On the approximate solutions of implicit functions using the Steffensen method

Abstract

We use inexact Steffensen-Aitken-type methods to approximate implicit functions in a Banach space. Using a projection operator our equation reduces to solving a linear algebraic system of finite order. Semilocal convergence results as well as an error analysis are also provided.

Authors

Ioannis K. Argyros
(Cameron University)

Emil Cătinaş
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Keywords

nonlinear equations in Banach spaces; Steffensen-Aitken method; implicit function; projection operator.

PDF

Cite this paper as:

I. Argyros, E. Cătinaş, I. Păvăloiu On the approximate solutions of implicit functions using the Steffensen method, Proyecciones, 19 (2000) no. 3, pp. 291-303

About this paper

Journal

Proyecciones

Publisher Name
Print ISSN
Online ISSN

[1] Argyros, I.K. On the convergence of some projection methods with perturbations, J. Comp. Appl. Math. 36, (1991), 255–258.

[2] Argyros, I.K., On an application of the Zincenko method to the approximation of implicit functions, Z.A.A. 10, 3, (1991), 391– 396.

[3] Argyros, I.K. and Szidarovszky, F., The Theory and Application of Iteration Methods, C.R.C. Press, Inc., Boca Raton, Florida, 1993.

[4] Catinas, E. On some iterative methods for solving nonlinear equations, Revue d’analyse Numerique et de theorie de l’approximation, 23, 1, (1994), 47–53.

[5] Kantorovich, L.V., The method of successive approximation for functional equations, Acta Math. 71 (1939), 63–97.

[6] Pavaloiu, I., Sur une generalisation de la methode de Steffensen, Revue d’analyse Numerique et de theorie de l’approximation, 21, 1, (1992), 59–65.

Paper (preprint) in HTML form

2000-081-Argyros-Catinas-Pavaloiu-Proyecciones-On-the-approx-sol-implicit-f

ON THE APPROXIMATE SOLUTION OF IMPLICIT FUNCTIONS USING THE STEFFENSEN METHOD

IOANNIS K. ARGYROSCameron University, U. S. A.EMIL CATINASandION PAVALOIUIntitut de Calcul, Romania

Abstract

We use inexact Steffensen-Aitken-type methods to approximate implicit functions in a Banach space. Using a projection operator our equation reduces to solving a linear algebraic system of finite order. Semilocal convergence results as well as an error analysis are also provided.

AMS (MOS) Subject Classification: 65J15, 65B05, 47H17, 49D15.
Key Words and Phrases: Steffensen-Aitken method, implicit function, projection operator.

1. Introduction

Let E , Λ E , Λ E,LambdaE, \LambdaE,Λ be Banach spaces and denote by U ( x 0 , R ) U x 0 , R U(x_(0),R)U\left(x_{0}, R\right)U(x0,R) the closed ball with center x 0 E x 0 E x_(0)in Ex_{0} \in Ex0E and of radius R 0 R 0 R >= 0R \geq 0R0. We will use the same symbol for the norm ||||\|\| in both spaces. Let P P PPP be a projection operator ( P = P 2 P = P 2 P=P^(2)P=P^{2}P=P2 ) which projects E E EEE on its subspace E P E P E_(P)E_{P}EP and set Q = I P Q = I P Q=I-PQ=I-PQ=IP. Suppose that the nonlinear operators F ( x , λ ) F ( x , λ ) F(x,lambda)F(x, \lambda)F(x,λ) and G ( x , λ ) G ( x , λ ) G(x,lambda)G(x, \lambda)G(x,λ) with values in E E EEE are defined for x D x D x in Dx \in DxD, where D D DDD is some open convex subset of E E EEE containing U ( x 0 , R ) U x 0 , R U(x_(0),R)U\left(x_{0}, R\right)U(x0,R), and λ U ( λ 0 , S ) λ U λ 0 , S lambda in U(lambda_(0),S)\lambda \in U\left(\lambda_{0}, S\right)λU(λ0,S) for some λ 0 Λ , S 0 λ 0 Λ , S 0 lambda_(0)in Lambda,S >= 0\lambda_{0} \in \Lambda, S \geq 0λ0Λ,S0. For each fixed λ U ( λ 0 , S ) λ U λ 0 , S lambda in U(lambda_(0),S)\lambda \in U\left(\lambda_{0}, S\right)λU(λ0,S) the operator P F ( w , λ ) P F ( w , λ ) PF(w,lambda)P F(w, \lambda)PF(w,λ) will be assumed to be Fréchet-differentiable for all w D w D w in Dw \in DwD. Then P F ( x , λ ) P F ( x , λ ) PF^(')(x,lambda)P F^{\prime}(x, \lambda)PF(x,λ) will denote the Fréchet-derivative of the operator P F ( w , λ ) P F ( w , λ ) PF(w,lambda)P F(w, \lambda)PF(w,λ) with respect to the argument w w www at w = x w = x w=xw=xw=x. Moreover for each fixed λ U ( λ 0 , S ) λ U λ 0 , S lambda in U(lambda_(0),S)\lambda \in U\left(\lambda_{0}, S\right)λU(λ0,S) the operator P G ( w , λ ) P G ( w , λ ) PG(w,lambda)P G(w, \lambda)PG(w,λ) will be assumed to be continuous for all w D w D w in Dw \in DwD.
In this study we are concerned with the problem of approximating a solution x := x ( λ ) x := x ( λ ) x^(**):=x^(**)(lambda)x^{*}:=x^{*}(\lambda)x:=x(λ) of the equation
(1) F ( x , λ ) + G ( x , λ ) = 0 (1) F ( x , λ ) + G ( x , λ ) = 0 {:(1)F(x","lambda)+G(x","lambda)=0:}\begin{equation*} F(x, \lambda)+G(x, \lambda)=0 \tag{1} \end{equation*}(1)F(x,λ)+G(x,λ)=0
We introduce the inexact Steffensen-Aitken-type method
x n + 1 ( λ ) = x n ( λ ) A ( x n ( λ ) , λ ) 1 ( F ( x n ( λ ) , λ ) + G ( x n ( λ ) , λ ) ) (2) z ( x n ( λ ) , λ ) ( n 0 ) x n + 1 ( λ ) = x n ( λ ) A x n ( λ ) , λ 1 F x n ( λ ) , λ + G x n ( λ ) , λ (2) z x n ( λ ) , λ ( n 0 ) {:[x_(n+1)(lambda)=x_(n)(lambda)-A(x_(n)(lambda),lambda)^(-1)(F(x_(n)(lambda),lambda)+G(x_(n)(lambda),lambda))],[(2)-z(x_(n)(lambda),lambda)quad(n >= 0)]:}\begin{gather*} x_{n+1}(\lambda)=x_{n}(\lambda)-A\left(x_{n}(\lambda), \lambda\right)^{-1}\left(F\left(x_{n}(\lambda), \lambda\right)+G\left(x_{n}(\lambda), \lambda\right)\right) \\ -z\left(x_{n}(\lambda), \lambda\right) \quad(n \geq 0) \tag{2} \end{gather*}xn+1(λ)=xn(λ)A(xn(λ),λ)1(F(xn(λ),λ)+G(xn(λ),λ))(2)z(xn(λ),λ)(n0)
where by x 0 x 0 x_(0)x_{0}x0 we mean x 0 ( λ ) x 0 ( λ ) x_(0)(lambda)x_{0}(\lambda)x0(λ). That is, x 0 x 0 x_(0)x_{0}x0 depends on the λ λ lambda\lambdaλ used in (2). A ( x , λ ) L ( E × Λ , E ) A ( x , λ ) L ( E × Λ , E ) A(x,lambda)in L(E xx Lambda,E)A(x, \lambda) \in L(E \times \Lambda, E)A(x,λ)L(E×Λ,E) and is given by
A ( x n ( λ ) , λ ) = P [ g 1 ( x n ( λ ) , λ ) , g 2 ( x n ( λ ) , λ ) ; F ] + P [ g 3 ( x n ( λ ) , λ ) (3) g 4 ( x n ( λ ) , λ ) ; G ] ( n 0 ) A x n ( λ ) , λ = P g 1 x n ( λ ) , λ , g 2 x n ( λ ) , λ ; F + P g 3 x n ( λ ) , λ (3) g 4 x n ( λ ) , λ ; G ( n 0 ) {:[A(x_(n)(lambda),lambda)=P[g^(1)(x_(n)(lambda),lambda),g^(2)(x_(n)(lambda),lambda);F]+P[g^(3)(x_(n)(lambda),lambda):}],[(3){:g^(4)(x_(n)(lambda),lambda);G]quad(n >= 0)]:}\begin{gather*} A\left(x_{n}(\lambda), \lambda\right)=P\left[g^{1}\left(x_{n}(\lambda), \lambda\right), g^{2}\left(x_{n}(\lambda), \lambda\right) ; F\right]+P\left[g^{3}\left(x_{n}(\lambda), \lambda\right)\right. \\ \left.g^{4}\left(x_{n}(\lambda), \lambda\right) ; G\right] \quad(n \geq 0) \tag{3} \end{gather*}A(xn(λ),λ)=P[g1(xn(λ),λ),g2(xn(λ),λ);F]+P[g3(xn(λ),λ)(3)g4(xn(λ),λ);G](n0)
where [ x ( λ ) , y ( λ ) ; F ] [ x ( λ ) , y ( λ ) ; F ] [x(lambda),y(lambda);F][x(\lambda), y(\lambda) ; F][x(λ),y(λ);F] (or [ x ( λ ) , y ( λ ) ; G ] [ x ( λ ) , y ( λ ) ; G ] [x(lambda),y(lambda);G][x(\lambda), y(\lambda) ; G][x(λ),y(λ);G] ) denotes divided difference of order one on F F FFF (or G G GGG ) at the points x ( λ ) , y ( λ ) D x ( λ ) , y ( λ ) D x(lambda),y(lambda)in Dx(\lambda), y(\lambda) \in Dx(λ),y(λ)D, satisfying
(4) [ x ( λ ) , y ( λ ) ; F ] ( y ( λ ) x ( λ ) ) = F ( y ( λ ) , λ ) F ( x ( λ ) , λ ) (4) [ x ( λ ) , y ( λ ) ; F ] ( y ( λ ) x ( λ ) ) = F ( y ( λ ) , λ ) F ( x ( λ ) , λ ) {:(4)[x(lambda)","y(lambda);F](y(lambda)-x(lambda))=F(y(lambda)","lambda)-F(x(lambda)","lambda):}\begin{equation*} [x(\lambda), y(\lambda) ; F](y(\lambda)-x(\lambda))=F(y(\lambda), \lambda)-F(x(\lambda), \lambda) \tag{4} \end{equation*}(4)[x(λ),y(λ);F](y(λ)x(λ))=F(y(λ),λ)F(x(λ),λ)
for all x ( λ ) y ( λ ) , λ U ( λ 0 , S ) x ( λ ) y ( λ ) , λ U λ 0 , S x(lambda)!=y(lambda),lambda in U(lambda_(0),S)x(\lambda) \neq y(\lambda), \lambda \in U\left(\lambda_{0}, S\right)x(λ)y(λ),λU(λ0,S), and
(5) [ x ( λ ) , x ( λ ) ; F ] = F ( x ( λ ) , λ ) , λ U ( λ 0 , S ) (5) [ x ( λ ) , x ( λ ) ; F ] = F ( x ( λ ) , λ ) , λ U λ 0 , S {:(5)[x(lambda)","x(lambda);F]=F^(')(x(lambda)","lambda)","quad lambda in U(lambda_(0),S):}\begin{equation*} [x(\lambda), x(\lambda) ; F]=F^{\prime}(x(\lambda), \lambda), \quad \lambda \in U\left(\lambda_{0}, S\right) \tag{5} \end{equation*}(5)[x(λ),x(λ);F]=F(x(λ),λ),λU(λ0,S)
if F ( x ( λ ) , λ ) F ( x ( λ ) , λ ) F(x(lambda),lambda)F(x(\lambda), \lambda)F(x(λ),λ) is Fréchet-differentiable at x ( λ ) x ( λ ) x(lambda)x(\lambda)x(λ) for all λ U ( λ 0 , S ) λ U λ 0 , S lambda in U(lambda_(0),S)\lambda \in U\left(\lambda_{0}, S\right)λU(λ0,S). The operator z : D × U ( λ 0 , S ) E z : D × U λ 0 , S E z:D xx U(lambda_(0),S)rarr Ez: D \times U\left(\lambda_{0}, S\right) \rightarrow Ez:D×U(λ0,S)E is chosen so that iteration { x n ( λ ) } ( n x n ( λ ) ( n {x_(n)(lambda)}(n >=\left\{x_{n}(\lambda)\right\}(n \geq{xn(λ)}(n 0 ) generated by (2) converges to x x x^(**)x^{*}x. The operator g 1 , g 2 , g 3 , g 4 : D × U ( λ 0 , S ) E g 1 , g 2 , g 3 , g 4 : D × U λ 0 , S E g^(1),g^(2),g^(3),g^(4):D xx U(lambda_(0),S)rarr Eg^{1}, g^{2}, g^{3}, g^{4}: D \times U\left(\lambda_{0}, S\right) \rightarrow Eg1,g2,g3,g4:D×U(λ0,S)E are continuous.
The importance of studying inexact Steffensen-Aitken methods comes from the fact that many commonly used variants can be considered procedures of this type. Indeed approximation (2) characterizes any iterative process in which corrections are taken as approximate solutions of Steffensen-Aitken equations. Moreover we note that if for example an equation on the real line is solved F ( x n ( λ ) , λ ) + G ( x n ( λ ) , λ ) 0 F x n ( λ ) , λ + G x n ( λ ) , λ 0 F(x_(n)(lambda),lambda)+G(x_(n)(lambda),lambda) >= 0F\left(x_{n}(\lambda), \lambda\right)+ G\left(x_{n}(\lambda), \lambda\right) \geq 0F(xn(λ),λ)+G(xn(λ),λ)0 and A ( x n ( λ ) , λ ) A x n ( λ ) , λ A(x_(n)(lambda),lambda)A\left(x_{n}(\lambda), \lambda\right)A(xn(λ),λ) overestimates the derivative x n A ( x n ( λ ) , λ ) 1 ( F ( x n ( λ ) , λ ) + G ( x n ( λ ) , λ ) ) x n A x n ( λ ) , λ 1 F x n ( λ ) , λ + G x n ( λ ) , λ x_(n)-A(x_(n)(lambda),lambda)^(-1)(F(x_(n)(lambda),lambda)+G(x_(n)(lambda),lambda))x_{n}- A\left(x_{n}(\lambda), \lambda\right)^{-1}\left(F\left(x_{n}(\lambda), \lambda\right)+G\left(x_{n}(\lambda), \lambda\right)\right)xnA(xn(λ),λ)1(F(xn(λ),λ)+G(xn(λ),λ)) is always "larger" than the corresponding Steffensen-Aitken iterate. In such cases a positive z ( x n ( λ ) , λ ) ( n 0 ) z x n ( λ ) , λ ( n 0 ) z(x_(n)(lambda),lambda)(n >= 0)z\left(x_{n}(\lambda), \lambda\right)(n \geq 0)z(xn(λ),λ)(n0) correction term is appropriate.
It can easily be shown by induction on n n nnn that under the above hypotheses F ( x n ( λ ) , λ ) + G ( x n ( λ ) , λ ) F x n ( λ ) , λ + G x n ( λ ) , λ F(x_(n)(lambda),lambda)+G(x_(n)(lambda),lambda)F\left(x_{n}(\lambda), \lambda\right)+G\left(x_{n}(\lambda), \lambda\right)F(xn(λ),λ)+G(xn(λ),λ) belong to the domain of A ( x n ( λ ) , λ ) 1 A x n ( λ ) , λ 1 A(x_(n)(lambda),lambda)^(-1)A\left(x_{n}(\lambda), \lambda\right)^{-1}A(xn(λ),λ)1 for all n 0 n 0 n >= 0n \geq 0n0.
Therefore, if the inverses exist (as it will be shown later in the theorem), then the iterates { x n ( λ ) } x n ( λ ) {x_(n)(lambda)}\left\{x_{n}(\lambda)\right\}{xn(λ)} can be computed for all n 0 n 0 n >= 0n \geq 0n0. The iterates generated when P = I P = I P=IP=IP=I (identity operator on E E EEE ) cannot easily be computed in infinite dimensional spaces since the inverses may be too difficult or impossible to find. It is easy to see, however, that the solution of equations (2) reduces to solving certain operator equations in the space E P E P EPE PEP. If, moreover, E P E P EPE PEP is a finite dimensional space of dimension N N NNN, we obtain a system of linear algebraic equations of at most order N N NNN. Special choices of the operators introduced above reduce our iteration (2) to earlier considered methods. Indeed we can have: for g 1 ( x ( λ ) , λ ) = g 2 ( x ( λ ) , λ ) = x ( λ ) , g 3 ( x ( λ ) , λ ) = g 4 ( x ( λ ) , λ ) = g 1 ( x ( λ ) , λ ) = g 2 ( x ( λ ) , λ ) = x ( λ ) , g 3 ( x ( λ ) , λ ) = g 4 ( x ( λ ) , λ ) = g^(1)(x(lambda),lambda)=g^(2)(x(lambda),lambda)=x(lambda),g^(3)(x(lambda),lambda)=g^(4)(x(lambda),lambda)=g^{1}(x(\lambda), \lambda)=g^{2}(x(\lambda), \lambda)=x(\lambda), g^{3}(x(\lambda), \lambda)=g^{4}(x(\lambda), \lambda)=g1(x(λ),λ)=g2(x(λ),λ)=x(λ),g3(x(λ),λ)=g4(x(λ),λ)= 0, z = 0 z = 0 z=0z=0z=0 we obtain Newton methods considered in [3], [4], [5]; for P = I P = I P=IP=IP=I, no λ , g 1 ( x ) = g 2 ( x ) = x ( x D ) , g 3 ( x n ) = x n 1 ( n 1 ) λ , g 1 ( x ) = g 2 ( x ) = x ( x D ) , g 3 x n = x n 1 ( n 1 ) lambda,g^(1)(x)=g^(2)(x)=x(x in D),g^(3)(x_(n))=x_(n-1)(n >= 1)\lambda, g^{1}(x)=g^{2}(x)=x(x \in D), g^{3}\left(x_{n}\right)=x_{n-1}(n \geq 1)λ,g1(x)=g2(x)=x(xD),g3(xn)=xn1(n1), g 4 ( x n ) = x n ( n 0 ) , z n = 0 ( n 0 ) g 4 x n = x n ( n 0 ) , z n = 0 ( n 0 ) g^(4)(x_(n))=x_(n)(n >= 0),z_(n)=0(n >= 0)g^{4}\left(x_{n}\right)=x_{n}(n \geq 0), z_{n}=0(n \geq 0)g4(xn)=xn(n0),zn=0(n0) we obtain Catinas method [4]; for P = I P = I P=IP=IP=I, no λ , G ( x ) = 0 ( x D ) , z n = 0 ( n 0 ) , g 3 ( x ) = g 4 ( x ) = 0 λ , G ( x ) = 0 ( x D ) , z n = 0 ( n 0 ) , g 3 ( x ) = g 4 ( x ) = 0 lambda,G(x)=0(x in D),z_(n)=0(n >= 0),g^(3)(x)=g^(4)(x)=0\lambda, G(x)=0(x \in D), z_{n}=0(n \geq 0), g^{3}(x)=g^{4}(x)=0λ,G(x)=0(xD),zn=0(n0),g3(x)=g4(x)=0, g 2 ( x ) = g 1 ( F ( x ) ) ( x D ) g 2 ( x ) = g 1 ( F ( x ) ) ( x D ) g^(2)(x)=g^(1)(F(x))(x in D)g^{2}(x)=g^{1}(F(x))(x \in D)g2(x)=g1(F(x))(xD), we obtain methods considered by Pǎvǎloiu in [3], [4], [6], [7]. Our choices of the operators since they include all previous methods allow us to consider a wider class of problems.
We provide sufficient conditions for the convergence of iteration (2) to a locally unique solution x ( λ ) x ( λ ) x^(**)(lambda)x^{*}(\lambda)x(λ) of equation (1) as well as several
error bounds on the distances x n + 1 ( λ ) x n ( λ ) x n + 1 ( λ ) x n ( λ ) ||x_(n+1)(lambda)-x_(n)(lambda)||\left\|x_{n+1}(\lambda)-x_{n}(\lambda)\right\|xn+1(λ)xn(λ) and x n ( λ ) x ( λ ) x n ( λ ) x ( λ ) ||x_(n)(lambda)-x^(**)(lambda)||\left\|x_{n}(\lambda)-x^{*}(\lambda)\right\|xn(λ)x(λ) ( n 0 n 0 n >= 0n \geq 0n0 ).

II. Convergence Analysis

We can now state and prove the following semilocal convergence result:
Theorem. Let F , G , P , Q F , G , P , Q F,G,P,QF, G, P, QF,G,P,Q be as in the introduction. Assume:
(a) there exist x 0 ( λ ) D , λ 0 Λ x 0 ( λ ) D , λ 0 Λ x_(0)(lambda)in D,lambda_(0)in Lambdax_{0}(\lambda) \in D, \lambda_{0} \in \Lambdax0(λ)D,λ0Λ such that C := C ( λ ) = A ( x 0 ( λ ) , λ 0 ) C := C ( λ ) = A x 0 ( λ ) , λ 0 C:=C(lambda)=A(x_(0)(lambda),lambda_(0))C:=C(\lambda)=A\left(x_{0}(\lambda), \lambda_{0}\right)C:=C(λ)=A(x0(λ),λ0) is invertible. Set B = C 1 B = C 1 B=C^(-1)B=C^{-1}B=C1;
(b) there exist nonnegative numbers a i , R , S , i = 1 , 2 , , 15 a i , R , S , i = 1 , 2 , , 15 a_(i),R,S,i=1,2,dots,15a_{i}, R, S, i=1,2, \ldots, 15ai,R,S,i=1,2,,15 such that:
(6) B P ( [ x , y ; F ] [ v , w ; F ] ) a 1 ( x v + y w ) B P ( [ x , y ; F ] [ v , w ; F ] ) a 1 ( x v + y w ) quad||BP([x,y;F]-[v,w;F])|| <= a_(1)(||x-v||+||y-w||)\quad\|B P([x, y ; F]-[v, w ; F])\| \leq a_{1}(\|x-v\|+\|y-w\|)BP([x,y;F][v,w;F])a1(xv+yw),
(7) x g 1 ( x , λ ) a 2 A ( x , λ ) 1 ( F ( x , λ ) + G ( x , λ ) ) z ( x , λ ) x g 1 ( x , λ ) a 2 A ( x , λ ) 1 ( F ( x , λ ) + G ( x , λ ) ) z ( x , λ ) ||x-g^(1)(x,lambda)|| <= a_(2)||A(x,lambda)^(-1)(F(x,lambda)+G(x,lambda))-z(x,lambda)||\left\|x-g^{1}(x, \lambda)\right\| \leq a_{2}\left\|A(x, \lambda)^{-1}(F(x, \lambda)+G(x, \lambda))-z(x, \lambda)\right\|xg1(x,λ)a2A(x,λ)1(F(x,λ)+G(x,λ))z(x,λ)
(8) x g 2 ( x , λ ) a 3 A ( x , λ ) 1 ( F ( x , λ ) + G ( x , λ ) ) z ( x , λ ) x g 2 ( x , λ ) a 3 A ( x , λ ) 1 ( F ( x , λ ) + G ( x , λ ) ) z ( x , λ ) ||x-g^(2)(x,lambda)|| <= a_(3)||A(x,lambda)^(-1)(F(x,lambda)+G(x,lambda))-z(x,lambda)||\left\|x-g^{2}(x, \lambda)\right\| \leq a_{3}\left\|A(x, \lambda)^{-1}(F(x, \lambda)+G(x, \lambda))-z(x, \lambda)\right\|xg2(x,λ)a3A(x,λ)1(F(x,λ)+G(x,λ))z(x,λ),
B ( A ( x n + 1 , λ ) ( z ( x n + 1 , λ ) ) A ( x n , λ ) ( z ( x n , λ ) ) a 7 x n + 1 x n B A x n + 1 , λ z x n + 1 , λ A x n , λ z x n , λ a 7 x n + 1 x n ||B(A(x_(n+1),lambda)(z(x_(n+1),lambda))-A(x_(n),lambda)(z(x_(n),lambda))|| <= a_(7)||x_(n+1)-x_(n)||:}\| B\left(A\left(x_{n+1}, \lambda\right)\left(z\left(x_{n+1}, \lambda\right)\right)-A\left(x_{n}, \lambda\right)\left(z\left(x_{n}, \lambda\right)\right)\left\|\leq a_{7}\right\| x_{n+1}-x_{n} \|\right.B(A(xn+1,λ)(z(xn+1,λ))A(xn,λ)(z(xn,λ))a7xn+1xn
(9) g 1 ( x , λ ) g 1 ( y , λ ) a 4 x y a 4 [ 0 , 1 ) (10) g 2 ( x , λ ) g 2 ( y , λ ) a 5 x y a 5 [ 0 , 1 ) (9) g 1 ( x , λ ) g 1 ( y , λ ) a 4 x y a 4 [ 0 , 1 ) (10) g 2 ( x , λ ) g 2 ( y , λ ) a 5 x y a 5 [ 0 , 1 ) {:[(9)||g^(1)(x,lambda)-g^(1)(y,lambda)|| <= a_(4)||x-y||quada_(4)in[0","1)],[(10)||g^(2)(x,lambda)-g^(2)(y,lambda)|| <= a_(5)||x-y||quada_(5)in[0","1)]:}\begin{align*} & \left\|g^{1}(x, \lambda)-g^{1}(y, \lambda)\right\| \leq a_{4}\|x-y\| \quad a_{4} \in[0,1) \tag{9}\\ & \left\|g^{2}(x, \lambda)-g^{2}(y, \lambda)\right\| \leq a_{5}\|x-y\| \quad a_{5} \in[0,1) \tag{10} \end{align*}(9)g1(x,λ)g1(y,λ)a4xya4[0,1)(10)g2(x,λ)g2(y,λ)a5xya5[0,1)
(11) B ( Q F ( x , λ ) Q F ( y , λ ) ) a 6 x y (11) B ( Q F ( x , λ ) Q F ( y , λ ) ) a 6 x y {:(11)||B(QF(x","lambda)-QF(y","lambda))|| <= a_(6)||x-y||:}\begin{equation*} \|B(Q F(x, \lambda)-Q F(y, \lambda))\| \leq a_{6}\|x-y\| \tag{11} \end{equation*}(11)B(QF(x,λ)QF(y,λ))a6xy
(12) B P ( [ x , y ; G ] [ g 3 ( x , λ ) , g 4 ( x , λ ) ; G ] ) a 8 ( x g 3 ( x , λ ) + (12) B P [ x , y ; G ] g 3 ( x , λ ) , g 4 ( x , λ ) ; G a 8 x g 3 ( x , λ ) + {:(12)||BP([x,y;G]-[g^(3)(x,lambda),g^(4)(x,lambda);G])|| <= a_(8)(||x-g^(3)(x,lambda)||+:}:}\begin{equation*} \left\|B P\left([x, y ; G]-\left[g^{3}(x, \lambda), g^{4}(x, \lambda) ; G\right]\right)\right\| \leq a_{8}\left(\left\|x-g^{3}(x, \lambda)\right\|+\right. \tag{12} \end{equation*}(12)BP([x,y;G][g3(x,λ),g4(x,λ);G])a8(xg3(x,λ)+
(13) y g 4 ( x , λ ) ) (13) y g 4 ( x , λ ) {:(13){:||y-g^(4)(x,lambda)||):}\begin{equation*} \left.\left\|y-g^{4}(x, \lambda)\right\|\right) \tag{13} \end{equation*}(13)yg4(x,λ))
(14) x g 3 ( x , λ ) a 9 A ( x , λ ) 1 ( F ( x , λ ) + G ( x , λ ) ) z ( x , λ ) (14) x g 3 ( x , λ ) a 9 A ( x , λ ) 1 ( F ( x , λ ) + G ( x , λ ) ) z ( x , λ ) {:(14)||x-g^(3)(x,lambda)|| <= a_(9)||A(x,lambda)^(-1)(F(x,lambda)+G(x,lambda))-z(x,lambda)||:}\begin{equation*} \left\|x-g^{3}(x, \lambda)\right\| \leq a_{9}\left\|A(x, \lambda)^{-1}(F(x, \lambda)+G(x, \lambda))-z(x, \lambda)\right\| \tag{14} \end{equation*}(14)xg3(x,λ)a9A(x,λ)1(F(x,λ)+G(x,λ))z(x,λ)
(15) x g 4 ( x , λ ) a 10 A ( x , λ ) 1 ( F ( x , λ ) + G ( x , λ ) ) z ( x , λ ) (15) x g 4 ( x , λ ) a 10 A ( x , λ ) 1 ( F ( x , λ ) + G ( x , λ ) ) z ( x , λ ) {:(15)||x-g^(4)(x,lambda)|| <= a_(10)||A(x,lambda)^(-1)(F(x,lambda)+G(x,lambda))-z(x,lambda)||:}\begin{equation*} \left\|x-g^{4}(x, \lambda)\right\| \leq a_{10}\left\|A(x, \lambda)^{-1}(F(x, \lambda)+G(x, \lambda))-z(x, \lambda)\right\| \tag{15} \end{equation*}(15)xg4(x,λ)a10A(x,λ)1(F(x,λ)+G(x,λ))z(x,λ)
(16) g 3 ( x , λ ) g 3 ( y , λ ) a 11 x y a 11 [ 0 , 1 ) (16) g 3 ( x , λ ) g 3 ( y , λ ) a 11 x y a 11 [ 0 , 1 ) {:(16)||g^(3)(x,lambda)-g^(3)(y,lambda)|| <= a_(11)||x-y||quada_(11)in[0","1):}\begin{equation*} \left\|g^{3}(x, \lambda)-g^{3}(y, \lambda)\right\| \leq a_{11}\|x-y\| \quad a_{11} \in[0,1) \tag{16} \end{equation*}(16)g3(x,λ)g3(y,λ)a11xya11[0,1)
(17) g 4 ( x , λ ) g 4 ( y , λ ) a 12 x y a 12 [ 0 , 1 ) (17) g 4 ( x , λ ) g 4 ( y , λ ) a 12 x y a 12 [ 0 , 1 ) {:(17)||g^(4)(x,lambda)-g^(4)(y,lambda)|| <= a_(12)||x-y||quada_(12)in[0","1):}\begin{equation*} \left\|g^{4}(x, \lambda)-g^{4}(y, \lambda)\right\| \leq a_{12}\|x-y\| \quad a_{12} \in[0,1) \tag{17} \end{equation*}(17)g4(x,λ)g4(y,λ)a12xya12[0,1)
(18) B ( Q G ( x , λ ) Q G ( y , λ ) ) a 13 x y (18) B ( Q G ( x , λ ) Q G ( y , λ ) ) a 13 x y {:(18)||B(QG(x","lambda)-QG(y","lambda))|| <= a_(13)||x-y||:}\begin{equation*} \|B(Q G(x, \lambda)-Q G(y, \lambda))\| \leq a_{13}\|x-y\| \tag{18} \end{equation*}(18)B(QG(x,λ)QG(y,λ))a13xy
(19) B ( [ g 1 ( x 0 , λ ) , g 2 ( x 0 , λ ) ; F ] [ g 1 ( x 0 , λ 0 ) , g 2 ( x 0 , λ 0 ; F ] ) a 14 λ λ 0 (19) B g 1 x 0 , λ , g 2 x 0 , λ ; F g 1 x 0 , λ 0 , g 2 x 0 , λ 0 ; F a 14 λ λ 0 {:(19)||B([g^(1)(x_(0),lambda),g^(2)(x_(0),lambda);F]-[g^(1)(x_(0),lambda_(0)),g^(2)(x_(0),lambda_(0);F])|| <= a_(14)||lambda-lambda_(0)||:}:}\begin{equation*} \| B\left(\left[g^{1}\left(x_{0}, \lambda\right), g^{2}\left(x_{0}, \lambda\right) ; F\right]-\left[g^{1}\left(x_{0}, \lambda_{0}\right), g^{2}\left(x_{0}, \lambda_{0} ; F\right]\right)\left\|\leq a_{14}\right\| \lambda-\lambda_{0} \|\right. \tag{19} \end{equation*}(19)B([g1(x0,λ),g2(x0,λ);F][g1(x0,λ0),g2(x0,λ0;F])a14λλ0
and
B ( [ g 3 ( x 0 , λ ) , g 4 ( x 0 , λ ) ; G ] [ g 3 ( x 0 , λ 0 ) , g 4 ( x 0 , λ 0 ) ; G ] ) B g 3 x 0 , λ , g 4 x 0 , λ ; G g 3 x 0 , λ 0 , g 4 x 0 , λ 0 ; G ||B([g^(3)(x_(0),lambda),g^(4)(x_(0),lambda);G]-[g^(3)(x_(0),lambda_(0)),g^(4)(x_(0),lambda_(0));G])\| B\left(\left[g^{3}\left(x_{0}, \lambda\right), g^{4}\left(x_{0}, \lambda\right) ; G\right]-\left[g^{3}\left(x_{0}, \lambda_{0}\right), g^{4}\left(x_{0}, \lambda_{0}\right) ; G\right]\right)B([g3(x0,λ),g4(x0,λ);G][g3(x0,λ0),g4(x0,λ0);G])
(20) a 15 λ λ 0 , (20) a 15 λ λ 0 , {:(20)|| <= a_(15)||lambda-lambda_(0)||",":}\begin{equation*} \left\|\leq a_{15}\right\| \lambda-\lambda_{0} \|, \tag{20} \end{equation*}(20)a15λλ0,
for all v , w , x , y U ( x 0 , R ) , λ U ( λ , S ) ; v , w , x , y U x 0 , R , λ U ( λ , S ) ; v,w,x,y in U(x_(0),R),lambda in U(lambda,S);v, w, x, y \in U\left(x_{0}, R\right), \lambda \in U(\lambda, S) ;v,w,x,yU(x0,R),λU(λ,S);
(c) the sequence { z ( x n ( λ ) , λ ) } ( n 0 ) z x n ( λ ) , λ ( n 0 ) {z(x_(n)(lambda),lambda)}(n >= 0)\left\{z\left(x_{n}(\lambda), \lambda\right)\right\}(n \geq 0){z(xn(λ),λ)}(n0) is null for all λ U ( λ 0 , S ) λ U λ 0 , S lambda in U(lambda_(0),S)\lambda \in U\left(\lambda_{0}, S\right)λU(λ0,S);
(d) for each fixed λ U ( λ 0 , S ) λ U λ 0 , S lambda in U(lambda_(0),S)\lambda \in U\left(\lambda_{0}, S\right)λU(λ0,S) there exists a minimum nonnegative number r := r λ r := r λ r^(**):=r_(lambda)^(**)r^{*}:=r_{\lambda}^{*}r:=rλ satisfying
(21) T λ ( r ) r and r R (21) T λ r r  and  r R {:(21)T_(lambda)(r^(**)) <= r^(**)quad" and "quadr^(**) <= R:}\begin{equation*} T_{\lambda}\left(r^{*}\right) \leq r^{*} \quad \text { and } \quad r^{*} \leq R \tag{21} \end{equation*}(21)Tλ(r)r and rR
with r := r ( λ ) r := r ( λ ) r:=r(lambda)r:=r(\lambda)r:=r(λ),
(22) T λ ( r ) = n + b 1 r + b 2 b ( r ) b 3 r r (22) T λ ( r ) = n + b 1 r + b 2 b ( r ) b 3 r r {:(22)T_(lambda)(r)=n+(b_(1)r+b_(2))/(b(r)-b_(3)r)r:}\begin{equation*} T_{\lambda}(r)=n+\frac{b_{1} r+b_{2}}{b(r)-b_{3} r} r \tag{22} \end{equation*}(22)Tλ(r)=n+b1r+b2b(r)b3rr
where
(23) n := n ( λ ) x 0 ( λ ) x 1 ( λ ) , (23) n := n ( λ ) x 0 ( λ ) x 1 ( λ ) , {:(23)n:=n(lambda) >= ||x_(0)(lambda)-x_(1)(lambda)||",":}\begin{equation*} n:=n(\lambda) \geq\left\|x_{0}(\lambda)-x_{1}(\lambda)\right\|, \tag{23} \end{equation*}(23)n:=n(λ)x0(λ)x1(λ),
b 1 = a 1 ( 1 + a 4 + a 5 ) + a 8 ( 1 + a 11 + a 12 ) , b 2 = a 6 + a 13 + a 7 b 1 = a 1 1 + a 4 + a 5 + a 8 1 + a 11 + a 12 , b 2 = a 6 + a 13 + a 7 b_(1)=a_(1)(1+a_(4)+a_(5))+a_(8)(1+a_(11)+a_(12)),b_(2)=a_(6)+a_(13)+a_(7)b_{1}=a_{1}\left(1+a_{4}+a_{5}\right)+a_{8}\left(1+a_{11}+a_{12}\right), b_{2}=a_{6}+a_{13}+a_{7}b1=a1(1+a4+a5)+a8(1+a11+a12),b2=a6+a13+a7, b 3 = a 1 ( a 2 + a 3 ) + a 8 ( a 9 + a 10 ) b 3 = a 1 a 2 + a 3 + a 8 a 9 + a 10 b_(3)=a_(1)(a_(2)+a_(3))+a_(8)(a_(9)+a_(10))b_{3}=a_{1}\left(a_{2}+a_{3}\right)+a_{8}\left(a_{9}+a_{10}\right)b3=a1(a2+a3)+a8(a9+a10),
(24) b ( r ) := b ( r , s ) = 1 ( a 1 ( a 4 + a 5 ) + a 8 ( a 11 + a 12 ) ) r ( a 14 + a 15 ) S ; (24) b ( r ) := b ( r , s ) = 1 a 1 a 4 + a 5 + a 8 a 11 + a 12 r a 14 + a 15 S ; {:(24)b(r):=b(r","s)=1-(a_(1)(a_(4)+a_(5))+a_(8)(a_(11)+a_(12)))r-(a_(14)+a_(15))S;:}\begin{equation*} b(r):=b(r, s)=1-\left(a_{1}\left(a_{4}+a_{5}\right)+a_{8}\left(a_{11}+a_{12}\right)\right) r-\left(a_{14}+a_{15}\right) S ; \tag{24} \end{equation*}(24)b(r):=b(r,s)=1(a1(a4+a5)+a8(a11+a12))r(a14+a15)S;
(e) r , R , S r , R , S r^(**),R,Sr^{*}, R, Sr,R,S also satisfy:
(25) b ( r ) b 3 r > 0 r max { g 1 ( x 0 ( λ ) , λ ) x 0 ( λ ) 1 a 4 , g 2 ( x 0 ( λ ) , λ ) x 0 ( λ ) 1 a 5 , (26) g 3 ( x 0 ( λ ) , λ ) x 0 ( λ ) 1 a 11 , g 4 ( x 0 ( λ ) , λ ) x 0 ( λ ) 1 a 12 } , ( 26 ) (27) c := c ( λ ) = d ( r , R ) < 1 , (25) b r b 3 r > 0 r max g 1 x 0 ( λ ) , λ x 0 ( λ ) 1 a 4 , g 2 x 0 ( λ ) , λ x 0 ( λ ) 1 a 5 , (26) g 3 x 0 ( λ ) , λ x 0 ( λ ) 1 a 11 , g 4 x 0 ( λ ) , λ x 0 ( λ ) 1 a 12 , ( 26 ) (27) c := c ( λ ) = d ( r , R ) < 1 , {:[(25)b(r^(**))-b_(3)r^(**) > 0],[r^(**) >= max{(||g^(1)(x_(0)(lambda),lambda)-x_(0)(lambda)||)/(1-a_(4)),(||g^(2)(x_(0)(lambda),lambda)-x_(0)(lambda)||)/(1-a_(5)),:}],[(26){:||(g^(3)(x_(0)(lambda),lambda)-x_(0)(lambda)||)/(1-a_(11),(||g^(4)(x_(0)(lambda),lambda)-x_(0)(lambda)||)/(1-a_(12)))}","(26)],[(27)c:=c(lambda)=d(r","R) < 1","]:}\begin{gather*} b\left(r^{*}\right)-b_{3} r^{*}>0 \tag{25}\\ r^{*} \geq \max \left\{\frac{\left\|g^{1}\left(x_{0}(\lambda), \lambda\right)-x_{0}(\lambda)\right\|}{1-a_{4}}, \frac{\left\|g^{2}\left(x_{0}(\lambda), \lambda\right)-x_{0}(\lambda)\right\|}{1-a_{5}},\right. \\ \left.\| \frac{g^{3}\left(x_{0}(\lambda), \lambda\right)-x_{0}(\lambda) \|}{1-a_{11}, \frac{\left\|g^{4}\left(x_{0}(\lambda), \lambda\right)-x_{0}(\lambda)\right\|}{1-a_{12}}}\right\},(26) \tag{26}\\ c:=c(\lambda)=d(r, R)<1, \tag{27} \end{gather*}(25)b(r)b3r>0rmax{g1(x0(λ),λ)x0(λ)1a4,g2(x0(λ),λ)x0(λ)1a5,(26)g3(x0(λ),λ)x0(λ)1a11,g4(x0(λ),λ)x0(λ)1a12},(26)(27)c:=c(λ)=d(r,R)<1,
where
(28) d ( e 1 , e 2 ) = b 1 ( e 1 + e 2 ) + b 4 b ( e 1 ) b 3 ( e 1 + e 2 ) (28) d e 1 , e 2 = b 1 e 1 + e 2 + b 4 b e 1 b 3 e 1 + e 2 {:(28)d(e_(1),e_(2))=(b_(1)(e_(1)+e_(2))+b_(4))/(b(e_(1))-b_(3)(e_(1)+e_(2))):}\begin{equation*} d\left(e_{1}, e_{2}\right)=\frac{b_{1}\left(e_{1}+e_{2}\right)+b_{4}}{b\left(e_{1}\right)-b_{3}\left(e_{1}+e_{2}\right)} \tag{28} \end{equation*}(28)d(e1,e2)=b1(e1+e2)+b4b(e1)b3(e1+e2)
and
(29) b 4 = a 6 + a 13 . (29) b 4 = a 6 + a 13 . {:(29)b_(4)=a_(6)+a_(13).:}\begin{equation*} b_{4}=a_{6}+a_{13} . \tag{29} \end{equation*}(29)b4=a6+a13.
Then
(i) For each fixed λ U ( λ 0 , S ) λ U λ 0 , S lambda in U(lambda_(0),S)\lambda \in U\left(\lambda_{0}, S\right)λU(λ0,S) the scalar sequence { t n ( λ ) } ( n 0 ) t n ( λ ) ( n 0 ) {t_(n)(lambda)}(n >= 0)\left\{t_{n}(\lambda)\right\}(n \geq 0){tn(λ)}(n0) generated by
(30) t 0 ( λ ) = 0 , t 1 ( λ ) = n (30) t 0 ( λ ) = 0 , t 1 ( λ ) = n {:(30)t_(0)(lambda)=0","quadt_(1)(lambda)=n:}\begin{equation*} t_{0}(\lambda)=0, \quad t_{1}(\lambda)=n \tag{30} \end{equation*}(30)t0(λ)=0,t1(λ)=n
(31) t n + 1 ( λ ) = t n ( λ ) + b 1 ( t n ( λ ) t n 1 ( λ ) ) + b 2 α n β n ( t n ( 1 ) t n 1 ( λ ) ) ( n 1 ) , (31) t n + 1 ( λ ) = t n ( λ ) + b 1 t n ( λ ) t n 1 ( λ ) + b 2 α n β n t n ( 1 ) t n 1 ( λ ) ( n 1 ) , {:(31)t_(n+1)(lambda)=t_(n)(lambda)+(b_(1)(t_(n)(lambda)-t_(n-1)(lambda))+b_(2))/(alpha_(n)beta_(n))(t_(n)(1)-t_(n-1)(lambda))quad(n >= 1)",":}\begin{equation*} t_{n+1}(\lambda)=t_{n}(\lambda)+\frac{b_{1}\left(t_{n}(\lambda)-t_{n-1}(\lambda)\right)+b_{2}}{\alpha_{n} \beta_{n}}\left(t_{n}(1)-t_{n-1}(\lambda)\right) \quad(n \geq 1), \tag{31} \end{equation*}(31)tn+1(λ)=tn(λ)+b1(tn(λ)tn1(λ))+b2αnβn(tn(1)tn1(λ))(n1),
(32) α n := α n ( λ ) = 1 b 3 γ n ( n 0 ) (32) α n := α n ( λ ) = 1 b 3 γ n ( n 0 ) {:(32)alpha_(n):=alpha_(n)(lambda)=1-b_(3)gamma_(n)quad(n >= 0):}\begin{equation*} \alpha_{n}:=\alpha_{n}(\lambda)=1-b_{3} \gamma_{n} \quad(n \geq 0) \tag{32} \end{equation*}(32)αn:=αn(λ)=1b3γn(n0)
(33) β n := β n ( λ ) = 1 ( a 14 + a 15 ) S [ a 1 ( a 4 + a 5 ) + a 8 ( a 11 + a 12 ) ] t n ( λ ) ( n 0 ) , (33) β n := β n ( λ ) = 1 a 14 + a 15 S a 1 a 4 + a 5 + a 8 a 11 + a 12 t n ( λ ) ( n 0 ) , {:(33)beta_(n):=beta_(n)(lambda)=1-(a_(14)+a_(15))S-[a_(1)(a_(4)+a_(5))+a_(8)(a_(11)+a_(12))]t_(n)(lambda)quad(n >= 0)",":}\begin{equation*} \beta_{n}:=\beta_{n}(\lambda)=1-\left(a_{14}+a_{15}\right) S-\left[a_{1}\left(a_{4}+a_{5}\right)+a_{8}\left(a_{11}+a_{12}\right)\right] t_{n}(\lambda) \quad(n \geq 0), \tag{33} \end{equation*}(33)βn:=βn(λ)=1(a14+a15)S[a1(a4+a5)+a8(a11+a12)]tn(λ)(n0),
and
(34) γ n := γ n ( λ ) = ( t n ( λ ) t n 1 ( λ ) ) β n 1 ( n 1 ) , (34) γ n := γ n ( λ ) = t n ( λ ) t n 1 ( λ ) β n 1 ( n 1 ) , {:(34)gamma_(n):=gamma_(n)(lambda)=(t_(n)(lambda)-t_(n-1)(lambda))beta_(n)^(-1)quad(n >= 1)",":}\begin{equation*} \gamma_{n}:=\gamma_{n}(\lambda)=\left(t_{n}(\lambda)-t_{n-1}(\lambda)\right) \beta_{n}^{-1} \quad(n \geq 1), \tag{34} \end{equation*}(34)γn:=γn(λ)=(tn(λ)tn1(λ))βn1(n1),
is monotonically increasing, bounded above by r r r^(**)r^{*}r and lim n t n ( λ ) = r lim n t n ( λ ) = r lim_(n rarr oo)t_(n)(lambda)=r^(**)\lim _{n \rightarrow \infty} t_{n}(\lambda)= r^{*}limntn(λ)=r;
(ii) the inexact Steffensen-Aitken method generated by (2) is well defined, remains in U ( x 0 ( λ ) , r ) U x 0 ( λ ) , r U(x_(0)(lambda),r^(**))U\left(x_{0}(\lambda), r^{*}\right)U(x0(λ),r) for all n 0 n 0 n >= 0n \geq 0n0, and converges to a solution x ( λ ) U ( x 0 ( λ ) , r ) x ( λ ) U x 0 ( λ ) , r x^(**)(lambda)in U(x_(0)(lambda),r^(**))x^{*}(\lambda) \in U\left(x_{0}(\lambda), r^{*}\right)x(λ)U(x0(λ),r) of equation (1). Moreover if z = 0 z = 0 z=0z=0z=0 then x ( λ ) x ( λ ) x^(**)(lambda)x^{*}(\lambda)x(λ) is unique in U ( x 0 ( λ ) , R ) U x 0 ( λ ) , R U(x_(0)(lambda),R)U\left(x_{0}(\lambda), R\right)U(x0(λ),R). Furthermore the following error bounds are true:
x n + 1 ( λ ) x n ( λ ) b 1 x n ( λ ) x n 1 ( λ ) + b 2 α ¯ n β ¯ n x n ( λ ) x n 1 ( λ ) x n + 1 ( λ ) x n ( λ ) b 1 x n ( λ ) x n 1 ( λ ) + b 2 α ¯ n β ¯ n x n ( λ ) x n 1 ( λ ) ||x_(n+1)(lambda)-x_(n)(lambda)|| <= (b_(1)||x_(n)(lambda)-x_(n-1)(lambda)||+b_(2))/( bar(alpha)_(n) bar(beta)_(n))||x_(n)(lambda)-x_(n-1)(lambda)\left\|x_{n+1}(\lambda)-x_{n}(\lambda)\right\| \leq \frac{b_{1}\left\|x_{n}(\lambda)-x_{n-1}(\lambda)\right\|+b_{2}}{\bar{\alpha}_{n} \bar{\beta}_{n}} \| x_{n}(\lambda)-x_{n-1}(\lambda)xn+1(λ)xn(λ)b1xn(λ)xn1(λ)+b2α¯nβ¯nxn(λ)xn1(λ)
(35) ( n 1 ) (35) ( n 1 ) {:(35)||quad(n >= 1):}\begin{equation*} \| \quad(n \geq 1) \tag{35} \end{equation*}(35)(n1)
(36) x n + 1 ( λ ) x n ( λ ) t n + 1 ( λ ) t n ( λ ) ( n 0 ) (37) x n ( λ ) x ( λ ) r t n ( λ ) ( n 0 ) (36) x n + 1 ( λ ) x n ( λ ) t n + 1 ( λ ) t n ( λ ) ( n 0 ) (37) x n ( λ ) x ( λ ) r t n ( λ ) ( n 0 ) {:[(36)||x_(n+1)(lambda)-x_(n)(lambda)|| <= t_(n+1)(lambda)-t_(n)(lambda)quad(n >= 0)],[(37)||x_(n)(lambda)-x^(**)(lambda)|| <= r^(**)-t_(n)(lambda)quad(n >= 0)]:}\begin{gather*} \left\|x_{n+1}(\lambda)-x_{n}(\lambda)\right\| \leq t_{n+1}(\lambda)-t_{n}(\lambda) \quad(n \geq 0) \tag{36}\\ \left\|x_{n}(\lambda)-x^{*}(\lambda)\right\| \leq r^{*}-t_{n}(\lambda) \quad(n \geq 0) \tag{37} \end{gather*}(36)xn+1(λ)xn(λ)tn+1(λ)tn(λ)(n0)(37)xn(λ)x(λ)rtn(λ)(n0)
where
(38) α ¯ n := α ¯ n ( λ ) = 1 b 3 γ ¯ n ( n 0 ) (38) α ¯ n := α ¯ n ( λ ) = 1 b 3 γ ¯ n ( n 0 ) {:(38) bar(alpha)_(n):= bar(alpha)_(n)(lambda)=1-b_(3) bar(gamma)_(n)quad(n >= 0):}\begin{equation*} \bar{\alpha}_{n}:=\bar{\alpha}_{n}(\lambda)=1-b_{3} \bar{\gamma}_{n} \quad(n \geq 0) \tag{38} \end{equation*}(38)α¯n:=α¯n(λ)=1b3γ¯n(n0)
β ¯ n := β ¯ n ( λ ) = 1 ( a 14 + a 15 ) λ λ 0 [ a 1 ( a 4 + a 5 ) + a 8 ( a 11 + a 12 ) ] β ¯ n := β ¯ n ( λ ) = 1 a 14 + a 15 λ λ 0 a 1 a 4 + a 5 + a 8 a 11 + a 12 bar(beta)_(n):= bar(beta)_(n)(lambda)=1-(a_(14)+a_(15))||lambda-lambda_(0)||-[a_(1)(a_(4)+a_(5))+a_(8)(a_(11)+a_(12))]\bar{\beta}_{n}:=\bar{\beta}_{n}(\lambda)=1-\left(a_{14}+a_{15}\right)\left\|\lambda-\lambda_{0}\right\|-\left[a_{1}\left(a_{4}+a_{5}\right)+a_{8}\left(a_{11}+a_{12}\right)\right]β¯n:=β¯n(λ)=1(a14+a15)λλ0[a1(a4+a5)+a8(a11+a12)]
(39) x n ( λ ) x 0 ( λ ) ( n 0 ) (39) x n ( λ ) x 0 ( λ ) ( n 0 ) {:(39)||x_(n)(lambda)-x_(0)(lambda)||quad(n >= 0):}\begin{equation*} \left\|x_{n}(\lambda)-x_{0}(\lambda)\right\| \quad(n \geq 0) \tag{39} \end{equation*}(39)xn(λ)x0(λ)(n0)
and
(40) γ ¯ n := γ ¯ n ( λ ) = x n ( λ ) x n 1 ( λ ) β ¯ n 1 ( n 1 ) . (40) γ ¯ n := γ ¯ n ( λ ) = x n ( λ ) x n 1 ( λ ) β ¯ n 1 ( n 1 ) . {:(40) bar(gamma)_(n):= bar(gamma)_(n)(lambda)=||x_(n)(lambda)-x_(n-1)(lambda)|| bar(beta)_(n)^(-1)quad(n >= 1).:}\begin{equation*} \bar{\gamma}_{n}:=\bar{\gamma}_{n}(\lambda)=\left\|x_{n}(\lambda)-x_{n-1}(\lambda)\right\| \bar{\beta}_{n}^{-1} \quad(n \geq 1) . \tag{40} \end{equation*}(40)γ¯n:=γ¯n(λ)=xn(λ)xn1(λ)β¯n1(n1).
Proof. (i) By (21) and (30) we deduce 0 t 0 ( λ ) t 1 ( λ ) r 0 t 0 ( λ ) t 1 ( λ ) r 0 <= t_(0)(lambda) <= t_(1)(lambda) <= r^(**)0 \leq t_{0}(\lambda) \leq t_{1}(\lambda) \leq r^{*}0t0(λ)t1(λ)r. Let us assume 0 t k 1 ( λ ) t k ( λ ) r 0 t k 1 ( λ ) t k ( λ ) r 0 <= t_(k-1)(lambda) <= t_(k)(lambda) <= r^(**)0 \leq t_{k-1}(\lambda) \leq t_{k}(\lambda) \leq r^{*}0tk1(λ)tk(λ)r for k = 1 , 2 , , n k = 1 , 2 , , n k=1,2,dots,nk=1,2, \ldots, nk=1,2,,n. Then it follows from (30) and (31) that 0 t k ( λ ) t k + 1 ( λ ) 0 t k ( λ ) t k + 1 ( λ ) 0 <= t_(k)(lambda) <= t_(k+1)(lambda)0 \leq t_{k}(\lambda) \leq t_{k+1}(\lambda)0tk(λ)tk+1(λ). Hence, the sequence { t n ( λ ) } ( n 0 ) t n ( λ ) ( n 0 ) {t_(n)(lambda)}(n >= 0)\left\{t_{n}(\lambda)\right\}(n \geq 0){tn(λ)}(n0) is monotonically increasing. Moreover by (31) and the induction hypotheses we get in turn
t k + 1 ( λ ) t k ( λ ) + b 1 r + b 2 b ( r ) b 3 r ( t k ( λ ) t k 1 ( λ ) ) n + b 1 r + b 2 b ( r ) b 3 r r = T λ ( r ) r ( by ( 21 ) ) t k + 1 ( λ ) t k ( λ ) + b 1 r + b 2 b r b 3 r t k ( λ ) t k 1 ( λ ) n + b 1 r + b 2 b r b 3 r r = T λ r r (  by  ( 21 ) ) {:[t_(k+1)(lambda) <= t_(k)(lambda)+(b_(1)r^(**)+b_(2))/(b(r^(**))-b_(3)r^(**))(t_(k)(lambda)-t_(k-1)(lambda))],[ <= cdots <= n+(b_(1)r^(**)+b_(2))/(b(r^(**))-b_(3)r^(**))r^(**)=T_(lambda)(r^(**)) <= r^(**)quad(" by "(21))]:}\begin{aligned} t_{k+1}(\lambda) & \leq t_{k}(\lambda)+\frac{b_{1} r^{*}+b_{2}}{b\left(r^{*}\right)-b_{3} r^{*}}\left(t_{k}(\lambda)-t_{k-1}(\lambda)\right) \\ & \leq \cdots \leq n+\frac{b_{1} r^{*}+b_{2}}{b\left(r^{*}\right)-b_{3} r^{*}} r^{*}=T_{\lambda}\left(r^{*}\right) \leq r^{*} \quad(\text { by }(21)) \end{aligned}tk+1(λ)tk(λ)+b1r+b2b(r)b3r(tk(λ)tk1(λ))n+b1r+b2b(r)b3rr=Tλ(r)r( by (21))
That is the sequence { t n ( λ ) } ( n 0 ) t n ( λ ) ( n 0 ) {t_(n)(lambda)}(n >= 0)\left\{t_{n}(\lambda)\right\}(n \geq 0){tn(λ)}(n0) is also bounded above by r r r^(**)r^{*}r. Since for each fixed λ U ( λ 0 , S ) r λ U λ 0 , S r lambda in U(lambda_(0),S)r^(**)\lambda \in U\left(\lambda_{0}, S\right) r^{*}λU(λ0,S)r is the minimum nonnegative number satisfying (21) it follows that lim n t n ( λ ) = r lim n t n ( λ ) = r lim_(n rarr oo)t_(n)(lambda)=r^(**)\lim _{n \rightarrow \infty} t_{n}(\lambda)=r^{*}limntn(λ)=r.
(ii) By hypotheses (30), (23) and (22) it follows that x 1 ( λ ) U ( x 0 ( λ ) , r ) x 1 ( λ ) U x 0 ( λ ) , r x_(1)(lambda)in U(x_(0)(lambda),r^(**))x_{1}(\lambda) \in U\left(x_{0}(\lambda), r^{*}\right)x1(λ)U(x0(λ),r). Moreover from (26) we deduce g 1 ( x 0 ( λ ) , λ ) , g 2 ( x 0 ( λ ) , λ ) g 1 x 0 ( λ ) , λ , g 2 x 0 ( λ ) , λ g^(1)(x_(0)(lambda),lambda),g^(2)(x_(0)(lambda),lambda)g^{1}\left(x_{0}(\lambda), \lambda\right), g^{2}\left(x_{0}(\lambda), \lambda\right)g1(x0(λ),λ),g2(x0(λ),λ), g 3 ( x 0 ( λ ) , λ ) , g 4 ( x 0 ( λ ) , λ ) U ( x 0 ( λ ) , r ) g 3 x 0 ( λ ) , λ , g 4 x 0 ( λ ) , λ U x 0 ( λ ) , r g^(3)(x_(0)(lambda),lambda),g^(4)(x_(0)(lambda),lambda)in U(x_(0)(lambda),r^(**))g^{3}\left(x_{0}(\lambda), \lambda\right), g^{4}\left(x_{0}(\lambda), \lambda\right) \in U\left(x_{0}(\lambda), r^{*}\right)g3(x0(λ),λ),g4(x0(λ),λ)U(x0(λ),r). Let us assume x k + 1 ( λ ) x k + 1 ( λ ) x_(k+1)(lambda)x_{k+1}(\lambda)xk+1(λ), g 1 ( x k ( λ ) , λ ) , g 2 ( x k ( λ ) , λ ) , g 3 ( x k ( λ ) , λ ) , g 4 ( x k ( λ ) , λ ) U ( x 0 ( λ ) , r ) g 1 x k ( λ ) , λ , g 2 x k ( λ ) , λ , g 3 x k ( λ ) , λ , g 4 x k ( λ ) , λ U x 0 ( λ ) , r g^(1)(x_(k)(lambda),lambda),g^(2)(x_(k)(lambda),lambda),g^(3)(x_(k)(lambda),lambda),g^(4)(x_(k)(lambda),lambda)in U(x_(0)(lambda),r^(**))g^{1}\left(x_{k}(\lambda), \lambda\right), g^{2}\left(x_{k}(\lambda), \lambda\right), g^{3}\left(x_{k}(\lambda), \lambda\right), g^{4}\left(x_{k}(\lambda), \lambda\right) \in U\left(x_{0}(\lambda), r^{*}\right)g1(xk(λ),λ),g2(xk(λ),λ),g3(xk(λ),λ),g4(xk(λ),λ)U(x0(λ),r) for k = 0 , 1 , 2 , , n k = 0 , 1 , 2 , , n k=0,1,2,dots,nk=0,1,2, \ldots, nk=0,1,2,,n, and that (36) is true for k = 1 , 2 , , n k = 1 , 2 , , n k=1,2,dots,nk=1,2, \ldots, nk=1,2,,n (since it is true for k = 0 k = 0 k=0k=0k=0 by (23) and (30)). Then from (9) and (26) we get
g 1 ( x k ( λ ) , λ ) x 0 ( λ ) g 1 ( x k ( λ ) , λ ) g 1 ( x 0 ( λ ) , λ ) + g 1 ( x 0 ( λ ) , λ ) x 0 ( λ ) a 4 x k ( λ ) x 0 ( λ ) + g 1 1 ( x 0 ( λ ) , λ ) x 0 ( λ ) r g 1 x k ( λ ) , λ x 0 ( λ ) g 1 x k ( λ ) , λ g 1 x 0 ( λ ) , λ + g 1 x 0 ( λ ) , λ x 0 ( λ ) a 4 x k ( λ ) x 0 ( λ ) + g 1 1 x 0 ( λ ) , λ x 0 ( λ ) r {:[||g^(1)(x_(k)(lambda),lambda)-x_(0)(lambda)|| <= ||g^(1)(x_(k)(lambda),lambda)-g^(1)(x_(0)(lambda),lambda)||+],[||g^(1)(x_(0)(lambda),lambda)-x_(0)(lambda)||],[ <= a_(4)||x_(k)(lambda)-x_(0)(lambda)||+],[||g_(1)^(1)(x_(0)(lambda),lambda)-x_(0)(lambda)|| <= r^(**)]:}\begin{aligned} \left\|g^{1}\left(x_{k}(\lambda), \lambda\right)-x_{0}(\lambda)\right\| \leq & \left\|g^{1}\left(x_{k}(\lambda), \lambda\right)-g^{1}\left(x_{0}(\lambda), \lambda\right)\right\|+ \\ & \left\|g^{1}\left(x_{0}(\lambda), \lambda\right)-x_{0}(\lambda)\right\| \\ & \leq a_{4}\left\|x_{k}(\lambda)-x_{0}(\lambda)\right\|+ \\ & \left\|g_{1}^{1}\left(x_{0}(\lambda), \lambda\right)-x_{0}(\lambda)\right\| \leq r^{*} \end{aligned}g1(xk(λ),λ)x0(λ)g1(xk(λ),λ)g1(x0(λ),λ)+g1(x0(λ),λ)x0(λ)a4xk(λ)x0(λ)+g11(x0(λ),λ)x0(λ)r
That is g 1 ( x n ( λ ) , λ ) U ( x 0 ( λ ) , r ) g 1 x n ( λ ) , λ U x 0 ( λ ) , r g^(1)(x_(n)(lambda),lambda)in U(x_(0)(lambda),r^(**))g^{1}\left(x_{n}(\lambda), \lambda\right) \in U\left(x_{0}(\lambda), r^{*}\right)g1(xn(λ),λ)U(x0(λ),r). Similarly we obtain g 2 ( x n ( λ ) , λ ) g 2 x n ( λ ) , λ g^(2)(x_(n)(lambda),lambda)g^{2}\left(x_{n}(\lambda), \lambda\right)g2(xn(λ),λ), g 3 ( x n ( λ ) , λ ) , g 4 ( x n ( λ ) , λ ) U ( x 0 ( λ ) , r ) g 3 x n ( λ ) , λ , g 4 x n ( λ ) , λ U x 0 ( λ ) , r g^(3)(x_(n)(lambda),lambda),g^(4)(x_(n)(lambda),lambda)in U(x_(0)(lambda),r^(**))g^{3}\left(x_{n}(\lambda), \lambda\right), g^{4}\left(x_{n}(\lambda), \lambda\right) \in U\left(x_{0}(\lambda), r^{*}\right)g3(xn(λ),λ),g4(xn(λ),λ)U(x0(λ),r). Using (6), (9), (10), (13), (16), (17), (19) and (20) we obtain
B P ( [ g 1 ( x k ( λ ) , λ ) , g 2 ( x k ( λ ) , λ ) ; F ] + [ g 3 ( x k ( λ ) , λ ) , g 4 ( x k ( λ ) , λ ) ; G ] [ g 1 ( x 0 ( λ ) , λ 0 ) , g 2 ( x 0 ( λ ) , λ 0 ) ; F ] g 3 ( x 0 ( λ ) , λ 0 ) g 4 ( x 0 ( λ ) , λ 0 ) ; G B P ( [ g 1 ( x k ( λ ) , λ ) ; g 2 ( x k ( λ ) , λ ) ; F ] [ g 1 ( x 0 ( λ ) , λ 0 ) , g 2 ( x 0 ( λ ) , λ 0 ) ; F ] ) + B P ( [ g 3 ( x k ( λ ) , λ ) , g 4 ( x k ( λ ) , λ ) ; G ] g 3 ( x 0 ( λ ) , λ 0 ) , g 4 ( x 0 ( λ ) , λ 0 ) ; G ) ] B P ( [ g 1 ( x k ( λ ) , λ ) , g 2 ( x k ( λ ) , λ ) ; F ] [ g 1 ( x 0 ( λ ) , λ ) , g 2 ( x 0 ( λ ) , λ ) ] + B P ( [ g 1 ( x 0 ( λ ) , λ ) , g 2 ( x 0 ( λ ) , λ ) ; F ] [ g 1 ( x 0 ( λ ) , λ 0 ) , g 2 ( x 0 ( λ ) , λ 0 ) ; F ] ) + B P ( [ g 3 ( x k ( λ ) , λ ) , g 4 ( x k ( λ ) , λ ) ; G ] [ g 3 ( x k ( λ ) , λ ) , g 4 ( x 0 ( λ ) , λ ) ] ) + B P ( [ g 3 ( x 0 ( λ ) , λ ) , g 4 ( x 0 ( λ ) , λ ) ; G ] [ g 3 ( x 0 ( λ ) , λ 0 ) , g 4 ( x 0 ( λ ) , λ 0 ) ; G ] ) a 1 ( a 4 + a 5 ) x k ( λ ) x 0 ( λ ) + a 14 λ λ 0 + a 8 ( a 11 + a 12 ) x k ( λ ) x 0 ( λ ) + a 15 λ λ 0 [ a 1 ( a 4 + a 5 ) + a 8 ( a 11 + a 12 ) ] r + ( a 14 + a 15 ) S < 1 by ( 25 ) . B P g 1 x k ( λ ) , λ , g 2 x k ( λ ) , λ ; F + g 3 x k ( λ ) , λ , g 4 x k ( λ ) , λ ; G g 1 x 0 ( λ ) , λ 0 , g 2 x 0 ( λ ) , λ 0 ; F g 3 x 0 ( λ ) , λ 0 g 4 x 0 ( λ ) , λ 0 ; G B P g 1 x k ( λ ) , λ ; g 2 x k ( λ ) , λ ; F g 1 x 0 ( λ ) , λ 0 , g 2 x 0 ( λ ) , λ 0 ; F + B P g 3 x k ( λ ) , λ , g 4 x k ( λ ) , λ ; G g 3 x 0 ( λ ) , λ 0 , g 4 x 0 ( λ ) , λ 0 ; G B P g 1 x k ( λ ) , λ , g 2 x k ( λ ) , λ ; F g 1 x 0 ( λ ) , λ , g 2 x 0 ( λ ) , λ + B P g 1 x 0 ( λ ) , λ , g 2 x 0 ( λ ) , λ ; F g 1 x 0 ( λ ) , λ 0 , g 2 x 0 ( λ ) , λ 0 ; F + B P g 3 x k ( λ ) , λ , g 4 x k ( λ ) , λ ; G g 3 x k ( λ ) , λ , g 4 x 0 ( λ ) , λ + B P g 3 x 0 ( λ ) , λ , g 4 x 0 ( λ ) , λ ; G g 3 x 0 ( λ ) , λ 0 , g 4 x 0 ( λ ) , λ 0 ; G a 1 a 4 + a 5 x k ( λ ) x 0 ( λ ) + a 14 λ λ 0 + a 8 a 11 + a 12 x k ( λ ) x 0 ( λ ) + a 15 λ λ 0 a 1 a 4 + a 5 + a 8 a 11 + a 12 r + a 14 + a 15 S < 1  by  ( 25 ) . {:[||BP([g^(1)(x_(k)(lambda),lambda),g^(2)(x_(k)(lambda),lambda);F]+:}],[quad[g^(3)(x_(k)(lambda),lambda),g^(4)(x_(k)(lambda),lambda);G]-],[quad[g^(1)(x_(0)(lambda),lambda_(0)),g^(2)(x_(0)(lambda),lambda_(0));F]-],[g^(3)(x_(0)(lambda),lambda_(0))g^(4)(x_(0)(lambda),lambda_(0));G||],[ <= ||BP([g^(1)(x_(k)(lambda),lambda);g^(2)(x_(k)(lambda),lambda);F]-:}],[{: quad[g^(1)(x_(0)(lambda),lambda_(0)),g^(2)(x_(0)(lambda),lambda_(0));F])||],[+||BP([g^(3)(x_(k)(lambda),lambda),g^(4)(x_(k)(lambda),lambda);G]-:}],[{: quadg^(3)(x_(0)(lambda),lambda_(0)),g^(4)(x_(0)(lambda),lambda_(0));G)]||],[ <= ||BP([g^(1)(x_(k)(lambda),lambda),g^(2)(x_(k)(lambda),lambda);F]-:}],[quad[g^(1)(x_(0)(lambda),lambda),g^(2)(x_(0)(lambda),lambda)]||],[+||BP([g^(1)(x_(0)(lambda),lambda),g^(2)(x_(0)(lambda),lambda);F]-:}],[{: quad[g^(1)(x_(0)(lambda),lambda_(0)),g^(2)(x_(0)(lambda),lambda_(0));F])||],[+||BP([g^(3)(x_(k)(lambda),lambda),g^(4)(x_(k)(lambda),lambda);G]-:}],[{: quad[g^(3)(x_(k)(lambda),lambda),g^(4)(x_(0)(lambda),lambda)])||],[+||BP([g^(3)(x_(0)(lambda),lambda),g^(4)(x_(0)(lambda),lambda);G]-:}],[{: quad[g^(3)(x_(0)(lambda),lambda_(0)),g^(4)(x_(0)(lambda),lambda_(0));G])||],[ <= a_(1)(a_(4)+a_(5))||x_(k)(lambda)-x_(0)(lambda)||+a_(14)||lambda-lambda_(0)||],[quad+a_(8)(a_(11)+a_(12))||x_(k)(lambda)-x_(0)(lambda)||+a_(15)||lambda-lambda_(0)||],[ <= [a_(1)(a_(4)+a_(5))+a_(8)(a_(11)+a_(12))]r^(**)+(a_(14)+a_(15))S < 1" by "(25).]:}\begin{aligned} & \| B P\left(\left[g^{1}\left(x_{k}(\lambda), \lambda\right), g^{2}\left(x_{k}(\lambda), \lambda\right) ; F\right]+\right. \\ & \quad\left[g^{3}\left(x_{k}(\lambda), \lambda\right), g^{4}\left(x_{k}(\lambda), \lambda\right) ; G\right]- \\ & \quad\left[g^{1}\left(x_{0}(\lambda), \lambda_{0}\right), g^{2}\left(x_{0}(\lambda), \lambda_{0}\right) ; F\right]- \\ & g^{3}\left(x_{0}(\lambda), \lambda_{0}\right) g^{4}\left(x_{0}(\lambda), \lambda_{0}\right) ; G \| \\ & \leq \| B P\left(\left[g^{1}\left(x_{k}(\lambda), \lambda\right) ; g^{2}\left(x_{k}(\lambda), \lambda\right) ; F\right]-\right. \\ & \left.\quad\left[g^{1}\left(x_{0}(\lambda), \lambda_{0}\right), g^{2}\left(x_{0}(\lambda), \lambda_{0}\right) ; F\right]\right) \| \\ & +\| B P\left(\left[g^{3}\left(x_{k}(\lambda), \lambda\right), g^{4}\left(x_{k}(\lambda), \lambda\right) ; G\right]-\right. \\ & \left.\left.\quad g^{3}\left(x_{0}(\lambda), \lambda_{0}\right), g^{4}\left(x_{0}(\lambda), \lambda_{0}\right) ; G\right)\right] \| \\ & \leq \| B P\left(\left[g^{1}\left(x_{k}(\lambda), \lambda\right), g^{2}\left(x_{k}(\lambda), \lambda\right) ; F\right]-\right. \\ & \quad\left[g^{1}\left(x_{0}(\lambda), \lambda\right), g^{2}\left(x_{0}(\lambda), \lambda\right)\right] \| \\ & +\| B P\left(\left[g^{1}\left(x_{0}(\lambda), \lambda\right), g^{2}\left(x_{0}(\lambda), \lambda\right) ; F\right]-\right. \\ & \left.\quad\left[g^{1}\left(x_{0}(\lambda), \lambda_{0}\right), g^{2}\left(x_{0}(\lambda), \lambda_{0}\right) ; F\right]\right) \| \\ & +\| B P\left(\left[g^{3}\left(x_{k}(\lambda), \lambda\right), g^{4}\left(x_{k}(\lambda), \lambda\right) ; G\right]-\right. \\ & \left.\quad\left[g^{3}\left(x_{k}(\lambda), \lambda\right), g^{4}\left(x_{0}(\lambda), \lambda\right)\right]\right) \| \\ & +\| B P\left(\left[g^{3}\left(x_{0}(\lambda), \lambda\right), g^{4}\left(x_{0}(\lambda), \lambda\right) ; G\right]-\right. \\ & \left.\quad\left[g^{3}\left(x_{0}(\lambda), \lambda_{0}\right), g^{4}\left(x_{0}(\lambda), \lambda_{0}\right) ; G\right]\right) \| \\ & \leq a_{1}\left(a_{4}+a_{5}\right)\left\|x_{k}(\lambda)-x_{0}(\lambda)\right\|+a_{14}\left\|\lambda-\lambda_{0}\right\| \\ & \quad+a_{8}\left(a_{11}+a_{12}\right)\left\|x_{k}(\lambda)-x_{0}(\lambda)\right\|+a_{15}\left\|\lambda-\lambda_{0}\right\| \\ & \leq\left[a_{1}\left(a_{4}+a_{5}\right)+a_{8}\left(a_{11}+a_{12}\right)\right] r^{*}+\left(a_{14}+a_{15}\right) S<1 \text { by }(25) . \end{aligned}BP([g1(xk(λ),λ),g2(xk(λ),λ);F]+[g3(xk(λ),λ),g4(xk(λ),λ);G][g1(x0(λ),λ0),g2(x0(λ),λ0);F]g3(x0(λ),λ0)g4(x0(λ),λ0);GBP([g1(xk(λ),λ);g2(xk(λ),λ);F][g1(x0(λ),λ0),g2(x0(λ),λ0);F])+BP([g3(xk(λ),λ),g4(xk(λ),λ);G]g3(x0(λ),λ0),g4(x0(λ),λ0);G)]BP([g1(xk(λ),λ),g2(xk(λ),λ);F][g1(x0(λ),λ),g2(x0(λ),λ)]+BP([g1(x0(λ),λ),g2(x0(λ),λ);F][g1(x0(λ),λ0),g2(x0(λ),λ0);F])+BP([g3(xk(λ),λ),g4(xk(λ),λ);G][g3(xk(λ),λ),g4(x0(λ),λ)])+BP([g3(x0(λ),λ),g4(x0(λ),λ);G][g3(x0(λ),λ0),g4(x0(λ),λ0);G])a1(a4+a5)xk(λ)x0(λ)+a14λλ0+a8(a11+a12)xk(λ)x0(λ)+a15λλ0[a1(a4+a5)+a8(a11+a12)]r+(a14+a15)S<1 by (25).
It follows from the Banach lemma on invertible operators [5] that A ( x k ( λ ) , λ ) A x k ( λ ) , λ A(x_(k)(lambda),lambda)A\left(x_{k}(\lambda), \lambda\right)A(xk(λ),λ) is invertible and
(41) A ( x k ( λ ) , λ ) 1 B 1 δ ¯ k δ k (41) A x k ( λ ) , λ 1 B 1 δ ¯ k δ k {:(41)||A(x_(k)(lambda),lambda)^(-1)B^(-1)|| <= bar(delta)_(k) <= delta_(k):}\begin{equation*} \left\|A\left(x_{k}(\lambda), \lambda\right)^{-1} B^{-1}\right\| \leq \bar{\delta}_{k} \leq \delta_{k} \tag{41} \end{equation*}(41)A(xk(λ),λ)1B1δ¯kδk
where
γ ¯ k = ( α ¯ k β ¯ k ) 1 and δ k = ( α k β k ) 1 ( k 0 ) . γ ¯ k = α ¯ k β ¯ k 1  and  δ k = α k β k 1 ( k 0 ) . bar(gamma)_(k)=( bar(alpha)_(k) bar(beta)_(k))^(-1)quad" and "quaddelta_(k)=(alpha_(k)beta_(k))^(-1)quad(k >= 0).\bar{\gamma}_{k}=\left(\bar{\alpha}_{k} \bar{\beta}_{k}\right)^{-1} \quad \text { and } \quad \delta_{k}=\left(\alpha_{k} \beta_{k}\right)^{-1} \quad(k \geq 0) .γ¯k=(α¯kβ¯k)1 and δk=(αkβk)1(k0).
Using (2) we obtain the approximation
(42) x k + 1 ( λ ) x k ( λ ) = ( A ( x k ( λ ) , λ ) 1 B 1 ) B { [ P F ( x k ( λ ) λ ) P F ( x k 1 ( λ ) , λ ) P [ g 1 ( x k ( λ ) , λ ) , g 2 ( x k ( λ ) , λ ) ; F ] ( x k ( λ ) x k 1 ( λ ) ) ] + [ Q F ( x k ( λ ) , λ ) Q F ( x k 1 ( λ ) , λ ) ] + [ A ( x k ( λ ) , λ ) ( z ( x k ( λ ) , λ ) ) A ( x k 1 ( λ ) , λ ) ( z ( x k 1 ( λ ) , λ ) ) ] + [ P G ( x k ( λ ) , λ ) P G ( x k 1 ( λ ) , λ ) P [ g 3 ( x k ( λ ) , λ ) , g 4 ( x k ( λ ) , λ ) ; G ] ( x k ( λ ) x k 1 ( λ ) ) ] + [ Q G ( x k ( λ ) , λ ) , G C ( x k 1 ( λ ) , λ ) ] } ( k 1 ) . (42) x k + 1 ( λ ) x k ( λ ) = A x k ( λ ) , λ 1 B 1 B P F x k ( λ ) λ P F x k 1 ( λ ) , λ P g 1 x k ( λ ) , λ , g 2 x k ( λ ) , λ ; F x k ( λ ) x k 1 ( λ ) + Q F x k ( λ ) , λ Q F x k 1 ( λ ) , λ + A x k ( λ ) , λ z x k ( λ ) , λ A x k 1 ( λ ) , λ z x k 1 ( λ ) , λ + P G x k ( λ ) , λ P G x k 1 ( λ ) , λ P g 3 x k ( λ ) , λ , g 4 x k ( λ ) , λ ; G x k ( λ ) x k 1 ( λ ) + Q G x k ( λ ) , λ , G C x k 1 ( λ ) , λ ( k 1 ) . {:(42){:[x_(k+1)(lambda)-x_(k)(lambda)=(A(x_(k)(lambda),lambda)^(-1)B^(-1))B{[PF(x_(k)(lambda)lambda)-:}],[PF(x_(k-1)(lambda),lambda)-P[g^(1)(x_(k)(lambda),lambda),g^(2)(x_(k)(lambda),lambda);F]],[{:(x_(k)(lambda)-x_(k-1)(lambda))]+[QF(x_(k)(lambda),lambda)-QF(x_(k-1)(lambda),lambda)]+],[[A(x_(k)(lambda),lambda)(z(x_(k)(lambda),lambda))-A(x_(k-1)(lambda),lambda)(z(x_(k-1)(lambda),lambda))]+],[[PG(x_(k)(lambda),lambda)-PG(x_(k-1)(lambda),lambda)-:}],[{:P[g^(3)(x_(k)(lambda),lambda),g^(4)(x_(k)(lambda),lambda);G](x_(k)(lambda)-x_(k-1)(lambda))]+],[{:[QG(x_(k)(lambda),lambda),GC(x_(k-1)(lambda),lambda)]}quad(k >= 1).]:}:}\begin{array}{r} x_{k+1}(\lambda)-x_{k}(\lambda)=\left(A\left(x_{k}(\lambda), \lambda\right)^{-1} B^{-1}\right) B\left\{\left[P F\left(x_{k}(\lambda) \lambda\right)-\right.\right. \\ P F\left(x_{k-1}(\lambda), \lambda\right)-P\left[g^{1}\left(x_{k}(\lambda), \lambda\right), g^{2}\left(x_{k}(\lambda), \lambda\right) ; F\right] \\ \left.\left(x_{k}(\lambda)-x_{k-1}(\lambda)\right)\right]+\left[Q F\left(x_{k}(\lambda), \lambda\right)-Q F\left(x_{k-1}(\lambda), \lambda\right)\right]+ \\ {\left[A\left(x_{k}(\lambda), \lambda\right)\left(z\left(x_{k}(\lambda), \lambda\right)\right)-A\left(x_{k-1}(\lambda), \lambda\right)\left(z\left(x_{k-1}(\lambda), \lambda\right)\right)\right]+} \\ {\left[P G\left(x_{k}(\lambda), \lambda\right)-P G\left(x_{k-1}(\lambda), \lambda\right)-\right.} \\ \left.P\left[g^{3}\left(x_{k}(\lambda), \lambda\right), g^{4}\left(x_{k}(\lambda), \lambda\right) ; G\right]\left(x_{k}(\lambda)-x_{k-1}(\lambda)\right)\right]+ \\ \left.\left[Q G\left(x_{k}(\lambda), \lambda\right), G C\left(x_{k-1}(\lambda), \lambda\right)\right]\right\} \quad(k \geq 1) . \tag{42} \end{array}(42)xk+1(λ)xk(λ)=(A(xk(λ),λ)1B1)B{[PF(xk(λ)λ)PF(xk1(λ),λ)P[g1(xk(λ),λ),g2(xk(λ),λ);F](xk(λ)xk1(λ))]+[QF(xk(λ),λ)QF(xk1(λ),λ)]+[A(xk(λ),λ)(z(xk(λ),λ))A(xk1(λ),λ)(z(xk1(λ),λ))]+[PG(xk(λ),λ)PG(xk1(λ),λ)P[g3(xk(λ),λ),g4(xk(λ),λ);G](xk(λ)xk1(λ))]+[QG(xk(λ),λ),GC(xk1(λ),λ)]}(k1).
By (6) we obtain
B ( P F ( x k ( λ ) , λ ) P F ( x k 1 ( λ ) , λ ) P [ g 1 ( x k ( λ ) , λ ) , g 2 ( x k ( λ ) ) ; F ] ) ( x k ( λ ) x k 1 ( λ ) ) B P ( [ x k 1 ( λ ) , x k ( λ ) ; F [ g 1 ( x k 1 ( λ ) , λ ) , g 2 ( x k 1 ( λ ) , λ ) ; F ] ) x k ( λ ) x k 1 ( λ ) a 1 ( x k 1 ( λ ) g 1 ( x k 1 ( λ ) , λ ) + x k ( λ ) g 2 ( x k 1 ( λ ) , λ ) ) (43) x k ( λ ) x k 1 ( λ ) . B P F x k ( λ ) , λ P F x k 1 ( λ ) , λ P g 1 x k ( λ ) , λ , g 2 x k ( λ ) ; F x k ( λ ) x k 1 ( λ ) B P x k 1 ( λ ) , x k ( λ ) ; F g 1 x k 1 ( λ ) , λ , g 2 x k 1 ( λ ) , λ ; F x k ( λ ) x k 1 ( λ ) a 1 x k 1 ( λ ) g 1 x k 1 ( λ ) , λ + x k ( λ ) g 2 x k 1 ( λ ) , λ (43) x k ( λ ) x k 1 ( λ ) . {:[||B(PF(x_(k)(lambda),lambda)-PF(x_(k-1)(lambda),lambda)-:}],[{: quad P[g^(1)(x_(k)(lambda),lambda),g^(2)(x_(k)(lambda));F])(x_(k)(lambda)-x_(k-1)(lambda))||],[ <= ||BP([x_(k-1)(lambda),x_(k)(lambda);F-:}],[{: quad[g^(1)(x_(k-1)(lambda),lambda),g^(2)(x_(k-1)(lambda),lambda);F])||||x_(k)(lambda)-x_(k-1)(lambda)||:}],[ <= a_(1)(||x_(k-1)(lambda)-g^(1)(x_(k-1)(lambda),lambda)||+||x_(k)(lambda)-g^(2)(x_(k-1)(lambda),lambda)||)],[(43)||x_(k)(lambda)-x_(k-1)(lambda)||.]:}\begin{align*} & \| B\left(P F\left(x_{k}(\lambda), \lambda\right)-P F\left(x_{k-1}(\lambda), \lambda\right)-\right. \\ & \left.\quad P\left[g^{1}\left(x_{k}(\lambda), \lambda\right), g^{2}\left(x_{k}(\lambda)\right) ; F\right]\right)\left(x_{k}(\lambda)-x_{k-1}(\lambda)\right) \| \\ & \leq \| B P\left(\left[x_{k-1}(\lambda), x_{k}(\lambda) ; F-\right.\right. \\ & \left.\quad\left[g^{1}\left(x_{k-1}(\lambda), \lambda\right), g^{2}\left(x_{k-1}(\lambda), \lambda\right) ; F\right]\right)\left\|\left\|x_{k}(\lambda)-x_{k-1}(\lambda)\right\|\right. \\ & \leq a_{1}\left(\left\|x_{k-1}(\lambda)-g^{1}\left(x_{k-1}(\lambda), \lambda\right)\right\|+\left\|x_{k}(\lambda)-g^{2}\left(x_{k-1}(\lambda), \lambda\right)\right\|\right) \\ & \left\|x_{k}(\lambda)-x_{k-1}(\lambda)\right\| . \tag{43} \end{align*}B(PF(xk(λ),λ)PF(xk1(λ),λ)P[g1(xk(λ),λ),g2(xk(λ));F])(xk(λ)xk1(λ))BP([xk1(λ),xk(λ);F[g1(xk1(λ),λ),g2(xk1(λ),λ);F])xk(λ)xk1(λ)a1(xk1(λ)g1(xk1(λ),λ)+xk(λ)g2(xk1(λ),λ))(43)xk(λ)xk1(λ).
Moreover from (7), (8), (9) and (10) we obtain the estimates
x k 1 ( λ ) g 1 ( x k 1 ( λ ) , λ ) x k 1 ( λ ) x k ( λ ) + x k ( λ ) g 1 ( x k ( λ ) , λ ) g 1 ( x k ( λ ) , λ ) g 1 ( x k 1 ( λ ) , λ ) (44) x k ( λ ) x k 1 ( λ ) + a 2 x k + 1 ( λ ) x k ( λ ) + a 4 x k ( λ ) x k 1 ( λ ) x k 1 ( λ ) g 1 x k 1 ( λ ) , λ x k 1 ( λ ) x k ( λ ) + x k ( λ ) g 1 x k ( λ ) , λ g 1 x k ( λ ) , λ g 1 x k 1 ( λ ) , λ (44) x k ( λ ) x k 1 ( λ ) + a 2 x k + 1 ( λ ) x k ( λ ) + a 4 x k ( λ ) x k 1 ( λ ) {:[||x_(k-1)(lambda)-g^(1)(x_(k-1)(lambda),lambda)|| <= ||x_(k-1)(lambda)-x_(k)(lambda)||+||x_(k)(lambda)-g^(1)(x_(k)(lambda),lambda)||],[ <= ||g^(1)(x_(k)(lambda),lambda)-g^(1)(x_(k-1)(lambda),lambda)||],[(44) <= ||x_(k)(lambda)-x_(k-1)(lambda)||+a_(2)||x_(k+1)(lambda)-x_(k)(lambda)||+a_(4)||x_(k)(lambda)-x_(k-1)(lambda)||]:}\begin{gather*} \left\|x_{k-1}(\lambda)-g^{1}\left(x_{k-1}(\lambda), \lambda\right)\right\| \leq\left\|x_{k-1}(\lambda)-x_{k}(\lambda)\right\|+\left\|x_{k}(\lambda)-g^{1}\left(x_{k}(\lambda), \lambda\right)\right\| \\ \leq\left\|g^{1}\left(x_{k}(\lambda), \lambda\right)-g^{1}\left(x_{k-1}(\lambda), \lambda\right)\right\| \\ \leq\left\|x_{k}(\lambda)-x_{k-1}(\lambda)\right\|+a_{2}\left\|x_{k+1}(\lambda)-x_{k}(\lambda)\right\|+a_{4}\left\|x_{k}(\lambda)-x_{k-1}(\lambda)\right\| \tag{44} \end{gather*}xk1(λ)g1(xk1(λ),λ)xk1(λ)xk(λ)+xk(λ)g1(xk(λ),λ)g1(xk(λ),λ)g1(xk1(λ),λ)(44)xk(λ)xk1(λ)+a2xk+1(λ)xk(λ)+a4xk(λ)xk1(λ)
(45) x k ( λ ) g 2 ( x k 1 ( λ ) , λ ) x k ( λ ) g 2 ( x k ( λ ) , λ ) + g 2 ( x k ( λ ) , λ ) g 2 ( x k 1 ( λ ) , λ ) a 3 x k + 1 ( λ ) x k ( λ ) + a 5 x k ( λ ) x k 1 ( λ ) . (45) x k ( λ ) g 2 x k 1 ( λ ) , λ x k ( λ ) g 2 x k ( λ ) , λ + g 2 x k ( λ ) , λ g 2 x k 1 ( λ ) , λ a 3 x k + 1 ( λ ) x k ( λ ) + a 5 x k ( λ ) x k 1 ( λ ) . {:(45){:[||x_(k)(lambda)-g^(2)(x_(k-1)(lambda),lambda)|| <= ||x_(k)(lambda)-g^(2)(x_(k)(lambda),lambda)||+],[||g^(2)(x_(k)(lambda),lambda)-g^(2)(x_(k-1)(lambda),lambda)||],[ <= a_(3)||x_(k+1)(lambda)-x_(k)(lambda)||+a_(5)||x_(k)(lambda)-x_(k-1)(lambda)||.]:}:}\begin{array}{r} \left\|x_{k}(\lambda)-g^{2}\left(x_{k-1}(\lambda), \lambda\right)\right\| \leq\left\|x_{k}(\lambda)-g^{2}\left(x_{k}(\lambda), \lambda\right)\right\|+ \\ \left\|g^{2}\left(x_{k}(\lambda), \lambda\right)-g^{2}\left(x_{k-1}(\lambda), \lambda\right)\right\| \\ \leq a_{3}\left\|x_{k+1}(\lambda)-x_{k}(\lambda)\right\|+a_{5}\left\|x_{k}(\lambda)-x_{k-1}(\lambda)\right\| . \tag{45} \end{array}(45)xk(λ)g2(xk1(λ),λ)xk(λ)g2(xk(λ),λ)+g2(xk(λ),λ)g2(xk1(λ),λ)a3xk+1(λ)xk(λ)+a5xk(λ)xk1(λ).
Hence from (43), (44) and (45) we get
B P ( F ( x k ( λ ) , λ ) F ( x k 1 ( λ ) , λ ) [ g 1 ( x k ( λ ) , λ ) , g 2 ( x k ( λ ) , λ ) ; F ] ( x k ( λ ) x k 1 ( λ ) ) ) (46) a 1 ( 1 + a 4 + a 5 ) x k ( λ ) x k 1 ( λ ) 2 + a 1 ( a 2 + a 3 ) x k + 1 ( λ ) x k ( λ ) x k ( λ ) x k 1 ( λ ) . B P F x k ( λ ) , λ F x k 1 ( λ ) , λ g 1 x k ( λ ) , λ , g 2 x k ( λ ) , λ ; F x k ( λ ) x k 1 ( λ ) (46) a 1 1 + a 4 + a 5 x k ( λ ) x k 1 ( λ ) 2 + a 1 a 2 + a 3 x k + 1 ( λ ) x k ( λ ) x k ( λ ) x k 1 ( λ ) . {:[||BP(F(x_(k)(lambda),lambda)-F(x_(k-1)(lambda),lambda)-:}],[{: quad[g^(1)(x_(k)(lambda),lambda),g^(2)(x_(k)(lambda),lambda);F](x_(k)(lambda)-x_(k-1)(lambda)))],[(46) <= a_(1)(1+a_(4)+a_(5))||x_(k)(lambda)-x_(k-1)(lambda)||^(2)+],[quada_(1)(a_(2)+a_(3))||x_(k+1)(lambda)-x_(k)(lambda)||||x_(k)(lambda)-x_(k-1)(lambda)||.]:}\begin{align*} & \| B P\left(F\left(x_{k}(\lambda), \lambda\right)-F\left(x_{k-1}(\lambda), \lambda\right)-\right. \\ & \left.\quad\left[g^{1}\left(x_{k}(\lambda), \lambda\right), g^{2}\left(x_{k}(\lambda), \lambda\right) ; F\right]\left(x_{k}(\lambda)-x_{k-1}(\lambda)\right)\right) \\ & \leq a_{1}\left(1+a_{4}+a_{5}\right)\left\|x_{k}(\lambda)-x_{k-1}(\lambda)\right\|^{2}+ \tag{46}\\ & \quad a_{1}\left(a_{2}+a_{3}\right)\left\|x_{k+1}(\lambda)-x_{k}(\lambda)\right\|\left\|x_{k}(\lambda)-x_{k-1}(\lambda)\right\| . \end{align*}BP(F(xk(λ),λ)F(xk1(λ),λ)[g1(xk(λ),λ),g2(xk(λ),λ);F](xk(λ)xk1(λ)))(46)a1(1+a4+a5)xk(λ)xk1(λ)2+a1(a2+a3)xk+1(λ)xk(λ)xk(λ)xk1(λ).
As in (46) but using (13), (14), (15), (16) and (17) we obtain
B P ( G ( x k ( λ ) , λ ) G ( x k 1 ( λ ) , λ ) [ g 3 ( x k ( λ ) , λ ) , g 4 ( x k ( λ ) , λ ) ; G ] ( x k ( λ ) x k 1 ( λ ) ) (47) a 8 ( 1 + a 11 + a 12 ) x k ( λ ) x k 1 ( λ ) 2 + a 8 ( a 9 + a 10 ) x k + 1 ( λ ) x k ( λ ) x k ( λ ) x k 1 ( λ ) . B P G x k ( λ ) , λ G x k 1 ( λ ) , λ g 3 x k ( λ ) , λ , g 4 x k ( λ ) , λ ; G x k ( λ ) x k 1 ( λ ) (47) a 8 1 + a 11 + a 12 x k ( λ ) x k 1 ( λ ) 2 + a 8 a 9 + a 10 x k + 1 ( λ ) x k ( λ ) x k ( λ ) x k 1 ( λ ) . {:[||BP(G(x_(k)(lambda),lambda)-G(x_(k-1)(lambda),lambda)-:}],[quad[g^(3)(x_(k)(lambda),lambda),g^(4)(x_(k)(lambda),lambda);G](x_(k)(lambda)-x_(k-1)(lambda))||],[(47) <= a_(8)(1+a_(11)+a_(12))||x_(k)(lambda)-x_(k-1)(lambda)||^(2)+],[quada_(8)(a_(9)+a_(10))||x_(k+1)(lambda)-x_(k)(lambda)||||x_(k)(lambda)-x_(k-1)(lambda)||.]:}\begin{align*} & \| B P\left(G\left(x_{k}(\lambda), \lambda\right)-G\left(x_{k-1}(\lambda), \lambda\right)-\right. \\ & \quad\left[g^{3}\left(x_{k}(\lambda), \lambda\right), g^{4}\left(x_{k}(\lambda), \lambda\right) ; G\right]\left(x_{k}(\lambda)-x_{k-1}(\lambda)\right) \| \\ & \leq a_{8}\left(1+a_{11}+a_{12}\right)\left\|x_{k}(\lambda)-x_{k-1}(\lambda)\right\|^{2}+ \tag{47}\\ & \quad a_{8}\left(a_{9}+a_{10}\right)\left\|x_{k+1}(\lambda)-x_{k}(\lambda)\right\|\left\|x_{k}(\lambda)-x_{k-1}(\lambda)\right\| . \end{align*}BP(G(xk(λ),λ)G(xk1(λ),λ)[g3(xk(λ),λ),g4(xk(λ),λ);G](xk(λ)xk1(λ))(47)a8(1+a11+a12)xk(λ)xk1(λ)2+a8(a9+a10)xk+1(λ)xk(λ)xk(λ)xk1(λ).
Furthermore from (11), (12) and (18) we get respectively
(48) B ( Q F ( x k ( λ ) , λ ) Q F ( x k 1 ( λ ) , λ ) ) a 6 x k ( λ ) x k 1 ( λ ) , B ( A ( x k ( λ ) , λ ) ( z ( x k ( λ ) , λ ) ) A ( x k 1 ( λ ) , λ ) ( z ( x k 1 ( λ ) , λ ) ) (48) B Q F x k ( λ ) , λ Q F x k 1 ( λ ) , λ a 6 x k ( λ ) x k 1 ( λ ) , B A x k ( λ ) , λ z x k ( λ ) , λ A x k 1 ( λ ) , λ z x k 1 ( λ ) , λ {:[(48)||B(QF(x_(k)(lambda),lambda)-QF(x_(k-1)(lambda),lambda))|| <= a_(6)||x_(k)(lambda)-x_(k-1)(lambda)||","],[||B(A(x_(k)(lambda),lambda)(z(x_(k)(lambda),lambda))-A(x_(k-1)(lambda),lambda)(z(x_(k-1)(lambda),lambda))||:}]:}\begin{gather*} \left\|B\left(Q F\left(x_{k}(\lambda), \lambda\right)-Q F\left(x_{k-1}(\lambda), \lambda\right)\right)\right\| \leq a_{6}\left\|x_{k}(\lambda)-x_{k-1}(\lambda)\right\|, \tag{48}\\ \| B\left(A\left(x_{k}(\lambda), \lambda\right)\left(z\left(x_{k}(\lambda), \lambda\right)\right)-A\left(x_{k-1}(\lambda), \lambda\right)\left(z\left(x_{k-1}(\lambda), \lambda\right)\right) \|\right. \end{gather*}(48)B(QF(xk(λ),λ)QF(xk1(λ),λ))a6xk(λ)xk1(λ),B(A(xk(λ),λ)(z(xk(λ),λ))A(xk1(λ),λ)(z(xk1(λ),λ))
(49) a 7 x k ( λ ) x k 1 ( λ ) (49) a 7 x k ( λ ) x k 1 ( λ ) {:(49) <= a_(7)||x_(k)(lambda)-x_(k-1)(lambda)||:}\begin{equation*} \leq a_{7}\left\|x_{k}(\lambda)-x_{k-1}(\lambda)\right\| \tag{49} \end{equation*}(49)a7xk(λ)xk1(λ)
and
(50) B ( Q G ( x k ( λ ) , λ ) Q G ( x k 1 ( λ ) , λ ) ) a 13 x k ( λ ) x k 1 ( λ ) . (50) B Q G x k ( λ ) , λ Q G x k 1 ( λ ) , λ a 13 x k ( λ ) x k 1 ( λ ) . {:(50)||B(QG(x_(k)(lambda),lambda)-QG(x_(k-1)(lambda),lambda)) <= a_(13)||x_(k)(lambda)-x_(k-1)(lambda)||.:}\begin{equation*} \left\|B\left(Q G\left(x_{k}(\lambda), \lambda\right)-Q G\left(x_{k-1}(\lambda), \lambda\right)\right) \leq a_{13}\right\| x_{k}(\lambda)-x_{k-1}(\lambda) \| . \tag{50} \end{equation*}(50)B(QG(xk(λ),λ)QG(xk1(λ),λ))a13xk(λ)xk1(λ).
Finally from (31), (41), (42), (46)-(50) we deduce that estimates (35) and (36) are true. By (36) and part (i) it follows that for each fixed λ U ( λ 0 , S ) λ U λ 0 , S lambda in U(lambda_(0),S)\lambda \in U\left(\lambda_{0}, S\right)λU(λ0,S) iteration { x n ( λ ) } x n ( λ ) {x_(n)(lambda)}\left\{x_{n}(\lambda)\right\}{xn(λ)} ( n 0 n 0 n >= 0n \geq 0n0 ) is Cauchy in a Banach space E E EEE and as such it converges to some x ( λ ) U ( x 0 ( λ ) , r ) x ( λ ) U x 0 ( λ ) , r x^(**)(lambda)in U(x_(0)(lambda),r^(**))x^{*}(\lambda) \in U\left(x_{0}(\lambda), r^{*}\right)x(λ)U(x0(λ),r) (since U ( x 0 ( λ ) , r ) U x 0 ( λ ) , r U(x_(0)(lambda),r^(**))U\left(x_{0}(\lambda), r^{*}\right)U(x0(λ),r) is a closed set. Using hypothesis (c) and letting n n n rarr oon \rightarrow \inftyn in (2) we get F ( x ( λ ) , λ ) + G ( x ( λ ) , λ ) = 0 F x ( λ ) , λ + G x ( λ ) , λ = 0 F(x^(**)(lambda),lambda)+G(x^(**)(lambda),lambda)=0F\left(x^{*}(\lambda), \lambda\right)+G\left(x^{*}(\lambda), \lambda\right)=0F(x(λ),λ)+G(x(λ),λ)=0. That is x ( λ ) x ( λ ) x^(**)(lambda)x^{*}(\lambda)x(λ) is a solution of equation (1). Estimate (37) follows immediately from (36) by using standard majorization techniques [3], [5].
To show uniqueness when z = 0 z = 0 z=0z=0z=0, let us assume y ( λ ) U ( x 0 ( λ ) , R ) y ( λ ) U x 0 ( λ ) , R y^(**)(lambda)in U(x_(0)(lambda),R)y^{*}(\lambda) \in U\left(x_{0}(\lambda), R\right)y(λ)U(x0(λ),R) is a solution of equation (1). Then from (2) we get
x n + 1 ( λ ) y ( λ ) = x n ( λ ) y ( λ ) A ( x n ( λ ) , λ ) 1 [ ( F ( x n ( λ ) , λ ) x n + 1 ( λ ) y ( λ ) = x n ( λ ) y ( λ ) A x n ( λ ) , λ 1 F x n ( λ ) , λ x_(n+1)(lambda)-y^(**)(lambda)=x_(n)(lambda)-y^(**)(lambda)-A(x_(n)(lambda),lambda)^(-1)[(F(x_(n)(lambda),lambda):}x_{n+1}(\lambda)-y^{*}(\lambda)=x_{n}(\lambda)-y^{*}(\lambda)-A\left(x_{n}(\lambda), \lambda\right)^{-1}\left[\left(F\left(x_{n}(\lambda), \lambda\right)\right.\right.xn+1(λ)y(λ)=xn(λ)y(λ)A(xn(λ),λ)1[(F(xn(λ),λ)
(51) F ( y ( λ ) , λ ) ) + ( G ( x n ( λ ) , λ ) G ( y ( λ ) , λ ) ) ] . (51) F y ( λ ) , λ + G x n ( λ ) , λ G y ( λ ) , λ . {:(51){:-F(y^(**)(lambda),lambda))+(G(x_(n)(lambda),lambda)-G(y^(**)(lambda),lambda))].:}\begin{equation*} \left.\left.-F\left(y^{*}(\lambda), \lambda\right)\right)+\left(G\left(x_{n}(\lambda), \lambda\right)-G\left(y^{*}(\lambda), \lambda\right)\right)\right] . \tag{51} \end{equation*}(51)F(y(λ),λ))+(G(xn(λ),λ)G(y(λ),λ))].
Analyzing the right-hand side of (51) as in (42) with y ( λ ) y ( λ ) y^(**)(lambda)y^{*}(\lambda)y(λ) "replacing" x k ( λ ) x k ( λ ) x_(k)(lambda)x_{k}(\lambda)xk(λ) and x n ( λ ) x n ( λ ) x_(n)(lambda)x_{n}(\lambda)xn(λ) "replacing" x k 1 ( λ ) x k 1 ( λ ) x_(k-1)(lambda)x_{k-1}(\lambda)xk1(λ) we get
(52) x n + 1 ( λ ) y ( λ ) c x n ( λ ) y ( λ ) c n + 1 x 0 ( λ ) y ( λ ) c n + 1 R . (52) x n + 1 ( λ ) y ( λ ) c x n ( λ ) y ( λ ) c n + 1 x 0 ( λ ) y ( λ ) c n + 1 R . {:(52)||x_(n+1)(lambda)-y^(**)(lambda)|| <= c||x_(n)(lambda)-y^(**)(lambda)|| <= cdots <= c^(n+1)||x_(0)(lambda)-y^(**)(lambda)|| <= c^(n+1)R.:}\begin{equation*} \left\|x_{n+1}(\lambda)-y^{*}(\lambda)\right\| \leq c\left\|x_{n}(\lambda)-y^{*}(\lambda)\right\| \leq \cdots \leq c^{n+1}\left\|x_{0}(\lambda)-y^{*}(\lambda)\right\| \leq c^{n+1} R . \tag{52} \end{equation*}(52)xn+1(λ)y(λ)cxn(λ)y(λ)cn+1x0(λ)y(λ)cn+1R.
By letting n n n rarr oon \rightarrow \inftyn in (52) and using (27) we get lim n x n + 1 ( λ ) = y ( λ ) lim n x n + 1 ( λ ) = y ( λ ) lim_(n rarr oo)x_(n+1)(lambda)=y^(**)(lambda)\lim _{n \rightarrow \infty} x_{n+1}(\lambda)= y^{*}(\lambda)limnxn+1(λ)=y(λ) for each fixed λ U ( λ 0 , S ) λ U λ 0 , S lambda in U(lambda_(0),S)\lambda \in U\left(\lambda_{0}, S\right)λU(λ0,S). By the uniqueness of the limit of the sequence { x n ( λ ) } ( n 0 ) x n ( λ ) ( n 0 ) {x_(n)(lambda)}(n >= 0)\left\{x_{n}(\lambda)\right\}(n \geq 0){xn(λ)}(n0) we deduce x ( λ ) = y ( λ ) x ( λ ) = y ( λ ) x^(**)(lambda)=y^(**)(lambda)x^{*}(\lambda)=y^{*}(\lambda)x(λ)=y(λ).
That completes the proof of the Theorem.
Remarks. (1) Condition (6) implies that F ( x ( λ ) , λ ) F ( x ( λ ) , λ ) F(x(lambda),lambda)F(x(\lambda), \lambda)F(x(λ),λ) is differentiable on D D DDD [2], [3], whereas condition (13) does not necessarily imply the differentiability of G ( x ( λ ) , λ ) G ( x ( λ ) , λ ) G(x(lambda),lambda)G(x(\lambda), \lambda)G(x(λ),λ) on D D DDD.
(2) Inequalities (21), (23), (25), (26) and (27) will determine r , R r , R r^(**),Rr^{*}, Rr,R and S S SSS.
(3) If a 2 + a 4 1 , a 3 + a 5 1 , a 9 + a 11 1 a 2 + a 4 1 , a 3 + a 5 1 , a 9 + a 11 1 a_(2)+a_(4) <= 1,a_(3)+a_(5) <= 1,a_(9)+a_(11) <= 1a_{2}+a_{4} \leq 1, a_{3}+a_{5} \leq 1, a_{9}+a_{11} \leq 1a2+a41,a3+a51,a9+a111 and a 10 + a 12 1 a 10 + a 12 1 a_(10)+a_(12) <= 1a_{10}+a_{12} \leq 1a10+a121 for r 0 r 0 r^(**)!=0r^{*} \neq 0r0, condition (26) is satisfied. Indeed from (7) we have
g 1 ( x 0 ( λ ) , λ ) x 0 ( λ ) a 2 x 1 ( λ ) x 0 ( λ ) a 3 r g 1 x 0 ( λ ) , λ x 0 ( λ ) a 2 x 1 ( λ ) x 0 ( λ ) a 3 r ||g^(1)(x_(0)(lambda),lambda)-x_(0)(lambda)|| <= a_(2)||x_(1)(lambda)-x_(0)(lambda)|| <= a_(3)r^(**)\left\|g^{1}\left(x_{0}(\lambda), \lambda\right)-x_{0}(\lambda)\right\| \leq a_{2}\left\|x_{1}(\lambda)-x_{0}(\lambda)\right\| \leq a_{3} r^{*}g1(x0(λ),λ)x0(λ)a2x1(λ)x0(λ)a3r
and from (26) we must have
g 1 ( x 0 ( λ ) , λ ) x 0 ( λ ) ( 1 a 4 ) r g 1 x 0 ( λ ) , λ x 0 ( λ ) 1 a 4 r ||g^(1)(x_(0)(lambda),lambda)-x_(0)(lambda)|| <= (1-a_(4))r^(**)\left\|g^{1}\left(x_{0}(\lambda), \lambda\right)-x_{0}(\lambda)\right\| \leq\left(1-a_{4}\right) r^{*}g1(x0(λ),λ)x0(λ)(1a4)r
It suffices to show a 2 r r ( 1 a 4 ) a 2 r r 1 a 4 a_(2)r^(**) <= r^(**)(1-a_(4))a_{2} r^{*} \leq r^{*}\left(1-a_{4}\right)a2rr(1a4) or a 2 + a 4 1 ( r 0 ) a 2 + a 4 1 r 0 a_(2)+a_(4) <= 1(r^(**)!=0)a_{2}+a_{4} \leq 1\left(r^{*} \neq 0\right)a2+a41(r0) which is true by hypothesis. Similarly we can argue for the rest.

References

[1] Argyros, I.K. On the convergence of some projection methods with perturbations, J. Comp. Appl. Math. 36, (1991), 255-258.
[2] Argyros, I.K. On an application of the Zincenko method to the approximation of implicit functions, Z.A.A. 10, 3, (1991), 391396.
[3] Argyros, I.K. and Szidarovszky, F. The Theory and Application of Iteration Methods, C.R.C. Press, Inc., Boca Raton, Florida, 1993.
[4] Cătinaş, E. On some iterative methods for solving nonlinear equations, Revue d'analyse Numerique et de theorie de l'approximation, 23, 1, (1994), 47-53.
[5] Kantorovich, L.V. The method of successive approximation for functional equations, Acta Math. 71 (1939), 63-97.
[6] Pǎvǎloiu, I. Sur une generalisation de la methode de Steffensen, Revue d'analyse Numerique et de theorie de l'approximation, 21, 1, (1992), 59-65.
[7] Pǎvăloiu, I. Bilateral approximations for the solutions of scalar equations, Revue d'analyse numerique et de theorie de l'approximation, 23, 1, (1994), 95-100.
Received : July 1999.
Ioannis K. Argyros
Cameron University
Department of Mathematics
Lawton, OK 73505,
U.S.A.
e-mail : ioannisa@cameron.edu
2000

Related Posts