Nr. 1, RO-400084 Cluj-Napoca, Romania
E-mail: vdarzu@math.ubbcluj.ro
∗∗Technical University of Cluj-Napoca, Memorandumului St. 28, 400114, Cluj-Napoca, Romania, Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O.Box. 68-1, 400110, Cluj-Napoca, Romania
E-mail: dotrocol@ictp.acad.ro
∗∗∗Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Str. M. Kogălniceanu Nr. 1, RO-400084 Cluj-Napoca, Romania
E-mail: iarus@math.ubbcluj.ro
∗∗∗∗Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Str. M. Kogălniceanu Nr. 1, RO-400084 Cluj-Napoca, Romania
E-mail: mserban@math.ubbcluj.ro

Abstract. Let a<c<ba<c<b real numbers, (𝔹,||)(\mathbb{B},\left|\cdot\right|) a (real or complex) Banach space, HC([a,b]×[a,c]×𝔹,𝔹),KC([a,b]2×𝔹,𝔹),gC([a,b],𝔹),H\in C([a,b]\times[a,c]\times\mathbb{B},\mathbb{B}),\ K\in C([a,b]^{2}\times\mathbb{B},\mathbb{B}),\ g\in C([a,b],\mathbb{B}), A:C([a,c],𝔹)C([a,c],𝔹)A:C([a,c],\mathbb{B})\rightarrow C([a,c],\mathbb{B}) and B:C([a,b],𝔹)C([a,b],𝔹)B:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B}). In this paper we study the following functional integral equation,

x(t)=acH(t,s,A(x)(s))𝑑s+atK(t,s,B(x)(s))𝑑s+g(t),t[a,b].x(t)=\int_{a}^{c}H(t,s,A(x)(s))ds+\int_{a}^{t}K(t,s,B(x)(s))ds+g(t),\ t\in[a,b].

By a new variant of fibre contraction principle (A. Petruşel, I.A. Rus, M.A. Şerban, Some variants of fibre contraction principle and applications: from existence to the convergence of successive approximations, Fixed Point Theory, 22 (2021), no. 2, 795-808) we give existence, uniqueness and convergence of successive approximations results for this equation. In the case of ordered Banach space 𝔹\mathbb{B}, Gronwall-type and comparison-type results are also given.

Key Words and Phrases: Functional integral equation, Volterra operator, Picard operator, fibre contraction principle, Gronwall lemma, comparison lemma.

2010 Mathematics Subject Classification: 47N05, 47H10, 45D05, 47H09, 54H25.

1. Introduction

In this paper we study the following functional integral equation,

x(t)=acH(t,s,A(x)(s))𝑑s+atK(t,s,B(x)(s))𝑑s+g(t),t[a,b],x(t)=\int_{a}^{c}H(t,s,A(x)(s))ds+\int_{a}^{t}K(t,s,B(x)(s))ds+g(t),\ t\in[a,b], (1.1)

where a<c<ba<c<b are real numbers, (𝔹,||)(\mathbb{B},\left|\cdot\right|) is a Banach space, HC([a,b]×[a,c]×𝔹,𝔹),KC([a,b]2×𝔹,𝔹),gC([a,b],𝔹)H\in C([a,b]\times[a,c]\times\mathbb{B},\mathbb{B}),\ K\in C([a,b]^{2}\times\mathbb{B},\mathbb{B}),\ g\in C([a,b],\mathbb{B}) and A:C([a,c],𝔹)C([a,c],𝔹)A:C([a,c],\mathbb{B})\rightarrow C([a,c],\mathbb{B}) and B:C([a,b],𝔹)C([a,b],𝔹)B:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B}) are given operators.

For some examples of such integral equations see [5], [6], [16], [28], [2], [4], [7].

Let V:C([a,b],𝔹)C([a,b],𝔹)V:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B}) be defined by

V(x)(t):=acH(t,s,A(x)(s))𝑑s+atK(t,s,B(x)(s))𝑑s+g(t),t[a,b].V(x)(t):=\int_{a}^{c}H(t,s,A(x)(s))ds+\int_{a}^{t}K(t,s,B(x)(s))ds+g(t),\ t\in[a,b].

In this paper we consider on the spaces of continuous functions max-norms.

Let us suppose that

  • (C1)(C_{1})

    LH>0:|H(t,s,η1)H(t,s,η2)|LH|η1η2|,\exists L_{H}>0:\left|H(t,s,\eta_{1})-H(t,s,\eta_{2})\right|\leq L_{H}\left|\eta_{1}-\eta_{2}\right|, for all t[a,b],s[a,c],η1,η2𝔹t\in[a,b],s\in[a,c],\ \eta_{1},\eta_{2}\in\mathbb{B};

  • (C2)(C_{2})

    LK>0:|K(t,s,η1)K(t,s,η2)|LK|η1η2|,\exists L_{K}>0:\left|K(t,s,\eta_{1})-K(t,s,\eta_{2})\right|\leq L_{K}\left|\eta_{1}-\eta_{2}\right|, for all t,s[a,b],η1,η2𝔹t,s\in[a,b],\ \eta_{1},\eta_{2}\in\mathbb{B};

  • (C3)(C_{3})

    LA>0:max[a,c]|A(y)(t)A(z)(t)|LAmax[a,c]|y(t)z(t)|,\exists L_{A}>0:\ \underset{[a,c]}{\max}\left|A(y)(t)-A(z)(t)\right|\leq L_{A}\underset{[a,c]}{\max}\left|y(t)-z(t)\right|, y,zC([a,c],𝔹)\forall y,z\in C([a,c],\mathbb{B});

  • (C4)(C_{4})

    LB>0:|B(y)(t)B(z)(t)|LBmax[a,t]|y(s)z(s)|,\exists L_{B}>0:\ \left|B(y)(t)-B(z)(t)\right|\leq L_{B}\underset{[a,t]}{\max}\left|y(s)-z(s)\right|, t[a,b].\forall\ t\in[a,b].

If we apply the contraction principle, in a standard way, for equation (1.1), we have the following result:

Theorem 1.1.

In addition to the above conditions we suppose that:

  • (C5)(C_{5}^{\prime})

    LHLA(ca)+LKLB(ba)<1.L_{H}L_{A}(c-a)+L_{K}L_{B}(b-a)<1.

Then the equation (1.1) has in C([a,b],𝔹)C([a,b],\mathbb{B}) a unique solutions, xx^{\ast} and x=limnxn,x^{\ast}=\underset{n\rightarrow\infty}{\lim}x_{n}, where xnx_{n} is defined by x0C([a,b],𝔹),xn+1=V(xn),nx_{0}\in C([a,b],\mathbb{B}),\ x_{n+1}=V(x_{n}),\ n\in\mathbb{N}, i.e., VV is a Picard operator.

The aim of this paper is to improve condition (C5),(C_{5}^{\prime}), obtaining the same conclusions. In order to do this we shall apply instead of contraction principle, a new variant of fibre contraction principle, variant given in [13].

In a similar way we study the equation

x(t)=bcH(t,s,A(x)(s))𝑑s+btK(t,s,B(x)(s))𝑑s+g(t),t[a,b],x(t)=\int_{b}^{c}H(t,s,A(x)(s))ds+\int_{b}^{t}K(t,s,B(x)(s))ds+g(t),\ t\in[a,b],

with suitable conditions on H,K,AH,\ K,\ A and B.B.

Throughout this paper we shall use the notations from [28], [22] and [13].

2. Preliminaries

2.1. Weakly Picard operators

Let (X,)(X,\rightarrow) be an LL-space, where XX is a nonempty set and \rightarrow is a convergence structure defined on XX. If T:XXT:X\rightarrow X is an operator, then we denote by FT:={xX:x=T(x)}F_{T}:=\{x\in X:x=T(x)\} the fixed point set of TT.

In the above context, T:XXT:X\to X is called a weakly Picard operator (briefly WPOWPO) if, for each xXx\in X, the sequence of Picard iterations (Tn(x))n(T^{n}(x))_{n\in\mathbb{N}} converges with respect to \to to a fixed point of TT. In particular, if FT={x}F_{T}=\{x^{*}\}, then TT is called a Picard operator (briefly PO).

If T:XXT:X\rightarrow X is a WPOWPO, then we define a set retraction T:XFTT^{\infty}:X\rightarrow F_{T} by the formula

T(x):=limnTn(x).T^{\infty}(x):=\displaystyle\lim_{n\rightarrow\infty}T^{n}(x).

If TT is POPO with its unique fixed point xx^{\ast}, then T(X)={x}T^{\infty}(X)=\{x^{\ast}\}.

For the weakly Picard operator theory see [21], [29], [25], [27], [30].

Theorem 2.1.

(Abstract Gronwall lemma)([21], [29]) Let (X,,)\left(X,\rightarrow,\leq\right) be an ordered L-space and T:XXT:X\rightarrow X be an operator. We suppose that:

  1. (i)

    TT is a WPO;

  2. (ii)

    TT is increasing.

Then:

  1. (a)

    xT(x)xT(x)x\leq T\left(x\right)\Longrightarrow x\leq T^{\infty}(x);

  2. (b)

    xT(x)xT(x)x\geq T\left(x\right)\Longrightarrow x\geq T^{\infty}(x).

Theorem 2.2.

(Abstract Comparison lemma)([21], [29]) Let (X,,)(X,\rightarrow,\leq) be an ordered LL-space and T,U,V:XXT,U,V:X\rightarrow X be three operators. We suppose that:

  1. (i)

    TUVT\leq U\leq V;

  2. (ii)

    TT, UU and VV are WPOs;

  3. (iii)

    the operator UU is increasing.

Then:

xyzT(x)U(y)V(z).x\leq y\leq z\ \Rightarrow\ T^{\infty}(x)\leq U^{\infty}(y)\leq V^{\infty}(z).

2.2. Fibre contraction principle

The standard fibre contraction principle has the following statement:

Theorem 2.3.

Let (X0,)(X_{0},\rightarrow) be an LL-space. For mm\in\mathbb{N}^{\ast}, let (Xi,di)(X_{i},d_{i}), i{1,,m}i\in\{1,\cdots,m\} be complete metric spaces. Let T0:X0X0T_{0}:X_{0}\rightarrow X_{0} be an operator and, for i{1,,m}i\in\{1,\cdots,m\}, let us consider Ti:X0×X1××XiXiT_{i}:X_{0}\times X_{1}\times\cdots\times X_{i}\rightarrow X_{i}. We suppose that:

  • (1)(1)

    T0T_{0} is a WPOWPO;

  • (2)(2)

    for each i{1,2,,m}i\in\{1,2,\cdots,m\}, the operators Ti(x0,,xi1,):XiXiT_{i}(x_{0},\ldots,x_{i-1},\cdot):X_{i}\to X_{i} are lil_{i}-contractions;

  • (3)(3)

    for each i{1,2,,m}i\in\{1,2,\cdots,m\}, the operators TiT_{i} are continuous.

Then, the operator T=(T0,T1,,Tm):i=0mXii=0mXiT=(T_{0},T_{1},\cdots,T_{m}):\displaystyle\prod_{i=0}^{m}X_{i}\rightarrow\prod_{i=0}^{m}X_{i}, defined by

T(x0,,xm):=(T0(x0),T1(x0,x1),,Tm(x0,,xm))T(x_{0},\ldots,x_{m}):=(T_{0}(x_{0}),T_{1}(x_{0},x_{1}),\ldots,T_{m}(x_{0},\ldots,x_{m}))

is a WPOWPO. Moreover, when T0T_{0} is a POPO, then TT is a POPO too.

For other results regarding fibre contractions see [11], [23], [30], [25], [34], [31], …, fibre generalized contractions see [20], [32], [33], [34], …, fibre generalized contractions on generalized metric spaces see [1], [3], [18], [24], [20], … .

In [19] it is obtained a new type of fibre contraction principle in the following settings:

Let (Xi,di)(X_{i},d_{i}) (i{1,,m}i\in\{1,...,m\} where m2m\geq 2) be metric spaces and U1X1×X2U_{1}\subset X_{1}\times X_{2}, U2U1×X3,U_{2}\subset U_{1}\times X_{3},\ldots, Um1Um2×XmU_{m-1}\subset U_{m-2}\times X_{m}, be nonempty subsets.

For xX1x\in X_{1}, we define

U1x:={x2X2(x,x2)U1},U_{1x}:=\{x_{2}\in X_{2}\mid(x,x_{2})\in U_{1}\},

for xU1x\in U_{1}, we define

U2x:={x3X3(x,x3)U2},,U_{2x}:=\{x_{3}\in X_{3}\mid(x,x_{3})\in U_{2}\},\ldots,

and for xUm2x\in U_{m-2}, we define

Um1x:={xmXm(x,xm)Um1}.U_{m-1x}:=\{x_{m}\in X_{m}\mid(x,x_{m})\in U_{m-1}\}.

We suppose that U1x,U2x,,Um1xU_{1x},U_{2x},\ldots,U_{m-1x} are nonempty.

If T1:X1X1T_{1}:X_{1}\to X_{1}, T2:U1X2,T_{2}:U_{1}\to X_{2},\ldots, Tm:Um1XmT_{m}:U_{m-1}\to X_{m}, then we consider the operator

T:Um1X1×X2××Xm,T:U_{m-1}\to X_{1}\times X_{2}\times\ldots\times X_{m},

defined by

T(x1,,xm):=(T1(x1),T2(x1,x2),,Tm(x1,x2,,xm)).T(x_{1},\ldots,x_{m}):=(T_{1}(x_{1}),T_{2}(x_{1},x_{2}),\ldots,T_{m}(x_{1},x_{2},\ldots,x_{m})).

The result is the following.

Theorem 2.4.

([19]) We suppose that:

(1)(1) (Xi,di)(X_{i},d_{i}), i{2,,m}i\in\{2,...,m\} are complete metric spaces and UiU_{i}, i{1,,m1}i\in\{1,...,m-1\} are closed subsets;

(2)(2) (T1,T2,,Ti+1)(Ui)Ui(T_{1},T_{2},\ldots,T_{i+1})(U_{i})\subset U_{i}, i{1,,m1}i\in\{1,...,m-1\};

(3)(3) T1T_{1} is a WPOWPO;

(4)(4) there exist Li>0L_{i}>0 and 0<li<10<l_{i}<1, i{1,,m1}i\in\{1,...,m-1\} such that

di+1(Ti+1(x,y,),Ti+1(x~,y~))Lid~i(x,x~)+lidi+1(y,y~),d_{i+1}(T_{i+1}(x,y,),T_{i+1}(\widetilde{x},\widetilde{y}))\leq L_{i}\widetilde{d}_{i}(x,\widetilde{x})+l_{i}d_{i+1}(y,\widetilde{y}),

for all (x,y),(x~,y~)Ui(x,y),(\widetilde{x},\widetilde{y})\in U_{i}, i{1,,m1}i\in\{1,...,m-1\}, where d~i\widetilde{d}_{i} is a metric induced by d1,,did_{1},\ldots,d_{i} on X1××XiX_{1}\times\ldots\times X_{i}, defined by d~i:=max{d1,,di}\tilde{d}_{i}:=\max\{d_{1},\cdots,d_{i}\}.

Then TT is WPOWPO. If T1T_{1} is POPO, then TT is a POPO too.

3. Abstract Volterra operators on spaces of continuous functions of one variable

By definition, an operator V:C([a,b],𝔹)C([a,b],𝔹)V:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B}) is forward Volterra operator if the following implication holds:

x,yC([a,b],𝔹),x|[a,t]=y|[a,t]V(x)|[a,t]=V(y)|[a,t],x,y\in C([a,b],\mathbb{B}),\ \left.x\right|_{[a,t]}=\left.y\right|_{[a,t]}\Rightarrow\left.V(x)\right|_{[a,t]}=\left.V(y)\right|_{[a,t]},

for all t[a,b].t\in[a,b].

An operator V:C([a,b],𝔹)C([a,b],𝔹)V:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B}) is backward Volterra operator iff:

x,yC([a,b],𝔹),x|[t,b]=y|[t,b]V(x)|[t,b]=V(y)|[t,b],x,y\in C([a,b],\mathbb{B}),\ \left.x\right|_{[t,b]}=\left.y\right|_{[t,b]}\Rightarrow\left.V(x)\right|_{[t,b]}=\left.V(y)\right|_{[t,b]},

for all t[a,b].t\in[a,b].

If a<c<ba<c<b then VV is forward Volterra operator w.r.t. the interval [c,b][c,b] iff

x,yC([a,b],𝔹),x|[a,t]=y|[a,t]V(x)|[a,t]=V(y)|[a,t],t[c,b].x,y\in C([a,b],\mathbb{B}),\ \left.x\right|_{[a,t]}=\left.y\right|_{[a,t]}\Rightarrow\left.V(x)\right|_{[a,t]}=\left.V(y)\right|_{[a,t]},\ \forall t\in[c,b].

The operator VV is backward Volterra operator w.r.t. the interval [a,c][a,c] iff:

x,yC([a,b],𝔹),x|[t,b]=y|[t,b]V(x)|[t,b]=V(y)|[t,b],t[a,c].x,y\in C([a,b],\mathbb{B}),\ \left.x\right|_{[t,b]}=\left.y\right|_{[t,b]}\Rightarrow\left.V(x)\right|_{[t,b]}=\left.V(y)\right|_{[t,b]},\ \forall t\in[a,c].
Example 3.1.

For fC([a,b]×p,p)f\in C([a,b]\times\mathbb{R}^{p},\mathbb{R}^{p}) let us consider the Cauchy problem

x(t)\displaystyle x^{\prime}(t) =f(t,x(t)),t[a,b],\displaystyle=f(t,x(t)),\ t\in[a,b],
x(a)\displaystyle x(a) =α.\displaystyle=\alpha.

This problem is equivalent with the following integral equation

x(t)=α+atf(s,x(s))𝑑s,t[a,b].x(t)=\alpha+\int_{a}^{t}f(s,x(s))ds,\ t\in[a,b].

Let V:C([a,b],p)C([a,b],p)V:C([a,b],\mathbb{R}^{p})\rightarrow C([a,b],\mathbb{R}^{p}) be defined by,

V(x)(t):=α+atf(s,x(s))𝑑s,t[a,b].V(x)(t):=\alpha+\int_{a}^{t}f(s,x(s))ds,\ t\in[a,b].

The operator VV is a forward Volterra operator.

If we consider the Cauchy problem

x(t)\displaystyle x^{\prime}(t) =f(t,x(t)),t[a,b],\displaystyle=f(t,x(t)),\ t\in[a,b],
x(b)\displaystyle x(b) =β,\displaystyle=\beta,

then this problem is equivalent with the integral equation,

x(t)=β+btf(s,x(s))𝑑s,t[a,b].x(t)=\beta+\int_{b}^{t}f(s,x(s))ds,\ t\in[a,b].

In this case the corresponding operator, V:C([a,b],p)C([a,b],p)V:C([a,b],\mathbb{R}^{p})\rightarrow C([a,b],\mathbb{R}^{p}) defined by the second part of this integral equation is backward Volterra operator.

If for t0]a,b[,t_{0}\in]a,b[,\ we consider the Cauchy problem

x(t)\displaystyle x^{\prime}(t) =f(t,x(t)),t[a,b],\displaystyle=f(t,x(t)),\ t\in[a,b],
x(t0)\displaystyle x(t_{0}) =γ,\displaystyle=\gamma,

then this problem is equivalent with the integral equation

x(t)=γ+t0tf(s,x(s))𝑑s,t[a,b],x(t)=\gamma+\int_{t_{0}}^{t}f(s,x(s))ds,\ t\in[a,b],

and the corresponding operator VV is a forward Volterra operator with respect to [t0,b][t_{0},b] and is backward Volterra operator w.r.t. the interval [a,t0].[a,t_{0}].

Example 3.2.

Let the operator V:C[a,b]C[a,b]V:C[a,b]\rightarrow C[a,b] defined by V(x)(t):=x(g(t)),V(x)(t):=x(g(t)), where gC([a,b],[a,b]).g\in C([a,b],[a,b]). If g(t)tg(t)\leq t, t[a,b],\forall t\in[a,b], then VV is forward Volterra operator and if g(t)t,g(t)\geq t,\ t[a,b]\forall t\in[a,b] then VV is a backward Volterra operator.

Example 3.3.

V:C[a,b]C[a,b],V(x)(t):=max[a,t]u(τ),t[a,b]V:C[a,b]\rightarrow C[a,b],\ V(x)(t):=\underset{[a,t]}{\max}u(\tau),\ t\in[a,b] is a forward Volterra operator.

Example 3.4.

Let A:C([a,b],𝔹)C([a,b],𝔹)A:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B}) be a forward Volterra operator. Then the operator V:C([a,b],𝔹)C([a,b],𝔹)V:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B}) defined by, V(x)(t):=atA(u)(s)𝑑sV(x)(t):=\int_{a}^{t}A(u)(s)ds is a forward Volterra operator.

Example 3.5.

([2], [16]) Let V:C([0,b],𝔹)C([0,b],𝔹)V:C([0,b],\mathbb{B})\rightarrow C([0,b],\mathbb{B}) be such that

|V(x)(t)V(y)(t)|α|x(t)y(t)|+γtβ0t|x(s)y(s)|𝑑s,\left|V(x)(t)-V(y)(t)\right|\leq\alpha\left|x(t)-y(t)\right|+\frac{\gamma}{t^{\beta}}\int_{0}^{t}\left|x(s)-y(s)\right|ds,

x,yC([0,b],𝔹),t[0,b],\forall x,y\in C([0,b],\mathbb{B}),\ \forall t\in[0,b], where α,β[0,1[\alpha,\beta\in[0,1[ and γ>0\gamma>0 are given real numbers.

The operator VV is a forward Volterra operator.

For more considerations on abstract Volterra operator see [9], [36]. For other examples see [2], [4], [5], [6], [7], [12], [14], [16], [17], [22], [35], …

4. Basic results

Let us consider the equation (1.1) in the conditions (C1)(C4)(C_{1})-(C_{4}). For m,m2m\in\mathbb{N},m\geq 2 we shall use the following notations: t0:=c,tk:=c+k(bc)m,k=1,m¯,X0=C([a,c],𝔹),Xi=C([ti1,ti],𝔹),X=i=0mXi.t_{0}:=c,\ t_{k}:=c+\dfrac{k(b-c)}{m},\ k=\overline{1,m},\ X_{0}=C([a,c],\mathbb{B}),\ X_{i}=C([t_{i-1},t_{i}],\mathbb{B}),X=\prod\limits_{i=0}^{m}X_{i}.

We consider the spaces of continuous functions with the max-norms. In order to use the variant of fibre contraction principle given by Theorem 2.4, we need the following subsets:

Ui={(x0,x1,,xi)k=0iXk|xk(tk)=xk+1(tk),k=1,m1¯},i=1,m¯.U_{i}=\{(x_{0},x_{1},\ldots,x_{i})\in\prod\limits_{k=0}^{i}X_{k}|\ x_{k}(t_{k})=x_{k+1}(t_{k}),\ k=\overline{1,m-1}\},\ i=\overline{1,m}.

For xX0,U1x:={x1X1|(x,x1)U1},x\in X_{0},\ U_{1x}:=\{x_{1}\in X_{1}|\ (x,x_{1})\in U_{1}\},\ for xXi1,Uix:={xiXi|(x,xi)Ui},i=2,m¯.x\in X_{i-1},\ U_{ix}:=\{x_{i}\in X_{i}|\ (x,x_{i})\in U_{i}\},\ i=\overline{2,m}.

We remark that, Ui,Uix,i=1,m¯U_{i},U_{ix},\ i=\overline{1,m} are nonempty closed subsets.

We also need the following operators:

Ri:C([a,ti],𝔹)k=0iXk,Ri(x)=(x|[a,t0],x|[t0,t1],,x|[ti1,ti]),i=1,m¯.R_{i}:C([a,t_{i}],\mathbb{B})\rightarrow\prod\limits_{k=0}^{i}X_{k},\ R_{i}(x)=\left(\left.x\right|_{[a,t_{0}]},\left.x\right|_{[t_{0},t_{1}]},\ldots,\left.x\right|_{[t_{i-1},t_{i}]}\right),\ i=\overline{1,m}.

It is clear that, Ri(C([a,ti],𝔹))=UiR_{i}\left(C([a,t_{i}],\mathbb{B})\right)=U_{i} and Ri:C([a,ti],𝔹)UiR_{i}:C([a,t_{i}],\mathbb{B})\rightarrow U_{i} is an increasing homeomorphism.

Since the operator, V:C([a,b],𝔹)C([a,b],𝔹)V:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B}) defined by, V(x)(t):=V(x)(t):= second part of equation (1.1), is a forward Volterra operator on [c,b],[c,b], it induces the following operators:

T0\displaystyle T_{0} :\displaystyle: X0X0,\displaystyle X_{0}\rightarrow X_{0},
T0(x0)(t)\displaystyle T_{0}(x_{0})(t) =\displaystyle= V(x0)(t),t[a,c],\displaystyle V(x_{0})(t),\ t\in[a,c],
T1:U1X1,T1(x0,x1)(t):=acH(t,s,A(x0)(s))𝑑s+acK(t,s,B(x0)(s))𝑑s++ctK(t,s,B(R11(x0,x1)(s))ds+g(t),t[c,t1],\begin{array}[]{c}T_{1}:U_{1}\rightarrow X_{1},\\ \lx@intercol\hfil T_{1}(x_{0},x_{1})(t):=\int_{a}^{c}H(t,s,A(x_{0})(s))ds+\int_{a}^{c}K(t,s,B(x_{0})(s))ds+\lx@intercol\\ \lx@intercol\hfil+\int_{c}^{t}K(t,s,B(R_{1}^{-1}(x_{0},x_{1})(s))ds+g(t),\ t\in[c,t_{1}],\lx@intercol\end{array}
T2:U2X2,T1(x0,x1,x2)(t):=acH(t,s,A(x0)(s))𝑑s+acK(t,s,B(x0)(s))𝑑s++ct1K(t,s,B(R11(x0,x1)(s))ds++t1tK(t,s,B(R21(x0,x1,x2)(s))ds+g(t),t[t1,t2],\begin{array}[]{c}T_{2}:U_{2}\rightarrow X_{2},\\ \lx@intercol\hfil T_{1}(x_{0},x_{1},x_{2})(t):=\int_{a}^{c}H(t,s,A(x_{0})(s))ds+\int_{a}^{c}K(t,s,B(x_{0})(s))ds+\lx@intercol\\ \lx@intercol\hfil+\int_{c}^{t_{1}}K(t,s,B(R_{1}^{-1}(x_{0},x_{1})(s))ds+\lx@intercol\\ \lx@intercol\hfil+\int_{t_{1}}^{t}K(t,s,B(R_{2}^{-1}(x_{0},x_{1},x_{2})(s))ds+g(t),\ t\in[t_{1},t_{2}],\lx@intercol\\ \cdots\end{array}
Tm:UmXm,Tm(x0,x1,,xm)(t):=acH(t,s,A(x0)(s))𝑑s+acK(t,s,B(x0)(s))𝑑s+++tm1tK(t,s,B(Rm1(x0,x1,,xm)(s))ds+g(t),t[tm1,b].\begin{array}[]{c}T_{m}:U_{m}\rightarrow X_{m},\\ \lx@intercol\hfil T_{m}(x_{0},x_{1},\ldots,x_{m})(t):=\int_{a}^{c}H(t,s,A(x_{0})(s))ds+\int_{a}^{c}K(t,s,B(x_{0})(s))ds+\ldots+\lx@intercol\\ \lx@intercol\hfil+\int_{t_{m-1}}^{t}K(t,s,B(R_{m}^{-1}(x_{0},x_{1},\ldots,x_{m})(s))ds+g(t),\ t\in[t_{m-1},b].\lx@intercol\end{array}

Let

T\displaystyle T :\displaystyle: =(T0,T1,,Tm),\displaystyle=(T_{0},T_{1},\ldots,T_{m}),\
T(x0,x1,,xm)\displaystyle T(x_{0},x_{1},\ldots,x_{m}) :\displaystyle: =(T0(x0),T1(x0,x1),,Tm(x0,x1,,xm)).\displaystyle=(T_{0}(x_{0}),\ T_{1}(x_{0},x_{1}),\ldots,T_{m}(x_{0},x_{1},\ldots,x_{m})).

If on cartesian product we consider max-norms, the operators Ri,i=1,m¯R_{i},\ i=\overline{1,m} are isometries. From the above definitions, we remark that (T0,T1)(U1)U1,(T0,T1,,Tm)(Um)Um.(T_{0},T_{1})(U_{1})\subset U_{1},\ (T_{0},T_{1},\ldots,T_{m})(U_{m})\subset U_{m.}

In the conditions (C1)(C4)\ (C_{1})-(C_{4}) we have that: T0T_{0} is (LHLA+LKLB)(ca)(L_{H}L_{A}+L_{K}L_{B})(c-a)-Lipschitz.

If we suppose that

  • (C5)(C_{5})

    (LHLA+LKLB)(ca)<1(L_{H}L_{A}+L_{K}L_{B})(c-a)<1

then we are in the conditions of Theorem 2.4 with Li=max{(LHLA+LKLB)(ca),LKLB(bc)m}L_{i}=\max\left\{(L_{H}L_{A}+L_{K}L_{B})(c-a),\dfrac{L_{K}L_{B}(b-c)}{m}\right\} and li=LKLB(bc)m,l_{i}=\dfrac{L_{K}L_{B}(b-c)}{m},\ with suitable m.m\in\mathbb{N}.

From this theorem we have that TT is PO.

Since V=Rm1TRmV=R_{m}^{-1}TR_{m} and Vn=Rm1TnRm,V^{n}=R_{m}^{-1}T^{n}R_{m}, it follows that VV is PO.

So, we have:

Theorem 4.1.

We consider the equation (1.1) in the condition (C1)(C5).(C_{1})-(C_{5}).\ Under these conditions we have that:

  • (i)

    The equation (1.1) has in C([a,b],𝔹)C([a,b],\mathbb{B}) a unique solution, x.x^{\ast}.

  • (ii)

    The sequence, (xn)n,(x_{n})_{n\in\mathbb{N}}, defined by

    x0\displaystyle x^{0} \displaystyle\in C([a,b],𝔹),\displaystyle C([a,b],\mathbb{B}),\
    xn+1(t)\displaystyle x^{n+1}(t) =\displaystyle= acH(t,s,A(xn)(s))𝑑s+atK(t,s,B(xn)(s))𝑑s+g(t),t[a,b],\displaystyle\int_{a}^{c}H(t,s,A(x^{n})(s))ds+\int_{a}^{t}K(t,s,B(x^{n})(s))ds+g(t),\ t\in[a,b],

    converges to xx^{\ast}, i.e., the operator VV is PO.

Remark 4.2.

If we take, 𝔹=p\mathbb{B}=\mathbb{R}^{p} or p\mathbb{C}^{p} or another finite dimensional Banach space, then Theorem 4.1 is a result for a system of functional integral equations.

Remark 4.3.

If we take, 𝔹:=lp()\mathbb{B}:=l^{p}(\mathbb{C}) or 𝔹:=lp(), 1p,\mathbb{B}:=l^{p}(\mathbb{R}),\ 1\leq p\leq\infty, or another Banach space of sequences, Theorem 4.1 is a result for an infinite system of functional integral equations.

Remark 4.4.

For some particular cases of AA and BB our result is in connection with some result given in [2], [4], [5], [6], [7], [10], [14], [26], [28], [35], [8], [12], [13], [15].

5. Equations with backward Volterra operators

In this section we consider the following integral equation

x(t)=bcH(t,s,A(x)(s))𝑑s+btK(t,s,B(x)(s))𝑑s+g(t),t[a,b],x(t)=\int_{b}^{c}H(t,s,A(x)(s))ds+\int_{b}^{t}K(t,s,B(x)(s))ds+g(t),\ t\in[a,b], (5.1)

where a<c<ba<c<b are real numbers, (𝔹,||)(\mathbb{B},\left|\cdot\right|) is a Banach space, HC([a,b]×[c,b]×𝔹,𝔹),KC([a,b]2×𝔹,𝔹),gC([a,b],𝔹)H\in C([a,b]\times[c,b]\times\mathbb{B},\mathbb{B}),\ K\in C([a,b]^{2}\times\mathbb{B},\mathbb{B}),\ g\in C([a,b],\mathbb{B}) and A:C([c,b],𝔹)C([c,b],𝔹)A:C([c,b],\mathbb{B})\rightarrow C([c,b],\mathbb{B}) and B:C([a,b],𝔹)C([a,b],𝔹)B:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B}) are operators. We suppose that:

  • (C~1)(\widetilde{C}_{1})

    LH>0:|H(t,s,η1)H(t,s,η2)|LH|η1η2|,\exists L_{H}>0:\left|H(t,s,\eta_{1})-H(t,s,\eta_{2})\right|\leq L_{H}\left|\eta_{1}-\eta_{2}\right|, for all t[a,b],s[c,b],η1,η2𝔹t\in[a,b],s\in[c,b],\ \eta_{1},\eta_{2}\in\mathbb{B};

  • (C~2)(\widetilde{C}_{2})

    LK>0:|K(t,s,η1)K(t,s,η2)|LK|η1η2|,\exists L_{K}>0:\left|K(t,s,\eta_{1})-K(t,s,\eta_{2})\right|\leq L_{K}\left|\eta_{1}-\eta_{2}\right|, for all t,s[a,b],η1,η2𝔹t,s\in[a,b],\ \eta_{1},\eta_{2}\in\mathbb{B};

  • (C~3)(\widetilde{C}_{3})

    LA>0:max[c,b]|A(y)(t)A(z)(t)|LAmax[c,b]|y(t)z(t)|,\exists L_{A}>0:\ \underset{[c,b]}{\max}\left|A(y)(t)-A(z)(t)\right|\leq L_{A}\underset{[c,b]}{\max}\left|y(t)-z(t)\right|, y,zC([c,b],𝔹)\forall y,z\in C([c,b],\mathbb{B});

  • (C~4)(\widetilde{C}_{4})

    LB>0:|B(y)(t)B(z)(t)|LBmax[t,b]|y(s)z(s)|,\exists L_{B}>0:\ \left|B(y)(t)-B(z)(t)\right|\leq L_{B}\underset{[t,b]}{\max}\left|y(s)-z(s)\right|, t[a,b];\forall\ t\in[a,b];

  • (C~5)(\widetilde{C}_{5})

    (LHLA+LKLB)(bc)<1.(L_{H}L_{A}+L_{K}L_{B})(b-c)<1.

For m,m2m\in\mathbb{N},m\geq 2 we shall use the following notations: t0:=c,tk:=ck(ca)m,k=1,m¯,X0=C([c,b],𝔹),Xi=C([ti+1,ti],𝔹),X=i=0mXi.t_{0}:=c,\ t_{k}:=c-\dfrac{k(c-a)}{m},\ k=\overline{1,m},\ X_{0}=C([c,b],\mathbb{B}),\ X_{i}=C([t_{i+1},t_{i}],\mathbb{B}),X=\prod\limits_{i=0}^{m}X_{i}.

We will apply again Theorem 2.4 in the following settings. The continuous functions spaces are endowed with the max-norms. We consider the following subsets:

Ui\displaystyle U_{i} ={(x0,x1,,xi)k=0iXk|xk(tk)=xk+1(tk),k=0,m1¯},i=1,m¯,\displaystyle=\{(x_{0},x_{1},\ldots,x_{i})\in\prod\limits_{k=0}^{i}X_{k}|\ x_{k}(t_{k})=x_{k+1}(t_{k}),\ k=\overline{0,m-1}\},\ i=\overline{1,m},
U1x\displaystyle U_{1x} :={x1X1|(x,x1)U1}, for xX0.\displaystyle:=\{x_{1}\in X_{1}|\ (x,x_{1})\in U_{1}\},\ \mbox{ for }x\in X_{0}.

For xX0,,x\in X_{0},\ ,\ for xXi1,Uix:={xiXi|(x,xi)Ui},i=2,m¯.x\in X_{i-1},\ U_{ix}:=\{x_{i}\in X_{i}|\ (x,x_{i})\in U_{i}\},\ i=\overline{2,m}.

We remark that, Ui,Uix,i=1,m¯U_{i},U_{ix},\ i=\overline{1,m} are nonempty closed subsets.

We also need the following operators:

Ri:C([ti,b],𝔹)k=0iXk,Ri(x)=(x|[t0,b],x|[t1,t0],,x|[ti,ti1]),i=1,m¯.R_{i}:C([t_{i},b],\mathbb{B})\rightarrow\prod\limits_{k=0}^{i}X_{k},\ R_{i}(x)=\left(\left.x\right|_{[t_{0},b]},\left.x\right|_{[t_{1},t_{0}]},\ldots,\left.x\right|_{[t_{i},t_{i-1}]}\right),\ i=\overline{1,m}.

It is clear that, Ri(C([ti,b],𝔹))=UiR_{i}\left(C([t_{i},b],\mathbb{B})\right)=U_{i} and Ri:C([ti,b],𝔹)UiR_{i}:C([t_{i},b],\mathbb{B})\rightarrow U_{i} is an increasing homeomorphism.

Since the operator, V:C([a,b],𝔹)C([a,b],𝔹)V:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B}) defined by, V(x)(t):=V(x)(t):= second part of equation (5.1), is a backward Volterra operator on [a,c],[a,c], it induces the following operators:

T0\displaystyle T_{0} :\displaystyle: X0X0,\displaystyle X_{0}\rightarrow X_{0},
T0(x0)(t)\displaystyle T_{0}(x_{0})(t) :\displaystyle: =V(x0)(t),t[c,b],\displaystyle=V\left(x_{0}\right)\left(t\right),\ t\in[c,b],
T1:U1X1,T1(x0,x1)(t):=bcH(t,s,A(x0)(s))𝑑s+bcK(t,s,B(x0)(s))𝑑s++ctK(t,s,B(R11(x0,x1)(s))ds+g(t),t[t1,c],\begin{array}[]{c}T_{1}:U_{1}\rightarrow X_{1},\\ \lx@intercol\hfil T_{1}(x_{0},x_{1})(t):=\int_{b}^{c}H(t,s,A(x_{0})(s))ds+\int_{b}^{c}K(t,s,B(x_{0})(s))ds+\lx@intercol\\ \lx@intercol\hfil+\int_{c}^{t}K(t,s,B(R_{1}^{-1}(x_{0},x_{1})(s))ds+g(t),\ t\in[t_{1},c],\lx@intercol\end{array}
T2:U2X2,T1(x0,x1,x2)(t):=bcH(t,s,A(x0)(s))𝑑s+bcK(t,s,B(x0)(s))𝑑s++ct1K(t,s,B(R11(x0,x1)(s))ds++t1tK(t,s,B(R21(x0,x1,x2)(s))ds+g(t),t[t2,t1],\begin{array}[]{c}T_{2}:U_{2}\rightarrow X_{2},\\ \lx@intercol\hfil T_{1}(x_{0},x_{1},x_{2})(t):=\int_{b}^{c}H(t,s,A(x_{0})(s))ds+\int_{b}^{c}K(t,s,B(x_{0})(s))ds+\lx@intercol\\ \lx@intercol\hfil+\int_{c}^{t_{1}}K(t,s,B(R_{1}^{-1}(x_{0},x_{1})(s))ds+\lx@intercol\\ \lx@intercol\hfil+\int_{t_{1}}^{t}K(t,s,B(R_{2}^{-1}(x_{0},x_{1},x_{2})(s))ds+g(t),\ t\in[t_{2},t_{1}],\lx@intercol\\ \cdots\end{array}
Tm:UmXm,Tm(x0,x1,,xm)(t):=bcH(t,s,A(x0)(s))𝑑s+bcK(t,s,B(x0)(s))𝑑s+++tm1tK(t,s,B(Rm1(x0,x1,,xm)(s))ds+g(t),t[a,tm1].\begin{array}[]{c}T_{m}:U_{m}\rightarrow X_{m},\\ \lx@intercol\hfil T_{m}(x_{0},x_{1},\ldots,x_{m})(t):=\int_{b}^{c}H(t,s,A(x_{0})(s))ds+\int_{b}^{c}K(t,s,B(x_{0})(s))ds+\ldots+\lx@intercol\\ \lx@intercol\hfil+\int_{t_{m-1}}^{t}K(t,s,B(R_{m}^{-1}(x_{0},x_{1},\ldots,x_{m})(s))ds+g(t),\ t\in[a,t_{m-1}].\lx@intercol\end{array}

Let

T\displaystyle T :\displaystyle: =(T0,T1,,Tm),\displaystyle=(T_{0},T_{1},\ldots,T_{m}),\
T(x0,x1,,xm)\displaystyle T(x_{0},x_{1},\ldots,x_{m}) :\displaystyle: =(T0(x0),T1(x0,x1),,Tm(x0,x1,,xm))).\displaystyle=(T_{0}(x_{0}),\ T_{1}(x_{0},x_{1}),\ldots,T_{m}(x_{0},x_{1},\ldots,x_{m}))).

If on cartesian product we consider max-norms, the operators Ri,i=1,m¯R_{i},\ i=\overline{1,m} are isometries. From the above definitions, we remark that (T0,T1)(U1)U1,(T0,T1,,Tm)(Um)Um.(T_{0},T_{1})(U_{1})\subset U_{1},\ (T_{0},T_{1},\ldots,T_{m})(U_{m})\subset U_{m.}

In the conditions (C1)(C4)\ (C_{1})-(C_{4}) we have that: T0T_{0} is (LHLA+LKLB)(bc)(L_{H}L_{A}+L_{K}L_{B})(b-c)-contraction and TiT_{i}, i=1,,mi=1,...,m, satisfy the condition (5)\left(5\right) from the Theorem 2.4 with Li=max{(LHLA+LKLB)(bc),LKLB(ca)m}L_{i}=\max\left\{(L_{H}L_{A}+L_{K}L_{B})(b-c),\dfrac{L_{K}L_{B}(c-a)}{m}\right\} and li=LKLB(ca)m,l_{i}=\dfrac{L_{K}L_{B}(c-a)}{m},\ with suitable m.m\in\mathbb{N}.

From this theorem we have that TT is PO.

Since V=Rm1TRmV=R_{m}^{-1}TR_{m} and Vn=Rm1TnRm,V^{n}=R_{m}^{-1}T^{n}R_{m}, it follows that VV is PO.

So, we have:

Theorem 5.1.

We consider the equation (5.1) in the condition (C~1)(C~5).(\widetilde{C}_{1})-(\widetilde{C}_{5}).\ Under these conditions we have that:

  • (i)

    The equation (5.1) has in C([a,b],𝔹)C([a,b],\mathbb{B}) a unique solution, x.x^{\ast}.

  • (ii)

    The sequence, (xn)n,(x_{n})_{n\in\mathbb{N}}, defined by

    x0\displaystyle x^{0} \displaystyle\in C([a,b],𝔹),\displaystyle C([a,b],\mathbb{B}),\
    xn+1(t)\displaystyle x^{n+1}(t) =\displaystyle= acH(t,s,A(xn)(s))𝑑s+atK(t,s,B(xn)(s))𝑑s+g(t),t[a,b],\displaystyle\int_{a}^{c}H(t,s,A(x^{n})(s))ds+\int_{a}^{t}K(t,s,B(x^{n})(s))ds+g(t),\ t\in[a,b],

    converges to xx^{\ast}, i.e., the operator VV is PO.

6. Gronwall-type results

In this section we consider (𝔹,||,)(\mathbb{B},\left|\cdot\right|,\leq) an ordered Banach space. Related to the equation (1.1)

x(t)=acH(t,s,A(x)(s))𝑑s+atK(t,s,B(x)(s))𝑑s+g(t),t[a,b],x(t)=\int_{a}^{c}H(t,s,A(x)(s))ds+\int_{a}^{t}K(t,s,B(x)(s))ds+g(t),\ t\in[a,b],

we consider the inequalities:

x(t)acH(t,s,A(x)(s))𝑑s+atK(t,s,B(x)(s))𝑑s+g(t),t[a,b]x(t)\leq\int_{a}^{c}H(t,s,A(x)(s))ds+\int_{a}^{t}K(t,s,B(x)(s))ds+g(t),\ t\in[a,b] (6.1)

and

x(t)acH(t,s,A(x)(s))𝑑s+atK(t,s,B(x)(s))𝑑s+g(t),t[a,b].x(t)\geq\int_{a}^{c}H(t,s,A(x)(s))ds+\int_{a}^{t}K(t,s,B(x)(s))ds+g(t),\ t\in[a,b]. (6.2)

As an application of the Theorem 2.1 we have

Theorem 6.1.

We consider the equation (1.1) under the hypothesys (C1)(C5)(C_{1})-(C_{5}) of the Theorem 4.1. In addition, we suppose that

  1. (C6)\left(C_{6}\right)

    H(t,s,)H(t,s,\cdot), K(t,s,)K(t,s,\cdot), AA and BB are increasing.

Then

  1. (a)

    xxx\leq x^{\ast} for any xx solution of (6.1);

  2. (b)

    xxx\geq x^{\ast} for any xx solution of (6.2);

where xx^{\ast} is the unique solution of (1.1).

Proof.

It follows from Theorem 4.1 that operator V:C([a,b],𝔹)C([a,b],𝔹)V:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B}) defined by, V(x)(t):=V(x)(t):= second part of equation (1.1) is a PO and from (C6)\left(C_{6}\right) we have that VV is an increasing operator, so the conclusion is obtained from Theorem 2.1. ∎

7. Comparison-type results

We consider the functional integral equations:

xi(t)=acHi(t,s,A(x)(s))𝑑s+atKi(t,s,B(x)(s))𝑑s+gi(t),t[a,b],i=1,3¯,x_{i}(t)=\int_{a}^{c}H_{i}(t,s,A(x)(s))ds+\int_{a}^{t}K_{i}(t,s,B(x)(s))ds+g_{i}(t),\ t\in[a,b],\ i=\overline{1,3}, (7.1)

where a<c<ba<c<b are real numbers, (𝔹,||,)(\mathbb{B},\left|\cdot\right|,\leq) an ordered Banach space, HiC([a,b]×[a,c]×𝔹,𝔹)H_{i}\in C([a,b]\times[a,c]\times\mathbb{B},\mathbb{B}), KiC([a,b]2×𝔹,𝔹)K_{i}\in C([a,b]^{2}\times\mathbb{B},\mathbb{B}), giC([a,b],𝔹)g_{i}\in C([a,b],\mathbb{B}), i=1,3¯i=\overline{1,3}, and A:C([a,c],𝔹)C([a,c],𝔹)A:C([a,c],\mathbb{B})\rightarrow C([a,c],\mathbb{B}) and B:C([a,b],𝔹)C([a,b],𝔹)B:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B}) are given operators. We have the following comparison result:

Theorem 7.1.

We suppose that:

  1. (i)

    HiH_{i}, KiK_{i}, gig_{i}, i=1,3¯i=\overline{1,3}, A,A, BB satisfy the conditions (C1)(C5)\left(C_{1}\right)-\left(C_{5}\right);

  2. (ii)

    H1H2H3H_{1}\leq H_{2}\leq H_{3} and K1K2K3K_{1}\leq K_{2}\leq K_{3};

  3. (iii)

    H2(t,s,)H_{2}(t,s,\cdot), K2(t,s,)K_{2}(t,s,\cdot), AA and BB are increasing.

If x1(a)x2(a)x3(a)x_{1}\left(a\right)\leq x_{2}\left(a\right)\leq x_{3}\left(a\right) then x1x2x3x_{1}^{\ast}\leq x_{2}^{\ast}\leq x_{3}^{\ast} where xix_{i}^{\ast} is the unique solution of (7.1), i=1,3¯i=\overline{1,3}.

Proof.

From Theorem 4.1 we have that operator Vi:C([a,b],𝔹)C([a,b],𝔹)V_{i}:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B}) defined by,

Vi(x)(t):=acHi(t,s,A(x)(s))𝑑s+atKi(t,s,B(x)(s))𝑑s+gi(t),t[a,b]V_{i}(x)(t):=\int_{a}^{c}H_{i}(t,s,A(x)(s))ds+\int_{a}^{t}K_{i}(t,s,B(x)(s))ds+g_{i}(t),\ t\in[a,b]

is PO, i=1,3¯i=\overline{1,3}. Let FVi={xi}F_{V_{i}}=\left\{x_{i}^{\ast}\right\}, i=1,3¯i=\overline{1,3}.

If u𝔹u\in\mathbb{B} then we denote by u~\tilde{u} the constant function

u~:[a,b]𝔹,u~(t)=u.\ \tilde{u}:[a,b]\rightarrow\mathbb{B},\tilde{u}\left(t\right)=u.

It is clear that

Vi(xi(a)~)=xi,i=1,3¯,V_{i}^{\infty}(\widetilde{x_{i}\left(a\right)})=x_{i}^{\ast},\ i=\overline{1,3},

and from (ii)\left(ii\right) we get that

V1(x)V2(x)V3(x),xC([a,b],𝔹).V_{1}(x)\leq V_{2}(x)\leq V_{3}(x),\ \forall x\in C([a,b],\mathbb{B}).

From condition (iii)\left(iii\right) we have that operator V2V_{2} is an increasing operator, so, the conclusion is obtained from Theorem 2.2. ∎

References

  • [1] S. András, Fibre φ\varphi-contraction on generalized metric spaces and applications, Mathematica, 45(68)(2003), no. 1, 3–8.
  • [2] C. Avramescu, C, Vladimirescu, Fixed points for some non-obviously contractive operators defined in a space of continuous functions, Electronic J. Qualit. Diff, Eq., 2004, No. 3, 1–7.
  • [3] C. Bacoţiu, Fibre Picard operators on generalized metric spaces, Sem. on Fixed Point Theory Cluj-Napoca, 1 (2000), 5–8.
  • [4] D. D. Bainov, S. Hristova, Differential equations with maxima, Chapman & Hall/CRC Pure and Applied Mathematics, 2011.
  • [5] O.-M. Bolojan, Fixed point methods for nonlinear differential systems with nonlocal conditions, Casa Cărţii de Ştiinţă, Cluj-Napoca, 2013.
  • [6] A. Boucherif, R. Precup, On the nonlocal initial value problem for first order differential equations, Fixed Point Theory, 4(2003), 205–212.
  • [7] T. A. Burton, Stability by fixed point theory for functional differential equations, Dover Publ. New York, 2006.
  • [8] T. A. Burton, A note on existence and uniqueness for integral equations with sum of two operators: progressive contractions, Fixed Point Theory, 20(2019), No. 1, 107–112.
  • [9] C. Corduneanu, Abstract volterra equations: a survey. Math. and Computer Model, 32(11–13)(2000), 1503–1528.
  • [10] E. Egri, On first and second order iterative functional differential equations and systems, Presa Univ. Clujeană, Cluj-Napoca, 2008.
  • [11] W.M. Hirsch, C.C. Pugh, Stable manifolds and hyperbolic sets, Proc. Symp. in Pure Math., 14(1970), 133-163.
  • [12] V. Ilea, D. Otrocol, On the Burton method of progressive contractions for Volterra integral equations, Fixed Point Theory, 21(2020), No. 2, 585–594.
  • [13] V. Ilea, D. Otrocol, Functional differential equations with maxima, via step by step contraction principle, Carpathian J. Math., textbf37(2021), No. 2, 195–202.
  • [14] V. Mureşan, Functional Integral Equations, Mediamira, Cluj-Napoca, 2003.
  • [15] D. Otrocol, I. A. Rus, Functional-differential equations with maxima of mixed type argument, Fixed Point Theory, 9(2008), No. 1, 207–220.
  • [16] E. De Pascale, L. De Pascale, Fixed points for some norm-obviously contractive operators, Proc. Amer. Math. Soc., 130(2002), No. 11, 3249–3254.
  • [17] E. De Pascale, P.P. Zabreiko, Fixed point theorems for operators in spaces of continuous functions, Fixed Point Theory, 5(2004), No. 1, 117–129.
  • [18] A. Petruşel, I. A. Rus, M.A. Şerban, Fixed points for operators on generalized metric spaces, CUBO A Mathematical Journal, 10(2008), No. 4, 45–66.
  • [19] A. Petruşel, I.A. Rus, M.A. Şerban, Some variants of fibre contraction principle and applications: from existence to the convergence of successive approximations, Fixed Point Theory, 22(2021), No.2, 795–808.
  • [20] I.A. Rus, A fibre generalized contraction theorem and applications, Mathematica, 41(1999), No. 1, 85–90.
  • [21] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58 (2003), No. 1, 191–219.
  • [22] I.A. Rus, Abstract models of step method which imply the convergence of successive approximations, Fixed Point Theory, 9(2008), No. 1, 293–307.
  • [23] I.A. Rus, Fibre Picard operators and applications, Studia Univ. Babeş-Bolyai Math., 44(1999), 89–98.
  • [24] I.A. Rus, Fibre Picard operators on generalized metric spaces and applications, Scripta Sc. Math., 1(1999), 326–334.
  • [25] I.A. Rus, Generalized Contractions and Applications, Cluj University Press Cluj-Napoca, 2001.
  • [26] I.A. Rus, Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math., 26(2010), No. 2, 230–258.
  • [27] I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babeş-Bolyai Math., 61(2016), No.3, 343–358.
  • [28] I.A. Rus, Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle, Advances in the Theory of Nonlinear Analysis and its Applications, textbf3(2019) No. 3, 111–120.
  • [29] I.A. Rus, Weakly Picard operators and applications, Seminar on Fixed Point Theory, Cluj-Napoca, 2(2001), 41–58.
  • [30] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008.
  • [31] I.A. Rus, M.A. Şerban, Operators on infinite dimensional cartesian product, Analele Univ. Vest, Timişoara, Math.-Inf., 48(2010), 253–263.
  • [32] I.A. Rus, M.A. Şerban, Some generalizations of a Cauchy lemma and applications, Topics in Mathematics, Computer Science and Philosophy, Editor Şt. Cobzaş, Cluj University Press, 2008, 173–181.
  • [33] M.A. Şerban, Fibre φ\varphi-contractions, Studia Univ. Babeş-Bolyai, Math., 44(1999), No. 3, 99-108.
  • [34] M.A. Şerban, Fixed Point Theory for Operators on Cartesian Product, (in Romanian), Cluj University Press, Cluj-Napoca, 2002.
  • [35] M.A. Şerban, I.A. Rus, A, Petruşel, A class of abstract Volterra equations, via weakly Picard operators technique, Math. Ineq. Appl., textbf13(2010), No. 2, 255–269.
  • [36] E.S. Zhukovskii, M.J. Alves, Abstract Volterra operators, Russian Mathematics (Iz. VUZ), 52(2008), No.3, 1–14.

Received: ; Accepted:

2022

Related Posts