Approximation by spline functions of the solutions of a linear bilocal problem

Abstract

Authors

Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania

Keywords

Paper coordinates

C. Mustăţa, Approximation by spline functions of the solutions of a linear bilocal problem, Rev. Anal. Numér. Théor. Approx. 26 (1997) 1-2. 137-148.

PDF

About this paper

Journal

Revue d’Analyse Numer.Theor.Approx.

Publisher Name

Publishing Romanian Academy

Print ISSN

2457-6794

Online ISSN

2501-059X

google scholar link

[1] P. Blaga and G. Micula” Polynoníal natural spline of even degree, Stuclia Univ. “Babeç- Bolyai”, Mathematica 38, 2 (1993),3140.
[2] P. Blaga, R. Gorenflo and G. Micul4 Evar degree spline teclmiquefor numerical solution oJ delay differential equations, Froie Univorsität Borlin, Preprint No. A-15 (1996), Sorie A-Mathernatik.
[3] R. L. Btuden and T. Douglas Fafuæ, Nunøìcal Analysis, Third Blition, PWS-KENT Publiúing Company, Boston, 1985,
[4] G. Micuta, P. Blaga and M. Micula, On even degree polyomíal splinefunctions with applicatíons to numerical solution of diffirentiøl equations with retarded argument, Technischo Hochschule Darmstadt, Preprint No. 1771, Fachbereich Matheinatik (1995).

Paper (preprint) in HTML form

1997-Mustata-Approximation by spline functions of the solutions-Jnaat

APPROXIMATION BY SPLINE FUNCTIONS OF THE SOLUTION OF A BILOCAL LINEAR PROBLEM

COSTICĂ MUSTĂȚA

In the last years the theory of spline functions has become an important tool in the numerical solving of some problems for differential equations (see, for instance, [1], [2], [4]).
In this paper we shall define a space of spline functions of degree 5 which can be used to approximate the solution of a bilocal linear problem.
Let n 3 n 3 n >= 3n \geq 3n3 be a natural number and let
Δ n : = t 1 < a = t 0 < t 1 < < t n = b < t n + 1 = + Δ n : = t 1 < a = t 0 < t 1 < < t n = b < t n + 1 = + Delta_(n):-oo=t_(-1) < a=t_(0) < t_(1) < dots < t_(n)=b < t_(n+1)=+oo\Delta_{n}:-\infty=t_{-1}<a=t_{0}<t_{1}<\ldots<t_{n}=b<t_{n+1}=+\inftyΔn:=t1<a=t0<t1<<tn=b<tn+1=+
be a division of the real axis.
Denote by S 5 ( Δ n ) S 5 Δ n S_(5)(Delta_(n))S_{5}\left(\Delta_{n}\right)S5(Δn) the set of all functions s: R R R R RrarrR\mathbf{R} \rightarrow \mathbf{R}RR having the following properties:
1 0 s C 4 ( R ) 1 0 s C 4 ( R ) 1^(0)s inC^(4)(R)1^{0} s \in C^{4}(\mathrm{R})10sC4(R).
2 0 s | I k P 5 , I k = [ t k 1 , t k ) , k = 1 , 2 , , n 2 0 s I k P 5 , I k = t k 1 , t k , k = 1 , 2 , , n 2^(0)s|_(I_(k))inP_(5),I_(k)=[t_(k-1),t_(k)),k=1,2,dots,n\left.2^{0} s\right|_{I_{k}} \in \mathscr{P}_{5}, I_{k}=\left[t_{k-1}, t_{k}\right), k=1,2, \ldots, n20s|IkP5,Ik=[tk1,tk),k=1,2,,n.
3 0 s | I 0 P 3 , s | I n + 1 P 3 , I 0 = ( t 1 , t 0 ) , I n + 1 = [ t n , t n + 1 ) 3 0 s I 0 P 3 , s I n + 1 P 3 , I 0 = t 1 , t 0 , I n + 1 = t n , t n + 1 3^(0)s|_(I_(0))inP_(3),s|_(I_(n+1))inP_(3),I_(0)=(t_(-1),t_(0)),I_(n+1)=[t_(n),t_(n+1))\left.3^{0} s\right|_{I_{0}} \in \mathscr{P}_{3},\left.s\right|_{I_{n+1}} \in \mathscr{P}_{3}, I_{0}=\left(t_{-1}, t_{0}\right), I_{n+1}=\left[t_{n}, t_{n+1}\right)30s|I0P3,s|In+1P3,I0=(t1,t0),In+1=[tn,tn+1).
THEOREM 1. If s S 5 ( Δ n ) s S 5 Δ n s inS_(5)(Delta_(n))s \in S_{5}\left(\Delta_{n}\right)sS5(Δn), then
(1) s ( t ) = i = 0 3 A i t i + k = 0 n a k ( t t k ) + 5 , t R , (1) s ( t ) = i = 0 3 A i t i + k = 0 n a k t t k + 5 , t R , {:(1)s(t)=sum_(i=0)^(3)A_(i)t^(i)+sum_(k=0)^(n)a_(k)(t-t_(k))_(+)^(5)","quad t inR",":}\begin{equation*} s(t)=\sum_{i=0}^{3} A_{i} t^{i}+\sum_{k=0}^{n} a_{k}\left(t-t_{k}\right)_{+}^{5}, \quad t \in \mathrm{R}, \tag{1} \end{equation*}(1)s(t)=i=03Aiti+k=0nak(ttk)+5,tR,
where
(2) k = 0 n a k = 0 and k = 0 n a k t k = 0 (2) k = 0 n a k = 0  and  k = 0 n a k t k = 0 {:(2)sum_(k=0)^(n)a_(k)=0quad" and "quadsum_(k=0)^(n)a_(k)t_(k)=0:}\begin{equation*} \sum_{k=0}^{n} a_{k}=0 \quad \text { and } \quad \sum_{k=0}^{n} a_{k} t_{k}=0 \tag{2} \end{equation*}(2)k=0nak=0 and k=0naktk=0
Proof. Let s S 5 ( Δ n ) s S 5 Δ n s inS_(5)(Delta_(n))s \in S_{5}\left(\Delta_{n}\right)sS5(Δn). If t b t b t >= bt \geq btb, then s ( 4 ) ( t ) = 0 s ( 4 ) ( t ) = 0 s^((4))(t)=0s^{(4)}(t)=0s(4)(t)=0 so that
0 = 5 ! k = 0 n a k ( t t k ) + = 5 ! k = 0 n a k ( t t k ) + because 0 = 5 ! k = 0 n a k t t k + = 5 ! k = 0 n a k t t k + because  0=5!sum_(k=0)^(n)a_(k)(t-t_(k))_(+)=5!sum_(k=0)^(n)a_(k)(t-t_(k))_(+)"because "0=5!\sum_{k=0}^{n} a_{k}\left(t-t_{k}\right)_{+}=5!\sum_{k=0}^{n} a_{k}\left(t-t_{k}\right)_{+} \text {because }0=5!k=0nak(ttk)+=5!k=0nak(ttk)+because 
( t t k ) + = { 0 for t < t k t t k for t t k . t t k + = 0       for  t < t k t t k       for  t t k . (t-t_(k))_(+)={[0," for "t < t_(k)],[t-t_(k)," for "t >= t_(k)].:}\left(t-t_{k}\right)_{+}=\left\{\begin{array}{ll} 0 & \text { for } t<t_{k} \\ t-t_{k} & \text { for } t \geq t_{k} \end{array} .\right.(ttk)+={0 for t<tkttk for ttk.
Consequently k = 0 n a k = 0 k = 0 n a k = 0 sum_(k=0)^(n)a_(k)=0\sum_{k=0}^{n} a_{k}=0k=0nak=0 and k = 0 n a k t k = 0 k = 0 n a k t k = 0 sum_(k=0)^(n)a_(k)t_(k)=0\sum_{k=0}^{n} a_{k} t_{k}=0k=0naktk=0.
THEOREM 2. a) If f : R R f : R R f:RrarrRf: \mathbf{R} \rightarrow \mathbf{R}f:RR verifies the conditions
(3)
f ( a ) = α 1 , f ( b ) = β 1 , f ( t k ) = λ k , k = 0 , 1 , , n , f ( a ) = α 1 , f ( b ) = β 1 , f t k = λ k , k = 0 , 1 , , n , f(a)=alpha_(1),f(b)=beta_(1),f^('')(t_(k))=lambda_(k),k=0,1,dots,n,f(a)=\alpha_{1}, f(b)=\beta_{1}, f^{\prime \prime}\left(t_{k}\right)=\lambda_{k}, k=0,1, \ldots, n,f(a)=α1,f(b)=β1,f(tk)=λk,k=0,1,,n,
then there exists a unique spline function s f S 5 ( Δ n ) s f S 5 Δ n s_(f)inS_(5)(Delta_(n))s_{f} \in S_{5}\left(\Delta_{n}\right)sfS5(Δn) such that
(4) s f ( a ) = α 1 , s f ( b ) = β 1 , s f ( t k ) = λ k , k = 0 , 1 , , n . (4) s f ( a ) = α 1 , s f ( b ) = β 1 , s f t k = λ k , k = 0 , 1 , , n . {:(4)s_(f)(a)=alpha_(1)","s_(f)(b)=beta_(1)","s_(f)^('')(t_(k))=lambda_(k)","k=0","1","dots","n.:}\begin{equation*} s_{f}(a)=\alpha_{1}, s_{f}(b)=\beta_{1}, s_{f}^{\prime \prime}\left(t_{k}\right)=\lambda_{k}, k=0,1, \ldots, n . \tag{4} \end{equation*}(4)sf(a)=α1,sf(b)=β1,sf(tk)=λk,k=0,1,,n.
b) If h : R R h : R R h:RrarrRh: \mathbf{R} \rightarrow \mathbf{R}h:RR verifies the conditions
(5) h ( a ) = α 2 , h ( a ) = β 2 , h ( t k ) = μ k , k = 0 , 1 , , n , (5) h ( a ) = α 2 , h ( a ) = β 2 , h t k = μ k , k = 0 , 1 , , n , {:(5)h(a)=alpha_(2)","h^(')(a)=beta_(2)","h^('')(t_(k))=mu_(k)","k=0","1","dots","n",":}\begin{equation*} h(a)=\alpha_{2}, h^{\prime}(a)=\beta_{2}, h^{\prime \prime}\left(t_{k}\right)=\mu_{k}, k=0,1, \ldots, n, \tag{5} \end{equation*}(5)h(a)=α2,h(a)=β2,h(tk)=μk,k=0,1,,n,
then there exists a unique spline function s h S 5 ( Δ n ) s h S 5 Δ n s_(h)inS_(5)(Delta_(n))s_{h} \in S_{5}\left(\Delta_{n}\right)shS5(Δn) such that
(6) s h ( a ) = α 2 , s h ( a ) = β 2 , s h ( t k ) = μ k , k = 0 , 1 , , n . (6) s h ( a ) = α 2 , s h ( a ) = β 2 , s h t k = μ k , k = 0 , 1 , , n . {:(6)s_(h)(a)=alpha_(2)","s_(h)^(')(a)=beta_(2)","s_(h)^('')(t_(k))=mu_(k)","k=0","1","dots","n.:}\begin{equation*} s_{h}(a)=\alpha_{2}, s_{h}^{\prime}(a)=\beta_{2}, s_{h}^{\prime \prime}\left(t_{k}\right)=\mu_{k}, k=0,1, \ldots, n . \tag{6} \end{equation*}(6)sh(a)=α2,sh(a)=β2,sh(tk)=μk,k=0,1,,n.
Proof. a) Using the representation (1) and taking into account conditions (4), we obtain the system
A 0 + A 1 a + A 2 a 2 + A 3 a 3 = α 1 A 0 + A 1 b + A 2 b 2 + A 3 b 3 + k = 0 n 1 a k ( b t k ) 5 = β 1 (7) 2 A 2 + 6 A 3 t j + 20 k = 0 n a k ( t j t k ) + 3 = λ j ; j = 0 , n k = 0 n a k = 0 ; k = 0 n a k t k = 0 A 0 + A 1 a + A 2 a 2 + A 3 a 3 = α 1 A 0 + A 1 b + A 2 b 2 + A 3 b 3 + k = 0 n 1 a k b t k 5 = β 1 (7) 2 A 2 + 6 A 3 t j + 20 k = 0 n a k t j t k + 3 = λ j ; j = 0 , n ¯ k = 0 n a k = 0 ; k = 0 n a k t k = 0 {:[A_(0)+A_(1)a+A_(2)a^(2)+A_(3)a^(3)=alpha_(1)],[A_(0)+A_(1)b+A_(2)b^(2)+A_(3)b^(3)+sum_(k=0)^(n-1)a_(k)(b-t_(k))^(5)=beta_(1)],[(7)2A_(2)+6A_(3)t_(j)+20sum_(k=0)^(n)a_(k)(t_(j)-t_(k))_(+)^(3)=lambda_(j);j= bar(0,n)],[sum_(k=0)^(n)a_(k)=0;quadsum_(k=0)^(n)a_(k)t_(k)=0]:}\begin{gather*} A_{0}+A_{1} a+A_{2} a^{2}+A_{3} a^{3}=\alpha_{1} \\ A_{0}+A_{1} b+A_{2} b^{2}+A_{3} b^{3}+\sum_{k=0}^{n-1} a_{k}\left(b-t_{k}\right)^{5}=\beta_{1} \\ 2 A_{2}+6 A_{3} t_{j}+20 \sum_{k=0}^{n} a_{k}\left(t_{j}-t_{k}\right)_{+}^{3}=\lambda_{j} ; j=\overline{0, n} \tag{7}\\ \sum_{k=0}^{n} a_{k}=0 ; \quad \sum_{k=0}^{n} a_{k} t_{k}=0 \end{gather*}A0+A1a+A2a2+A3a3=α1A0+A1b+A2b2+A3b3+k=0n1ak(btk)5=β1(7)2A2+6A3tj+20k=0nak(tjtk)+3=λj;j=0,nk=0nak=0;k=0naktk=0
of n + 5 n + 5 n+5n+5n+5 equations with n + 5 n + 5 n+5n+5n+5 unknowns: A 0 , A 1 , A 2 , A 3 , a 0 , a 1 , , a n A 0 , A 1 , A 2 , A 3 , a 0 , a 1 , , a n A_(0),A_(1),A_(2),A_(3),a_(0),a_(1),dots,a_(n)A_{0}, A_{1}, A_{2}, A_{3}, a_{0}, a_{1}, \ldots, a_{n}A0,A1,A2,A3,a0,a1,,an.
The system (7) has a unique solution if and only if the associated homogeneous system (obtained for α 1 = β 1 = 0 , λ k = 0 , k = 0 , 1 , , n α 1 = β 1 = 0 , λ k = 0 , k = 0 , 1 , , n alpha_(1)=beta_(1)=0,lambda_(k)=0,k=0,1,dots,n\alpha_{1}=\beta_{1}=0, \lambda_{k}=0, k=0,1, \ldots, nα1=β1=0,λk=0,k=0,1,,n ) has only the trivial solution. Suppose that s S 5 ( Δ n ) s S 5 Δ n s inS_(5)(Delta_(n))s \in S_{5}\left(\Delta_{n}\right)sS5(Δn) verifies the homogeneous conditions (4) (i.e., α 1 = β 1 = 0 , λ k = 0 , k = 0 , 1 , , n ) α 1 = β 1 = 0 , λ k = 0 , k = 0 , 1 , , n {:alpha_(1)=beta_(1)=0,lambda_(k)^('')=0,k=0,1,dots,n)\left.\alpha_{1}=\beta_{1}=0, \lambda_{k}^{\prime \prime}=0, k=0,1, \ldots, n\right)α1=β1=0,λk=0,k=0,1,,n). Then we have
a b [ s ( 4 ) ( t ) ] 2 d t = a b s ( 4 ) ( t ) ( s ( t ) ) d t = a b s ( 5 ) ( t ) s ( t ) = = k = 1 n t k 1 t k s ( 5 ) ( t ) s ( t ) d t = k = 1 n c k t k 1 t k s ( t ) d t = = k = 1 n c k [ s ( t k ) s ( t k 1 ) ] = 0 a b s ( 4 ) ( t ) 2 d t = a b s ( 4 ) ( t ) s ( t ) d t = a b s ( 5 ) ( t ) s ( t ) = = k = 1 n t k 1 t k s ( 5 ) ( t ) s ( t ) d t = k = 1 n c k t k 1 t k s ( t ) d t = = k = 1 n c k s t k s t k 1 = 0 {:[int_(a)^(b)[s^((4))(t)]^(2)dt=int_(a)^(b)s^((4))(t)*(s^(''')(t))^(')dt=-int_(a)^(b)s^((5))(t)*s^(''')(t)=],[=-sum_(k=1)^(n)int_(t_(k-1))^(t_(k))s^((5))(t)*s^(''')(t)dt=-sum_(k=1)^(n)c_(k)int_(t_(k-1))^(t_(k))s^(''')(t)dt=],[=-sum_(k=1)^(n)c_(k)[s^('')(t_(k))-s^('')(t_(k-1))]=0]:}\begin{gathered} \int_{a}^{b}\left[s^{(4)}(t)\right]^{2} \mathrm{~d} t=\int_{a}^{b} s^{(4)}(t) \cdot\left(s^{\prime \prime \prime}(t)\right)^{\prime} \mathrm{d} t=-\int_{a}^{b} s^{(5)}(t) \cdot s^{\prime \prime \prime}(t)= \\ =-\sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} s^{(5)}(t) \cdot s^{\prime \prime \prime}(t) \mathrm{d} t=-\sum_{k=1}^{n} c_{k} \int_{t_{k-1}}^{t_{k}} s^{\prime \prime \prime}(t) \mathrm{d} t= \\ =-\sum_{k=1}^{n} c_{k}\left[s^{\prime \prime}\left(t_{k}\right)-s^{\prime \prime}\left(t_{k-1}\right)\right]=0 \end{gathered}ab[s(4)(t)]2 dt=abs(4)(t)(s(t))dt=abs(5)(t)s(t)==k=1ntk1tks(5)(t)s(t)dt=k=1ncktk1tks(t)dt==k=1nck[s(tk)s(tk1)]=0
where c k = s ( 5 ) ( t ) | I k k = 1 , n c k = s ( 5 ) ( t ) I k k = 1 , n ¯ c_(k)=s^((5))(t)|_(I_(k)^('))k= bar(1,n)c_{k}=\left.s^{(5)}(t)\right|_{I_{k}^{\prime}} k=\overline{1, n}ck=s(5)(t)|Ikk=1,n.
It follows that s ( 4 ) = 0 s ( 4 ) = 0 s^((4))=0s^{(4)}=0s(4)=0, for all t [ a , b ] t [ a , b ] t in[a,b]t \in[a, b]t[a,b]. Since s P 3 s P 3 s inP_(3)s \in \mathscr{P}_{3}sP3 on I 0 I 0 I_(0)I_{0}I0 and on I n + 1 I n + 1 I_(n+1)I_{n+1}In+1 and s C 4 ( R ) s C 4 ( R ) s inC^(4)(R)s \in \mathbf{C}^{4}(\mathbf{R})sC4(R), it follows that s ( 4 ) ( t ) = 0 s ( 4 ) ( t ) = 0 s^((4))(t)=0s^{(4)}(t)=0s(4)(t)=0 for all t R t R t inRt \in \mathbf{R}tR, implying s P 1 s P 1 s^('')inP_(1)s^{\prime \prime} \in \mathscr{P}_{1}sP1. As s ( t k ) = 0 s t k = 0 s^('')(t_(k))=0s^{\prime \prime}\left(t_{k}\right)=0s(tk)=0, k = 0 , 1 , , n , ( n 3 ) k = 0 , 1 , , n , ( n 3 ) k=0,1,dots,n,(n >= 3)k=0,1, \ldots, n,(n \geq 3)k=0,1,,n,(n3) we conclude that s ( t ) = 0 s ( t ) = 0 s^('')(t)=0s^{\prime \prime}(t)=0s(t)=0 for all t R t R t inRt \in \mathbf{R}tR.
Finally, taking into account the equalities s ( a ) = s ( b ) = 0 s ( a ) = s ( b ) = 0 s(a)=s(b)=0s(a)=s(b)=0s(a)=s(b)=0, one obtains s ( t ) = 0 s ( t ) = 0 s(t)=0s(t)=0s(t)=0 for all t R t R t inRt \in \mathbf{R}tR, implying that all the coefficients in representation (1) are null. This shows that the homogeneous system associated to (7) has only the trivial solution.
Assertion b) can be proved similarly, supposing that the function s s sss given by (1) verifies conditions (6).
COROLLARY 3. There exist the systems of functions
S = { s 0 , s 1 , S 0 , S 1 , , S n } S 5 ( Δ n ) U = ( u 0 , u 1 , U 0 , U 1 , , U n ) S 5 ( Λ n ) S = s 0 , s 1 , S 0 , S 1 , , S n S 5 Δ n U = u 0 , u 1 , U 0 , U 1 , , U n S 5 Λ n {:[S={s_(0),s_(1),S_(0),S_(1),dots,S_(n)}subS_(5)(Delta_(n))],[U=(u_(0),u_(1),U_(0),U_(1),dots,U_(n))subS_(5)(Lambda_(n))]:}\begin{aligned} & \mathscr{S}=\left\{s_{0}, s_{1}, S_{0}, S_{1}, \ldots, S_{n}\right\} \subset S_{5}\left(\Delta_{n}\right) \\ & \mathscr{U}=\left(u_{0}, u_{1}, U_{0}, U_{1}, \ldots, U_{n}\right) \subset S_{5}\left(\Lambda_{n}\right) \end{aligned}S={s0,s1,S0,S1,,Sn}S5(Δn)U=(u0,u1,U0,U1,,Un)S5(Λn)
verifying the conditions
s 0 ( a ) = 1 , s 0 ( b ) = 0 , s 0 ( t k ) = 0 , k = 0 , n , s 1 ( a ) = 0 , s 1 ( b ) = 1 , s 1 ( t k ) = 0 , k = 0 , n , S k ( a ) = 0 , S k ( b ) = 0 , k = 0 , n ; S k ( t j ) = δ k j , k , j = 0 , n , u 0 ( a ) = 1 , u 0 ( a ) = 0 , u 0 ( t k ) = 0 , k = 0 , n , u 1 ( a ) = 0 , u 1 ( a ) = 1 , u 1 ( t k ) = 0 , k = 0 , n , U κ ( a ) = 0 , U k ( a ) = 0 , k = 0 , n ; U k ( t j ) = δ k j , k , j = 0 , n . s 0 ( a ) = 1 , s 0 ( b ) = 0 , s 0 t k = 0 , k = 0 , n ¯ , s 1 ( a ) = 0 , s 1 ( b ) = 1 , s 1 t k = 0 , k = 0 , n ¯ , S k ( a ) = 0 , S k ( b ) = 0 , k = 0 , n ¯ ; S k t j = δ k j , k , j = 0 , n ¯ , u 0 ( a ) = 1 , u 0 ( a ) = 0 , u 0 t k = 0 , k = 0 , n ¯ , u 1 ( a ) = 0 , u 1 ( a ) = 1 , u 1 t k = 0 , k = 0 , n ¯ , U κ ( a ) = 0 , U k ( a ) = 0 , k = 0 , n ¯ ; U k t j = δ k j , k , j = 0 , n ¯ . {:[s_(0)(a)=1","s_(0)(b)=0","s_(0)^('')(t_(k))=0","k= bar(0,n)","],[s_(1)(a)=0","s_(1)(b)=1","s_(1)^('')(t_(k))=0","k= bar(0,n)","],[S_(k)(a)=0","S_(k)(b)=0","k= bar(0,n);S_(k)^('')(t_(j))=delta_(kj)","k","j= bar(0,n)","],[u_(0)(a)=1","u_(0)^(')(a)=0","u_(0)^('')(t_(k))=0","k= bar(0,n)","],[u_(1)(a)=0","u_(1)^(')(a)=1","u_(1)^('')(t_(k))=0","k= bar(0,n)","],[U_(kappa)(a)=0","U_(k)^(')(a)=0","k= bar(0,n);U_(k)^('')(t_(j))=delta_(kj)","k","j= bar(0,n).]:}\begin{gathered} s_{0}(a)=1, s_{0}(b)=0, s_{0}^{\prime \prime}\left(t_{k}\right)=0, k=\overline{0, n}, \\ s_{1}(a)=0, s_{1}(b)=1, s_{1}^{\prime \prime}\left(t_{k}\right)=0, k=\overline{0, n}, \\ S_{k}(a)=0, S_{k}(b)=0, k=\overline{0, n} ; S_{k}^{\prime \prime}\left(t_{j}\right)=\delta_{k j}, k, j=\overline{0, n}, \\ u_{0}(a)=1, u_{0}^{\prime}(a)=0, u_{0}^{\prime \prime}\left(t_{k}\right)=0, k=\overline{0, n}, \\ u_{1}(a)=0, u_{1}^{\prime}(a)=1, u_{1}^{\prime \prime}\left(t_{k}\right)=0, k=\overline{0, n}, \\ U_{\kappa}(a)=0, U_{k}^{\prime}(a)=0, k=\overline{0, n} ; U_{k}^{\prime \prime}\left(t_{j}\right)=\delta_{k j}, k, j=\overline{0, n} . \end{gathered}s0(a)=1,s0(b)=0,s0(tk)=0,k=0,n,s1(a)=0,s1(b)=1,s1(tk)=0,k=0,n,Sk(a)=0,Sk(b)=0,k=0,n;Sk(tj)=δkj,k,j=0,n,u0(a)=1,u0(a)=0,u0(tk)=0,k=0,n,u1(a)=0,u1(a)=1,u1(tk)=0,k=0,n,Uκ(a)=0,Uk(a)=0,k=0,n;Uk(tj)=δkj,k,j=0,n.
If f , h : R R f , h : R R f,h:RrarrRf, h: \mathbf{R} \rightarrow \mathbf{R}f,h:RR verify the conditions of Theorem 2, then the functions s f s f s_(f)s_{f}sf and s h s h s_(h)s_{h}sh admit the representations
(8) s f ( t ) = s 0 ( t ) f ( a ) + s 1 ( t ) f ( b ) + k = 0 n S k ( t ) f ( t k ) , t R , (9) s h ( l ) = u 0 ( t ) h ( a ) + u 1 ( t ) h ( a ) + k = 0 n U k ( t ) h ( t k ) , t R . (8) s f ( t ) = s 0 ( t ) f ( a ) + s 1 ( t ) f ( b ) + k = 0 n S k ( t ) f t k , t R , (9) s h ( l ) = u 0 ( t ) h ( a ) + u 1 ( t ) h ( a ) + k = 0 n U k ( t ) h t k , t R . {:[(8)s_(f)(t)=s_(0)(t)*f(a)+s_(1)(t)*f(b)+sum_(k=0)^(n)S_(k)(t)*f^('')(t_(k))","quad t inR","],[(9)s_(h)(l)=u_(0)(t)*h(a)+u_(1)(t)*h^(')(a)+sum_(k=0)^(n)U_(k)(t)*h^('')(t_(k))","quad t inR.]:}\begin{align*} & s_{f}(t)=s_{0}(t) \cdot f(a)+s_{1}(t) \cdot f(b)+\sum_{k=0}^{n} S_{k}(t) \cdot f^{\prime \prime}\left(t_{k}\right), \quad t \in \mathbf{R}, \tag{8}\\ & s_{h}(l)=u_{0}(t) \cdot h(a)+u_{1}(t) \cdot h^{\prime}(a)+\sum_{k=0}^{n} U_{k}(t) \cdot h^{\prime \prime}\left(t_{k}\right), \quad t \in \mathbf{R} . \tag{9} \end{align*}(8)sf(t)=s0(t)f(a)+s1(t)f(b)+k=0nSk(t)f(tk),tR,(9)sh(l)=u0(t)h(a)+u1(t)h(a)+k=0nUk(t)h(tk),tR.
Remark 1. By Corollary 3 it follows that the set S 5 ( Δ n ) S 5 Δ n S_(5)(Delta_(n))S_{5}\left(\Delta_{n}\right)S5(Δn) is a (real) linear space of dimension n + 3 n + 3 n+3n+3n+3 and S S S\mathscr{S}S and U U U\mathscr{U}U are two bases in S 5 ( Δ n ) S 5 Δ n S_(5)(Delta_(n))S_{5}\left(\Delta_{n}\right)S5(Δn).
Some properties of the space S 5 ( Δ n ) S 5 Δ n S_(5)(Delta_(n))S_{5}\left(\Delta_{n}\right)S5(Δn) will be presented in what follows.
Let
(10) W 2 4 ( Δ n ) := { g : [ a , b ] R , g abs.cont.on I k , k = 1 , n and g ( 4 ) L 2 [ a , b ] } , (10) W 2 4 Δ n := g : [ a , b ] R , g  abs.cont.on  I k , k = 1 , n ¯  and  g ( 4 ) L 2 [ a , b ] , {:(10)W_(2)^(4)(Delta_(n)):={[g:[a","b]rarrR","g^(''')" abs.cont.on "I_(k)","k= bar(1,n)],[" and "g^((4))inL_(2)[a","b]]}",":}W_{2}^{4}\left(\Delta_{n}\right):=\left\{\begin{array}{c} g:[a, b] \rightarrow \mathbf{R}, g^{\prime \prime \prime} \text { abs.cont.on } I_{k}, k=\overline{1, n} \tag{10}\\ \text { and } g^{(4)} \in L_{2}[a, b] \end{array}\right\},(10)W24(Δn):={g:[a,b]R,g abs.cont.on Ik,k=1,n and g(4)L2[a,b]},
(11) W 2 , f 4 ( Δ n ) := { g W 2 4 ( Δ n ) : g ( t k ) = f ( t k ) , k = 0 , n } W 2 , f 4 Δ n := g W 2 4 Δ n : g t k = f t k , k = 0 , n ¯ quadW_(2,f)^(4)(Delta_(n)):={g inW_(2)^(4)(Delta_(n)):g^('')(t_(k))=f^('')(t_(k)),quad k= bar(0,n)}\quad W_{2, f}^{4}\left(\Delta_{n}\right):=\left\{g \in W_{2}^{4}\left(\Delta_{n}\right): g^{\prime \prime}\left(t_{k}\right)=f^{\prime \prime}\left(t_{k}\right), \quad k=\overline{0, n}\right\}W2,f4(Δn):={gW24(Δn):g(tk)=f(tk),k=0,n},
(12) W 2 , f , D 4 ( Δ n ) := { g W 2 , f 4 ( Δ n ) : g ( t 0 ) = f ( t 0 ) , g ( t n ) = f ( t n ) } W 2 , f , D 4 Δ n := g W 2 , f 4 Δ n : g t 0 = f t 0 , g t n = f t n quadW_(2,f,D)^(4)(Delta_(n)):={g inW_(2,f)^(4)(Delta_(n)):g(t_(0))=f(t_(0)),g(t_(n))=f(t_(n))}\quad W_{2, f, D}^{4}\left(\Delta_{n}\right):=\left\{g \in W_{2, f}^{4}\left(\Delta_{n}\right): g\left(t_{0}\right)=f\left(t_{0}\right), g\left(t_{n}\right)=f\left(t_{n}\right)\right\}W2,f,D4(Δn):={gW2,f4(Δn):g(t0)=f(t0),g(tn)=f(tn)},
(13) W 2 , h , C 4 ( Δ n ) := { g W 2 , h 4 ( Δ n ) : g ( t 0 ) = h ( t 0 ) , g ( t 0 ) = h ( t 0 ) } W 2 , h , C 4 Δ n := g W 2 , h 4 Δ n : g t 0 = h t 0 , g t 0 = h t 0 W_(2,h,C)^(4)(Delta_(n)):={g inW_(2,h)^(4)(Delta_(n)):g(t_(0))=h(t_(0)),g^(')(t_(0))=h^(')(t_(0))}W_{2, h, C}^{4}\left(\Delta_{n}\right):=\left\{g \in W_{2, h}^{4}\left(\Delta_{n}\right): g\left(t_{0}\right)=h\left(t_{0}\right), g^{\prime}\left(t_{0}\right)=h^{\prime}\left(t_{0}\right)\right\}W2,h,C4(Δn):={gW2,h4(Δn):g(t0)=h(t0),g(t0)=h(t0)}.

Then we have

THEOREM 4. a) If s S 5 ( Δ n ) W 2 , f , D 4 ( Δ n ) s S 5 Δ n W 2 , f , D 4 Δ n s inS_(5)(Delta_(n))nnW_(2,f,D)^(4)(Delta_(n))s \in S_{5}\left(\Delta_{n}\right) \cap W_{2, f, D}^{4}\left(\Delta_{n}\right)sS5(Δn)W2,f,D4(Δn), then
(14)
s ( 4 ) 2 g ( 4 ) 2 , for all g W 2 , f , D 4 ( Δ n ) . s ( 4 ) 2 g ( 4 ) 2 ,  for all  g W 2 , f , D 4 Δ n ||s^((4))||_(2) <= ||g^((4))||_(2)," for all "g inW_(2,f,D)^(4)(Delta_(n))". "\left\|s^{(4)}\right\|_{2} \leq\left\|g^{(4)}\right\|_{2}, \text { for all } g \in W_{2, f, D}^{4}\left(\Delta_{n}\right) \text {. }s(4)2g(4)2, for all gW2,f,D4(Δn)
b) If s S 5 ( Δ n ) W 2 , h , c 4 ( Δ n ) s S 5 Δ n W 2 , h , c 4 Δ n s inS_(5)(Delta_(n))nnW_(2,h,c)^(4)(Delta_(n))s \in S_{5}\left(\Delta_{n}\right) \cap W_{2, h, c}^{4}\left(\Delta_{n}\right)sS5(Δn)W2,h,c4(Δn), then
(15)
s ( 4 ) 2 g ( 4 ) 2 , for all g W 2 , h , C 4 ( Δ n ) s ( 4 ) 2 g ( 4 ) 2 ,  for all  g W 2 , h , C 4 Δ n ||s^((4))||_(2) <= ||g^((4))||_(2)," for all "g inW_(2,h,C)^(4)(Delta_(n))\left\|s^{(4)}\right\|_{2} \leq\left\|g^{(4)}\right\|_{2}, \text { for all } g \in W_{2, h, C}^{4}\left(\Delta_{n}\right)s(4)2g(4)2, for all gW2,h,C4(Δn)
Proof. We have
But
0 g ( 4 ) s ( 4 ) 2 2 = a b [ g ( 4 ) ( t ) s ( 4 ) ( t ) ] d t = = a b [ g ( 4 ) ( t ) ] 2 d t a b [ s ( 4 ) ( t ) ] 2 d t 2 a b s ( 4 ) ( t ) [ g ( 4 ) ( t ) s ( 4 ) ( t ) ] d t 0 g ( 4 ) s ( 4 ) 2 2 = a b g ( 4 ) ( t ) s ( 4 ) ( t ) d t = = a b g ( 4 ) ( t ) 2 d t a b s ( 4 ) ( t ) 2 d t 2 a b s ( 4 ) ( t ) g ( 4 ) ( t ) s ( 4 ) ( t ) d t {:[0 <= ||g^((4))-s^((4))||_(2)^(2)=int_(a)^(b)[g^((4))(t)-s^((4))(t)]dt=],[=int_(a)^(b)[g^((4))(t)]^(2)dt-int_(a)^(b)[s^((4))(t)]^(2)dt-2int_(a)^(b)s^((4))(t)[g^((4))(t)-s^((4))(t)]dt]:}\begin{gathered} 0 \leq\left\|g^{(4)}-s^{(4)}\right\|_{2}^{2}=\int_{a}^{b}\left[g^{(4)}(t)-s^{(4)}(t)\right] \mathrm{d} t= \\ =\int_{a}^{b}\left[g^{(4)}(t)\right]^{2} \mathrm{~d} t-\int_{a}^{b}\left[s^{(4)}(t)\right]^{2} \mathrm{~d} t-2 \int_{a}^{b} s^{(4)}(t)\left[g^{(4)}(t)-s^{(4)}(t)\right] \mathrm{d} t \end{gathered}0g(4)s(4)22=ab[g(4)(t)s(4)(t)]dt==ab[g(4)(t)]2 dtab[s(4)(t)]2 dt2abs(4)(t)[g(4)(t)s(4)(t)]dt
a b s ( 4 ) ( t ) [ g ( 4 ) ( t ) s ( 4 ) ( t ) ] d t = s ( 4 ) ( t ) [ g ( t ) s ( t ) ] | a b a b s ( 5 ) ( t ) [ g ( t ) s ( t ) ] d t = a b s ( 5 ) ( t ) [ g ( t ) s ( t ) ] d t = = k = 1 n t k 1 t k s ( 5 ) ( t ) [ g ( t ) s ( t ) ] d t = = k = 1 n C k [ g ( t k ) s ( t k ) ( g ( t k 1 ) s ( t k 1 ) ) ] = 0 a b s ( 4 ) ( t ) g ( 4 ) ( t ) s ( 4 ) ( t ) d t = s ( 4 ) ( t ) g ( t ) s ( t ) a b a b s ( 5 ) ( t ) g ( t ) s ( t ) d t = a b s ( 5 ) ( t ) g ( t ) s ( t ) d t = = k = 1 n t k 1 t k s ( 5 ) ( t ) g ( t ) s ( t ) d t = = k = 1 n C k g t k s t k g t k 1 s t k 1 = 0 {:[int_(a)^(b)s^((4))(t)[g^((4))(t)-s^((4))(t)]dt=s^((4))(t)[g^(''')(t)-s^(''')(t)]|_(a)^(b)-],[-int_(a)^(b)s^((5))(t)[g^(''')(t)-s^(''')(t)]dt=-int_(a)^(b)s^((5))(t)[g^(''')(t)-s^(''')(t)]dt=],[=-sum_(k=1)^(n)int_(t_(k-1))^(t_(k))s^((5))(t)[g^(''')(t)-s^(''')(t)]dt=],[=-sum_(k=1)^(n)C_(k)[g^('')(t_(k))-s^('')(t_(k))-(g^('')(t_(k-1))-s^('')(t_(k-1)))]=0]:}\begin{gathered} \int_{a}^{b} s^{(4)}(t)\left[g^{(4)}(t)-s^{(4)}(t)\right] \mathrm{d} t=\left.s^{(4)}(t)\left[g^{\prime \prime \prime}(t)-s^{\prime \prime \prime}(t)\right]\right|_{a} ^{b}- \\ -\int_{a}^{b} s^{(5)}(t)\left[g^{\prime \prime \prime}(t)-s^{\prime \prime \prime}(t)\right] \mathrm{d} t=-\int_{a}^{b} s^{(5)}(t)\left[g^{\prime \prime \prime}(t)-s^{\prime \prime \prime}(t)\right] \mathrm{d} t= \\ =-\sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} s^{(5)}(t)\left[g^{\prime \prime \prime}(t)-s^{\prime \prime \prime}(t)\right] \mathrm{d} t= \\ =-\sum_{k=1}^{n} C_{k}\left[g^{\prime \prime}\left(t_{k}\right)-s^{\prime \prime}\left(t_{k}\right)-\left(g^{\prime \prime}\left(t_{k-1}\right)-s^{\prime \prime}\left(t_{k-1}\right)\right)\right]=0 \end{gathered}abs(4)(t)[g(4)(t)s(4)(t)]dt=s(4)(t)[g(t)s(t)]|ababs(5)(t)[g(t)s(t)]dt=abs(5)(t)[g(t)s(t)]dt==k=1ntk1tks(5)(t)[g(t)s(t)]dt==k=1nCk[g(tk)s(tk)(g(tk1)s(tk1))]=0
where C k = s ( 5 ) ( t ) | I k , k = 1 , 2 , , n C k = s ( 5 ) ( t ) I k , k = 1 , 2 , , n C_(k)=s^((5))(t)|_(I_(k)),k=1,2,dots,nC_{k}=\left.s^{(5)}(t)\right|_{I_{k}}, k=1,2, \ldots, nCk=s(5)(t)|Ik,k=1,2,,n.
It follows g ( 4 ) 2 2 s ( 4 ) 2 2 0 g ( 4 ) 2 2 s ( 4 ) 2 2 0 ||g^((4))||_(2)^(2)-||s^((4))||_(2)^(2) >= 0\left\|g^{(4)}\right\|_{2}^{2}-\left\|s^{(4)}\right\|_{2}^{2} \geq 0g(4)22s(4)220, which is equivalent to (14).
Inequalities (15) can be proved by a similar argument.
THEOREM 5. a) If f W 2 4 ( Δ n ) f W 2 4 Δ n f inW_(2)^(4)(Delta_(n))f \in W_{2}^{4}\left(\Delta_{n}\right)fW24(Δn) and s f S 5 ( Δ n ) s f S 5 Δ n s_(f)inS_(5)(Delta_(n))s_{f} \in S_{5}\left(\Delta_{n}\right)sfS5(Δn) verify conditions (4) from Theorem 2, then
(16) s f ( 4 ) f ( 4 ) 2 s ( 4 ) f ( 4 ) 2 , for all s S 5 ( Δ n ) (16) s f ( 4 ) f ( 4 ) 2 s ( 4 ) f ( 4 ) 2 ,  for all  s S 5 Δ n {:(16)||s_(f)^((4))-f^((4))||_(2) <= ||s^((4))-f^((4))||_(2)","" for all "s inS_(5)(Delta_(n)):}\begin{equation*} \left\|s_{f}^{(4)}-f^{(4)}\right\|_{2} \leq\left\|s^{(4)}-f^{(4)}\right\|_{2}, \text { for all } s \in S_{5}\left(\Delta_{n}\right) \tag{16} \end{equation*}(16)sf(4)f(4)2s(4)f(4)2, for all sS5(Δn)
b) If h W 2 4 ( Δ n ) h W 2 4 Δ n h inW_(2)^(4)(Delta_(n))h \in W_{2}^{4}\left(\Delta_{n}\right)hW24(Δn) and s h S 5 ( Δ n ) s h S 5 Δ n s_(h)inS_(5)(Delta_(n))s_{h} \in S_{5}\left(\Delta_{n}\right)shS5(Δn) verify conditions (6) from Theorem 2, then
(17) s h ( 4 ) h ( 4 ) 2 s ( 4 ) h ( 4 ) 2 , for all s S 5 ( Δ n ) (17) s h ( 4 ) h ( 4 ) 2 s ( 4 ) h ( 4 ) 2 ,  for all  s S 5 Δ n {:(17)||s_(h)^((4))-h^((4))||_(2) <= ||s^((4))-h^((4))||_(2)","" for all "s inS_(5)(Delta_(n)):}\begin{equation*} \left\|s_{h}^{(4)}-h^{(4)}\right\|_{2} \leq\left\|s^{(4)}-h^{(4)}\right\|_{2}, \text { for all } s \in S_{5}\left(\Delta_{n}\right) \tag{17} \end{equation*}(17)sh(4)h(4)2s(4)h(4)2, for all sS5(Δn)
Proof. In order to prove (16), we use the identity
s ( 4 ) f ( 4 ) 2 2 = a b [ s ( 4 ) ( t ) s f ( 4 ) ( t ) ] 2 d t + a b [ s f ( 4 ) ( t ) f ( 4 ) ( t ) ] 2 d t + + 2 a b [ s ( 4 ) ( t ) s f ( 4 ) ( t ) ] [ s f ( 4 ) ( t ) f ( 4 ) ( t ) ] d t s ( 4 ) f ( 4 ) 2 2 = a b s ( 4 ) ( t ) s f ( 4 ) ( t ) 2 d t + a b s f ( 4 ) ( t ) f ( 4 ) ( t ) 2 d t + + 2 a b s ( 4 ) ( t ) s f ( 4 ) ( t ) s f ( 4 ) ( t ) f ( 4 ) ( t ) d t {:[||s^((4))-f^((4))||_(2)^(2)=int_(a)^(b)[s^((4))(t)-s_(f)^((4))(t)]^(2)dt+int_(a)^(b)[s_(f)^((4))(t)-f^((4))(t)]^(2)dt+],[+2int_(a)^(b)[s^((4))(t)-s_(f)^((4))(t)]*[s_(f)^((4))(t)-f^((4))(t)]dt]:}\begin{gathered} \left\|s^{(4)}-f^{(4)}\right\|_{2}^{2}=\int_{a}^{b}\left[s^{(4)}(t)-s_{f}^{(4)}(t)\right]^{2} \mathrm{~d} t+\int_{a}^{b}\left[s_{f}^{(4)}(t)-f^{(4)}(t)\right]^{2} \mathrm{~d} t+ \\ +2 \int_{a}^{b}\left[s^{(4)}(t)-s_{f}^{(4)}(t)\right] \cdot\left[s_{f}^{(4)}(t)-f^{(4)}(t)\right] \mathrm{d} t \end{gathered}s(4)f(4)22=ab[s(4)(t)sf(4)(t)]2 dt+ab[sf(4)(t)f(4)(t)]2 dt++2ab[s(4)(t)sf(4)(t)][sf(4)(t)f(4)(t)]dt
and prove that
T = a b [ s ( 4 ) ( t ) s f ( 4 ) ( t ) ] [ s f ( 4 ) ( t ) f ( 4 ) ( t ) ] d t = 0 T = a b s ( 4 ) ( t ) s f ( 4 ) ( t ) s f ( 4 ) ( t ) f ( 4 ) ( t ) d t = 0 T=int_(a)^(b)[s^((4))(t)-s_(f)^((4))(t)]*[s_(f)^((4))(t)-f^((4))(t)]dt=0T=\int_{a}^{b}\left[s^{(4)}(t)-s_{f}^{(4)}(t)\right] \cdot\left[s_{f}^{(4)}(t)-f^{(4)}(t)\right] \mathrm{d} t=0T=ab[s(4)(t)sf(4)(t)][sf(4)(t)f(4)(t)]dt=0
Indeed, integrating by parts, we find
T = [ s ( 4 ) ( t ) s f ( 4 ) ( t ) ] [ s f ( t ) f ( t ) ] ] a b a b [ s ( 5 ) ( t ) s f ( 5 ) ( t ) ] [ s f ( t ) f ( t ) ] d t = = k = 1 n c k ( s ) [ s k ( t k ) f ( t k ) ] [ s f ( t k 1 ) f ( t k 1 ) ] = 0 , T = s ( 4 ) ( t ) s f ( 4 ) ( t ) s f ( t ) f ( t ) a b a b s ( 5 ) ( t ) s f ( 5 ) ( t ) s f ( t ) f ( t ) d t = = k = 1 n c k ( s ) s k t k f t k s f t k 1 f t k 1 = 0 , {:[T=[s^((4))(t)-s_(f)^((4))(t)]*[s_(f)^(''')(t)-f^(''')(t)]]_(a)^(b)-],[-int_(a)^(b)[s^((5))(t)-s_(f)^((5))(t)]*[s_(f)^(''')(t)-f^(''')(t)]dt=],[=-sum_(k=1)^(n)c_(k)(s)[s_(k)^('')(t_(k))-f^('')(t_(k))]-[s_(f)^('')(t_(k-1))-f^('')(t_(k-1))]=0","]:}\begin{gathered} \left.T=\left[s^{(4)}(t)-s_{f}^{(4)}(t)\right] \cdot\left[s_{f}^{\prime \prime \prime}(t)-f^{\prime \prime \prime}(t)\right]\right]_{a}^{b}- \\ -\int_{a}^{b}\left[s^{(5)}(t)-s_{f}^{(5)}(t)\right] \cdot\left[s_{f}^{\prime \prime \prime}(t)-f^{\prime \prime \prime}(t)\right] \mathrm{d} t= \\ =-\sum_{k=1}^{n} c_{k}(s)\left[s_{k}^{\prime \prime}\left(t_{k}\right)-f^{\prime \prime}\left(t_{k}\right)\right]-\left[s_{f}^{\prime \prime}\left(t_{k-1}\right)-f^{\prime \prime}\left(t_{k-1}\right)\right]=0, \end{gathered}T=[s(4)(t)sf(4)(t)][sf(t)f(t)]]abab[s(5)(t)sf(5)(t)][sf(t)f(t)]dt==k=1nck(s)[sk(tk)f(tk)][sf(tk1)f(tk1)]=0,
where c k ( s ) = s ( 5 ) ( t ) s f ( 5 ) ( t ) , t I k k = 1 , n c k ( s ) = s ( 5 ) ( t ) s f ( 5 ) ( t ) , t I k k = 1 , n ¯ c_(k)(s)=s^((5))(t)-s_(f)^((5))(t),t inI_(k)k= bar(1,n)c_{k}(s)=s^{(5)}(t)-s_{f}^{(5)}(t), t \in I_{k} k=\overline{1, n}ck(s)=s(5)(t)sf(5)(t),tIkk=1,n. (We have used the fact that ( s ( 4 ) s f ( 4 ) ) ( a ) == ( s ( 4 ) s f ( 4 ) ) ( b ) = 0 s ( 4 ) s f ( 4 ) ( a ) == s ( 4 ) s f ( 4 ) ( b ) = 0 (s^((4))-s_(f)^((4)))(a)==(s^((4))-s_(f)^((4)))(b)=0\left(s^{(4)}-s_{f}^{(4)}\right)(a)= =\left(s^{(4)}-s_{f}^{(4)}\right)(b)=0(s(4)sf(4))(a)==(s(4)sf(4))(b)=0.)
Therefore,
(18) s ( 4 ) f ( 4 ) 2 2 = s ( 4 ) s f ( 4 ) 2 2 + s f ( 4 ) f ( 4 ) 2 2 , (18) s ( 4 ) f ( 4 ) 2 2 = s ( 4 ) s f ( 4 ) 2 2 + s f ( 4 ) f ( 4 ) 2 2 , {:(18)||s^((4))-f^((4))||_(2)^(2)=||s^((4))-s_(f)^((4))||_(2)^(2)+||s_(f)^((4))-f^((4))||_(2)^(2)",":}\begin{equation*} \left\|s^{(4)}-f^{(4)}\right\|_{2}^{2}=\left\|s^{(4)}-s_{f}^{(4)}\right\|_{2}^{2}+\left\|s_{f}^{(4)}-f^{(4)}\right\|_{2}^{2}, \tag{18} \end{equation*}(18)s(4)f(4)22=s(4)sf(4)22+sf(4)f(4)22,
implying that inequality (16) holds.
Similarly, in the identity
s ( 4 ) h ( 4 ) 2 2 = a b [ s ( 4 ) ( t ) s h ( 4 ) ( t ) ] 2 d t + a b [ s h ( 4 ) ( t ) h ( 4 ) ( t ) ] 2 d t + + 2 a b [ s ( 4 ) ( t ) s h ( 4 ) ( t ) ] [ s h ( 4 ) ( t ) h ( 4 ) ( t ) ] d t s ( 4 ) h ( 4 ) 2 2 = a b s ( 4 ) ( t ) s h ( 4 ) ( t ) 2 d t + a b s h ( 4 ) ( t ) h ( 4 ) ( t ) 2 d t + + 2 a b s ( 4 ) ( t ) s h ( 4 ) ( t ) s h ( 4 ) ( t ) h ( 4 ) ( t ) d t {:[||s^((4))-h^((4))||_(2)^(2)=int_(a)^(b)[s^((4))(t)-s_(h)^((4))(t)]^(2)dt+int_(a)^(b)[s_(h)^((4))(t)-h^((4))(t)]^(2)dt+],[+2int_(a)^(b)[s^((4))(t)-s_(h)^((4))(t)]*[s_(h)^((4))(t)-h^((4))(t)]dt]:}\begin{aligned} \left\|s^{(4)}-h^{(4)}\right\|_{2}^{2} & =\int_{a}^{b}\left[s^{(4)}(t)-s_{h}^{(4)}(t)\right]^{2} \mathrm{~d} t+\int_{a}^{b}\left[s_{h}^{(4)}(t)-h^{(4)}(t)\right]^{2} \mathrm{~d} t+ \\ & +2 \int_{a}^{b}\left[s^{(4)}(t)-s_{h}^{(4)}(t)\right] \cdot\left[s_{h}^{(4)}(t)-h^{(4)}(t)\right] \mathrm{d} t \end{aligned}s(4)h(4)22=ab[s(4)(t)sh(4)(t)]2 dt+ab[sh(4)(t)h(4)(t)]2 dt++2ab[s(4)(t)sh(4)(t)][sh(4)(t)h(4)(t)]dt
we have (integrating by parts)
Q = a b [ s ( 4 ) ( t ) s h ( 4 ) ( t ) ] [ s h ( 4 ) ( t ) h ( 4 ) ( t ) ] d t = 0 Q = a b s ( 4 ) ( t ) s h ( 4 ) ( t ) s h ( 4 ) ( t ) h ( 4 ) ( t ) d t = 0 Q=int_(a)^(b)[s^((4))(t)-s_(h)^((4))(t)]*[s_(h)^((4))(t)-h^((4))(t)]dt=0Q=\int_{a}^{b}\left[s^{(4)}(t)-s_{h}^{(4)}(t)\right] \cdot\left[s_{h}^{(4)}(t)-h^{(4)}(t)\right] \mathrm{d} t=0Q=ab[s(4)(t)sh(4)(t)][sh(4)(t)h(4)(t)]dt=0
implying that
( ) s ( 4 ) h ( 4 ) 2 2 = s ( 4 ) s h ( 4 ) 2 2 + s h ( 4 ) h ( 4 ) 2 2 s ( 4 ) h ( 4 ) 2 2 = s ( 4 ) s h ( 4 ) 2 2 + s h ( 4 ) h ( 4 ) 2 2 (^(**))quad||s^((4))-h^((4))||_(2)^(2)=||s^((4))-s_(h)^((4))||_(2)^(2)+||s_(h)^((4))-h^((4))||_(2)^(2)\left(^{*}\right) \quad\left\|s^{(4)}-h^{(4)}\right\|_{2}^{2}=\left\|s^{(4)}-s_{h}^{(4)}\right\|_{2}^{2}+\left\|s_{h}^{(4)}-h^{(4)}\right\|_{2}^{2}()s(4)h(4)22=s(4)sh(4)22+sh(4)h(4)22.
From this equality it follows (17).
COROLLARY 6. Iff, h W 2 4 ( Δ n ) h W 2 4 Δ n h inW_(2)^(4)(Delta_(n))h \in W_{2}^{4}\left(\Delta_{n}\right)hW24(Δn) and s p , s h S 5 ( Δ n ) s p , s h S 5 Δ n s_(p),s_(h)inS_(5)(Delta_(n))s_{p}, s_{h} \in S_{5}\left(\Delta_{n}\right)sp,shS5(Δn) verify conditions (4) and (6) from Theorem 2, then
(19) f ( 4 ) 2 2 = s f ( 4 ) 2 2 + f ( 4 ) s f ( 4 ) 2 2 , (20) h ( 4 ) 2 2 = s h ( 4 ) 2 2 + h ( 4 ) s h ( 4 ) 2 2 , (19) f ( 4 ) 2 2 = s f ( 4 ) 2 2 + f ( 4 ) s f ( 4 ) 2 2 , (20) h ( 4 ) 2 2 = s h ( 4 ) 2 2 + h ( 4 ) s h ( 4 ) 2 2 , {:[(19)||f^((4))||_(2)^(2)=||s_(f)^((4))||_(2)^(2)+||f^((4))-s_(f)^((4))||_(2)^(2)","],[(20)||h^((4))||_(2)^(2)=||s_(h)^((4))||_(2)^(2)+||h^((4))-s_(h)^((4))||_(2)^(2)","]:}\begin{align*} & \left\|f^{(4)}\right\|_{2}^{2}=\left\|s_{f}^{(4)}\right\|_{2}^{2}+\left\|f^{(4)}-s_{f}^{(4)}\right\|_{2}^{2}, \tag{19}\\ & \left\|h^{(4)}\right\|_{2}^{2}=\left\|s_{h}^{(4)}\right\|_{2}^{2}+\left\|h^{(4)}-s_{h}^{(4)}\right\|_{2}^{2}, \tag{20} \end{align*}(19)f(4)22=sf(4)22+f(4)sf(4)22,(20)h(4)22=sh(4)22+h(4)sh(4)22,
(29:मे ,760ig brom) s f ( 4 ) 2 f ( 4 ) 2 , (29:मे ,760ig brom) s f ( 4 ) 2 f ( 4 ) 2 , {:(29:मे ,760ig brom)||s_(f)^((4))||_(2) <= ||f^((4))||_(2)",":}\begin{equation*} \left\|s_{f}^{(4)}\right\|_{2} \leq\left\|f^{(4)}\right\|_{2}, \tag{29:मे ,760ig brom} \end{equation*}(29:मे ,760ig brom)sf(4)2f(4)2,
(21) s h ( 4 ) 2 h ( 4 ) 2 , (21) s h ( 4 ) 2 h ( 4 ) 2 , {:(21)||s_(h)^((4))||_(2) <= ||h^((4))||_(2)",":}\begin{equation*} \left\|s_{h}^{(4)}\right\|_{2} \leq\left\|h^{(4)}\right\|_{2}, \tag{21} \end{equation*}(21)sh(4)2h(4)2,
(22) f ( 4 ) s f ( 4 ) f ( 4 ) 2 , (22) f ( 4 ) s f ( 4 ) f ( 4 ) 2 , {:(22)||f^((4))-s_(f)^((4))|| <= ||f^((4))||_(2)",":}\begin{equation*} \left\|f^{(4)}-s_{f}^{(4)}\right\| \leq\left\|f^{(4)}\right\|_{2}, \tag{22} \end{equation*}(22)f(4)sf(4)f(4)2,
(24)
(23) h ( 4 ) s h ( 4 ) 2 h ( 4 ) 2 . (23) h ( 4 ) s h ( 4 ) 2 h ( 4 ) 2 . {:(23)||h^((4))-s_(h)^((4))||_(2) <= ||h^((4))||_(2).:}\begin{equation*} \left\|h^{(4)}-s_{h}^{(4)}\right\|_{2} \leq\left\|h^{(4)}\right\|_{2} . \tag{23} \end{equation*}(23)h(4)sh(4)2h(4)2.
Proof. Equalities (19) and (20) follow from (18) and (*) for s 0 s 0 s-=0s \equiv 0s0. The remaining inequalities follow from (19) and (20).
Application. Consider the bilocal linear problem
(D) y = p ( t ) y + q ( t ) , t [ a , b ] y = p ( t ) y + q ( t ) , t [ a , b ] y^('')=p(t)*y+q(t),t in[a,b]y^{\prime \prime}=p(t) \cdot y+q(t), t \in[a, b]y=p(t)y+q(t),t[a,b],
y ( a ) = α , y ( b ) = β y ( a ) = α , y ( b ) = β y(a)=alpha,y(b)=betay(a)=\alpha, y(b)=\betay(a)=α,y(b)=β.
If p , q p , q p,qp, qp,q are continuous functions on [ a , b ] [ a , b ] [a,b][a, b][a,b] and p ( t ) > 0 , t [ a , b ] p ( t ) > 0 , t [ a , b ] p(t) > 0,t in[a,b]p(t)>0, t \in[a, b]p(t)>0,t[a,b], then the problem ( D ) ( D ) (D)(D)(D) has a unique solution y y yyy (see [3], Theorem 10.1, p. 519).
Consider the Cauchy problems
( C 1 ) y = p ( t ) y + q ( t ) , t [ a , b ] C 1 y = p ( t ) y + q ( t ) , t [ a , b ] (C_(1))y^('')=p(t)y+q(t),t in[a,b]\left(C_{1}\right) y^{\prime \prime}=p(t) y+q(t), t \in[a, b](C1)y=p(t)y+q(t),t[a,b],
y ( a ) = α , y ( a ) = 0 y ( a ) = α , y ( a ) = 0 y(a)=alpha,y^(')(a)=0y(a)=\alpha, y^{\prime}(a)=0y(a)=α,y(a)=0,
( C 2 ) y = p ( t ) y , t [ a , b ] C 2 y = p ( t ) y , t [ a , b ] (C_(2))y^('')=p(t)y,t in[a,b]\left(C_{2}\right) y^{\prime \prime}=p(t) y, t \in[a, b](C2)y=p(t)y,t[a,b],
y ( a ) = 0 , y ( a ) = 1 y ( a ) = 0 , y ( a ) = 1 y(a)=0,y^(')(a)=1y(a)=0, y^{\prime}(a)=1y(a)=0,y(a)=1.
The Cauchy problems have unique solutions y 1 , y 2 y 1 , y 2 y_(1),y_(2)y_{1}, y_{2}y1,y2, respectively (see [3], Theorem 5.15, p. 263), and the function
(25) y ( t ) = y 1 ( t ) + β y 1 ( b ) y 2 ( b ) y 2 ( t ) with y 2 ( b ) 0 , t [ a , b ] , (25) y ( t ) = y 1 ( t ) + β y 1 ( b ) y 2 ( b ) y 2 ( t )  with  y 2 ( b ) 0 , t [ a , b ] , {:(25)y(t)=y_(1)(t)+(beta-y_(1)(b))/(y_(2)(b))y_(2)(t)" with "y_(2)(b)!=0","quad t in[a","b]",":}\begin{equation*} y(t)=y_{1}(t)+\frac{\beta-y_{1}(b)}{y_{2}(b)} y_{2}(t) \text { with } y_{2}(b) \neq 0, \quad t \in[a, b], \tag{25} \end{equation*}(25)y(t)=y1(t)+βy1(b)y2(b)y2(t) with y2(b)0,t[a,b],
is the solution of the problem ( D D DDD ) (see [3]).
Applying Theorem 2b) to the solutions y 1 , y 2 y 1 , y 2 y_(1),y_(2)y_{1}, y_{2}y1,y2 of the problems ( C 1 C 1 C_(1)C_{1}C1 ), ( C 2 C 2 C_(2)C_{2}C2 ), it follows that there exist the functions s y 1 , s y 2 S 5 ( Δ n ) s y 1 , s y 2 S 5 Δ n s_(y_(1)),s_(y_(2))inS_(5)(Delta_(n))s_{y_{1}}, s_{y_{2}} \in S_{5}\left(\Delta_{n}\right)sy1,sy2S5(Δn) such that
s y 1 ( a ) = α , s y 1 ( a ) = 0 , s y 1 ( t k ) = y 1 ( t k ) , k = 0 , n , (**) s y 2 ( a ) = 0 , s y 2 ( a ) = 1 , s y 2 ( t k ) = y 2 ( t k ) , k = 0 , n . s y 1 ( a ) = α , s y 1 ( a ) = 0 , s y 1 t k = y 1 t k , k = 0 , n ¯ , (**) s y 2 ( a ) = 0 , s y 2 ( a ) = 1 , s y 2 t k = y 2 t k , k = 0 , n ¯ . {:[s_(y_(1))(a)=alpha","quads_(y_(1))^(')(a)=0","quads_(y_(1))^('')(t_(k))=y_(1)^('')(t_(k))","quad k= bar(0,n)","],[(**)s_(y_(2))(a)=0","quads_(y_(2))^(')(a)=1","quads_(y_(2))^('')(t_(k))=y_(2)^('')(t_(k))","quad k= bar(0,n).]:}\begin{align*} & s_{y_{1}}(a)=\alpha, \quad s_{y_{1}}^{\prime}(a)=0, \quad s_{y_{1}}^{\prime \prime}\left(t_{k}\right)=y_{1}^{\prime \prime}\left(t_{k}\right), \quad k=\overline{0, n}, \\ & s_{y_{2}}(a)=0, \quad s_{y_{2}}^{\prime}(a)=1, \quad s_{y_{2}}^{\prime \prime}\left(t_{k}\right)=y_{2}^{\prime \prime}\left(t_{k}\right), \quad k=\overline{0, n} . \tag{**} \end{align*}sy1(a)=α,sy1(a)=0,sy1(tk)=y1(tk),k=0,n,(**)sy2(a)=0,sy2(a)=1,sy2(tk)=y2(tk),k=0,n.
We call the functions s y 1 , s y 2 s y 1 , s y 2 s_(y_(1)),s_(y_(2))s_{y_{1}}, s_{y_{2}}sy1,sy2 spline solutions in S 5 ( Δ n ) S 5 Δ n S_(5)(Delta_(n))S_{5}\left(\Delta_{n}\right)S5(Δn) of the problems ( C 1 ) C 1 (C_(1))\left(C_{1}\right)(C1), ( C 2 ) C 2 (C_(2))\left(C_{2}\right)(C2), and the function
(26) s y ( t ) = s y 1 ( t ) + β s y 1 ( b ) s y 2 ( b ) s y 2 ( t ) , s y 2 ( b ) 0 , t [ a , b ] , (26) s y ( t ) = s y 1 ( t ) + β s y 1 ( b ) s y 2 ( b ) s y 2 ( t ) , s y 2 ( b ) 0 , t [ a , b ] , {:(26)s_(y)(t)=s_(y_(1))(t)+(beta-s_(y_(1))(b))/(s_(y_(2))(b))s_(y_(2))(t)","s_(y_(2))(b)!=0","t in[a","b]",":}\begin{equation*} s_{y}(t)=s_{y_{1}}(t)+\frac{\beta-s_{y_{1}}(b)}{s_{y_{2}}(b)} s_{y_{2}}(t), s_{y_{2}}(b) \neq 0, t \in[a, b], \tag{26} \end{equation*}(26)sy(t)=sy1(t)+βsy1(b)sy2(b)sy2(t),sy2(b)0,t[a,b],
is called a spline solution in S 5 ( Δ n ) S 5 Δ n S_(5)(Delta_(n))S_{5}\left(\Delta_{n}\right)S5(Δn) of the problem ( D ) ( D ) (D)(D)(D).
THEOREM 7. Consider the problem
(C) y = p ( t ) y + q ( t ) , t [ a , b ] y ( a ) = α , y ( a ) = γ , (C) y = p ( t ) y + q ( t ) , t [ a , b ] y ( a ) = α , y ( a ) = γ , {:[(C)y^('')=p(t)y+q(t)","quad t in[a","b]],[y(a)=alpha","y^(')(a)=gamma","]:}\begin{gather*} y^{\prime \prime}=p(t) y+q(t), \quad t \in[a, b] \tag{C}\\ y(a)=\alpha, y^{\prime}(a)=\gamma, \end{gather*}(C)y=p(t)y+q(t),t[a,b]y(a)=α,y(a)=γ,
where p ( t ) > 0 , t [ a , b ] p ( t ) > 0 , t [ a , b ] p(t) > 0,t in[a,b]p(t)>0, t \in[a, b]p(t)>0,t[a,b] and p , q p , q p,qp, qp,q are continuous on [ a , b ] [ a , b ] [a,b][a, b][a,b].
If y W 2 4 ( n ) y W 2 4 n y inW_(2)^(4)(/_\_(n))y \in W_{2}^{4}\left(\triangle_{n}\right)yW24(n) is the exact solution of ( C ) ( C ) (C)(C)(C) and s y S 5 ( Δ n ) s y S 5 Δ n s_(y)inS_(5)(Delta_(n))s_{y} \in S_{5}\left(\Delta_{n}\right)syS5(Δn) is its spline solution (cf. Theorem 2b)), then we have
(27) y s 2 Δ n 3 / 2 y ( 4 ) 2 , (27) y s 2 Δ n 3 / 2 y ( 4 ) 2 , {:(27)||y^('')-s^('')||_(oo) <= sqrt2||Delta_(n)||^(3//2)*||y^((4))||_(2)",":}\begin{equation*} \left\|y^{\prime \prime}-s^{\prime \prime}\right\|_{\infty} \leq \sqrt{2}\left\|\Delta_{n}\right\|^{3 / 2} \cdot\left\|y^{(4)}\right\|_{2}, \tag{27} \end{equation*}(27)ys2Δn3/2y(4)2,
where Δ n = max { t k t k 1 , k = 1 , n } Δ n = max t k t k 1 , k = 1 , n ¯ ||Delta_(n)||=max{t_(k)-t_(k-1),k= bar(1,n)}\left\|\Delta_{n}\right\|=\max \left\{t_{k}-t_{k-1}, k=\overline{1, n}\right\}Δn=max{tktk1,k=1,n}
Proof. We have
y ( t i ) s y ( t i ) = 0 , i = 0 , n y t i s y t i = 0 , i = 0 , n ¯ y^('')(t_(i))-s^('')y(t_(i))=0,quad i= bar(0,n)y^{\prime \prime}\left(t_{i}\right)-s^{\prime \prime} y\left(t_{i}\right)=0, \quad i=\overline{0, n}y(ti)sy(ti)=0,i=0,n
so that, by Rolle's theorem, there exist t i ( 1 ) ( t i , t i + 1 ) , i = 0 , n 1 t i ( 1 ) t i , t i + 1 , i = 0 , n 1 ¯ t_(i)^((1))in(t_(i),t_(i+1)),i= bar(0,n-1)t_{i}^{(1)} \in\left(t_{i}, t_{i+1}\right), i=\overline{0, n-1}ti(1)(ti,ti+1),i=0,n1 such that
y ( t i ( 1 ) ) s y ( t i ( 1 ) ) = 0 , i = 0 , n 1 y t i ( 1 ) s y t i ( 1 ) = 0 , i = 0 , n 1 y^(''')(t_(i)^((1)))-s_(y)^(''')(t_(i)^((1)))=0,quad i=0,n-1y^{\prime \prime \prime}\left(t_{i}^{(1)}\right)-s_{y}^{\prime \prime \prime}\left(t_{i}^{(1)}\right)=0, \quad i=0, n-1y(ti(1))sy(ti(1))=0,i=0,n1
Applying again Rolle's theorem, it follows the existence of t i ( 2 ) ( t i ( 1 ) , t i + 1 ( 1 ) ) t i ( 2 ) t i ( 1 ) , t i + 1 ( 1 ) t_(i)^((2))in(t_(i)^((1)),t_(i+1)^((1)))t_{i}^{(2)} \in\left(t_{i}^{(1)}, t_{i+1}^{(1)}\right)ti(2)(ti(1),ti+1(1)), i = 0 , n 2 i = 0 , n 2 ¯ i= bar(0,n-2)i=\overline{0, n-2}i=0,n2 such that
y ( 4 ) ( t i ( 2 ) ) s y ( 4 ) ( t i ( 2 ) ) = 0 , i = 0 , n 2 . y ( 4 ) t i ( 2 ) s y ( 4 ) t i ( 2 ) = 0 , i = 0 , n 2 ¯ . y^((4))(t_(i)^((2)))-s_(y)^((4))(t_(i)^((2)))=0,i= bar(0,n-2).y^{(4)}\left(t_{i}^{(2)}\right)-s_{y}^{(4)}\left(t_{i}^{(2)}\right)=0, i=\overline{0, n-2} .y(4)(ti(2))sy(4)(ti(2))=0,i=0,n2.
The inequalities
| t i + 1 ( 1 ) t i ( 1 ) | 2 Δ n and | t i + 1 ( 2 ) t i ( 2 ) | 3 Δ n t i + 1 ( 1 ) t i ( 1 ) 2 Δ n  and  t i + 1 ( 2 ) t i ( 2 ) 3 Δ n |t_(i+1)^((1))-t_(i)^((1))| <= 2||Delta_(n)||" and "|t_(i+1)^((2))-t_(i)^((2))| <= 3||Delta_(n)||\left|t_{i+1}^{(1)}-t_{i}^{(1)}\right| \leq 2\left\|\Delta_{n}\right\| \text { and }\left|t_{i+1}^{(2)}-t_{i}^{(2)}\right| \leq 3\left\|\Delta_{n}\right\||ti+1(1)ti(1)|2Δn and |ti+1(2)ti(2)|3Δn
hold for i = 0 , n 2 i = 0 , n 2 i=0,n-2i=0, n-2i=0,n2 and i = 0 , n 3 i = 0 , n 3 ¯ i= bar(0,n-3)i=\overline{0, n-3}i=0,n3, respectively.
For every t [ a , b ] t [ a , b ] t in[a,b]t \in[a, b]t[a,b] there is an index i 0 { 0 , 1 , , n 1 } i 0 { 0 , 1 , , n 1 } i_(0)in{0,1,dots,n-1}i_{0} \in\{0,1, \ldots, n-1\}i0{0,1,,n1} such that | t t i 0 ( 1 ) | 2 Δ n t t i 0 ( 1 ) 2 Δ n |t-t_(i_(0))^((1))| <= 2||Delta_(n)||\left|t-t_{i_{0}}^{(1)}\right| \leq 2\left\|\Delta_{n}\right\||tti0(1)|2Δn so that, taking into account (24), we have
| y ( t ) s y ( t ) | = | t i 0 ( 1 ) t ( y ( 4 ) ( u ) s y ( 4 ) ( u ) ) d u | | t i 0 ( 1 ) t d u | 1 / 2 | t i 0 ( 1 ) ( 1 ) t [ y ( 4 ) ( u ) s y ( 4 ) ] 2 d u | 1 / 2 2 Δ n | a b [ y ( 4 ) ( u ) s y ( 4 ) ( u ) ] 2 d u | 1 / 2 , 2 Δ n 1 / 2 y ( 4 ) 2 . y ( t ) s y ( t ) = t i 0 ( 1 ) t y ( 4 ) ( u ) s y ( 4 ) ( u ) d u t i 0 ( 1 ) t d u 1 / 2 t i 0 ( 1 ) ( 1 ) t y ( 4 ) ( u ) s y ( 4 ) 2 d u 1 / 2 2 Δ n a b y ( 4 ) ( u ) s y ( 4 ) ( u ) 2 d u 1 / 2 , 2 Δ n 1 / 2 y ( 4 ) 2 . {:[|y^(''')(t)-s^(''')y(t)|=|int_(t_(i_(0))^((1)))^(t)(y^((4))(u)-s_(y)^((4))(u))du| <= ],[ <= |int_(t_(i_(0))^((1)))^(t)(d)u|^(1//2)*|int_(t_(i_(0)^((1)))^((1)))^(t)[y^((4))(u)-s_(y)^((4))]^(2)(d)u|^(1//2) <= ],[ <= sqrt(2||Delta_(n)||)*|int_(a)^(b)[y^((4))(u)-s_(y)^((4))(u)]^(2)(d)u|^(1//2)","],[ <= sqrt2*||Delta_(n)||^(1//2)*||y^((4))||_(2).]:}\begin{gathered} \left|y^{\prime \prime \prime}(t)-s^{\prime \prime \prime} y(t)\right|=\left|\int_{t_{i_{0}}^{(1)}}^{t}\left(y^{(4)}(u)-s_{y}^{(4)}(u)\right) \mathrm{d} u\right| \leq \\ \leq\left|\int_{t_{i_{0}}^{(1)}}^{t} \mathrm{~d} u\right|^{1 / 2} \cdot\left|\int_{t_{i_{0}^{(1)}}^{(1)}}^{t}\left[y^{(4)}(u)-s_{y}^{(4)}\right]^{2} \mathrm{~d} u\right|^{1 / 2} \leq \\ \leq \sqrt{2\left\|\Delta_{n}\right\|} \cdot\left|\int_{a}^{b}\left[y^{(4)}(u)-s_{y}^{(4)}(u)\right]^{2} \mathrm{~d} u\right|^{1 / 2}, \\ \leq \sqrt{2} \cdot\left\|\Delta_{n}\right\|^{1 / 2} \cdot\left\|y^{(4)}\right\|_{2} . \end{gathered}|y(t)sy(t)|=|ti0(1)t(y(4)(u)sy(4)(u))du||ti0(1)t du|1/2|ti0(1)(1)t[y(4)(u)sy(4)]2 du|1/22Δn|ab[y(4)(u)sy(4)(u)]2 du|1/2,2Δn1/2y(4)2.
Similarly, for every t [ a , b ] t [ a , b ] t in[a,b]t \in[a, b]t[a,b] there exist j 0 { 0 , 1 , , n 1 } j 0 { 0 , 1 , , n 1 } j_(0)in{0,1,dots,n-1}j_{0} \in\{0,1, \ldots, n-1\}j0{0,1,,n1} such that | t t j 0 ( 1 ) | Δ n t t j 0 ( 1 ) Δ n |t-t_(j_(0))^((1))| <= ||Delta_(n)||\left|t-t_{j_{0}}^{(1)}\right| \leq\left\|\Delta_{n}\right\||ttj0(1)|Δn, implying
| y ( t ) s y ( t ) | = | t s 0 ( 1 ) t [ y ( u ) s y ( u ) d u ] | y s y Δ n y ( t ) s y ( t ) = t s 0 ( 1 ) t y ( u ) s y ( u ) d u y s y Δ n {:[|y^('')(t)-s_(y)^('')(t)|=|int_(t_(s_(0))^((1)))^(t)[y^(''')(u)-s_(y)^(''')(u)du]| <= ],[ <= ||y^(''')-s_(y)^(''')||_(oo)*||Delta_(n)||]:}\begin{gathered} \left|y^{\prime \prime}(t)-s_{y}^{\prime \prime}(t)\right|=\left|\int_{t_{s_{0}}^{(1)}}^{t}\left[y^{\prime \prime \prime}(u)-s_{y}^{\prime \prime \prime}(u) \mathrm{d} u\right]\right| \leq \\ \leq\left\|y^{\prime \prime \prime}-s_{y}^{\prime \prime \prime}\right\|_{\infty} \cdot\left\|\Delta_{n}\right\| \end{gathered}|y(t)sy(t)|=|ts0(1)t[y(u)sy(u)du]|ysyΔn
It follows that inequality (27) holds.
COROLLARY 8. If y W 2 4 ( Δ n ) y W 2 4 Δ n y inW_(2)^(4)(Delta_(n))y \in W_{2}^{4}\left(\Delta_{n}\right)yW24(Δn) is the exact solution of the problem ( C C CCC ), then
(28) y s y 2 ( b a ) 2 Δ n 3 / 2 y ( 4 ) 2 . (28) y s y 2 ( b a ) 2 Δ n 3 / 2 y ( 4 ) 2 . {:(28)||y-s_(y)||_(oo) <= sqrt2(b-a)^(2)||Delta_(n)||^(3//2)*||y^((4))||_(2).:}\begin{equation*} \left\|y-s_{y}\right\|_{\infty} \leq \sqrt{2}(b-a)^{2}\left\|\Delta_{n}\right\|^{3 / 2} \cdot\left\|y^{(4)}\right\|_{2} . \tag{28} \end{equation*}(28)ysy2(ba)2Δn3/2y(4)2.
Proof. For every t [ a , b ] t [ a , b ] t in[a,b]t \in[a, b]t[a,b] we have
| y ( t ) s y ( t ) | = | a t ( y ( u ) s y ( u ) ) d u | ( b a ) y s y y ( t ) s y ( t ) = a t y ( u ) s y ( u ) d u ( b a ) y s y |y(t)-s_(y)(t)|=|int_(a)^(t)(y^(')(u)-s_(y)^(')(u))du| <= (b-a)*||y^(')-s_(y)^(')||_(oo)\left|y(t)-s_{y}(t)\right|=\left|\int_{a}^{t}\left(y^{\prime}(u)-s_{y}^{\prime}(u)\right) \mathrm{d} u\right| \leq(b-a) \cdot\left\|y^{\prime}-s_{y}^{\prime}\right\|_{\infty}|y(t)sy(t)|=|at(y(u)sy(u))du|(ba)ysy
and
| y ( t ) s y ( t ) | = | a t ( y ( u ) s y ( u ) ) d u | ( b a ) y s y . y ( t ) s y ( t ) = a t y ( u ) s y ( u ) d u ( b a ) y s y . |y^(')(t)-s_(y)^(')(t)|=|int_(a)^(t)(y^('')(u)-s_(y)^('')(u))du| <= (b-a)*||y^('')-s_(y)^('')||_(oo).\left|y^{\prime}(t)-s_{y}^{\prime}(t)\right|=\left|\int_{a}^{t}\left(y^{\prime \prime}(u)-s_{y}^{\prime \prime}(u)\right) \mathrm{d} u\right| \leq(b-a) \cdot\left\|y^{\prime \prime}-s_{y}^{\prime \prime}\right\|_{\infty} .|y(t)sy(t)|=|at(y(u)sy(u))du|(ba)ysy.
From these inequalities and from (20) we obtain (28).

Remark 2. From the proof of Corollary 8 it follows that the inequality
(29) y s y 2 ( b a ) Δ n 3 / 2 y ( 4 ) 2 (29) y s y 2 ( b a ) Δ n 3 / 2 y ( 4 ) 2 {:(29)∣y^(')-s_(y)^(')||_(oo) <= sqrt2(b-a)||Delta_(n)||^(3//2)*||y^((4))||_(2):}\begin{equation*} \mid y^{\prime}-s_{y}^{\prime}\left\|_{\infty} \leq \sqrt{2}(b-a)\right\| \Delta_{n}\left\|^{3 / 2} \cdot\right\| y^{(4)} \|_{2} \tag{29} \end{equation*}(29)ysy2(ba)Δn3/2y(4)2

holds, too.
The approximative determination of the values of the spline solution s y s y s_(y)s_{y}sy of the problem ( D D DDD ) on the nodes of the division Δ n Δ n Delta_(n)\Delta_{n}Δn
First observe that the exact solution y W 2 4 ( Δ n ) y W 2 4 Δ n y inW_(2)^(4)(Delta_(n))y \in W_{2}^{4}\left(\Delta_{n}\right)yW24(Δn) of the problem ( D D DDD ) and its spline solution s y S 5 ( Δ n ) s y S 5 Δ n s_(y)inS_(5)(Delta_(n))s_{y} \in S_{5}\left(\Delta_{n}\right)syS5(Δn) given by (26) verify
| y ( t ) s y ( t ) | = | y 1 ( t ) + β y 1 ( b ) y 2 ( b ) y 2 ( t ) s y 1 ( t ) β s y 1 ( b ) s y 2 ( b ) s y 2 ( t ) | | y 1 ( t ) s y 1 ( t ) | + | β y 1 ( b ) y 2 ( b ) y 2 ( t ) β s y 1 ( b ) s y 2 ( b ) s y 2 ( t ) | y ( t ) s y ( t ) = y 1 ( t ) + β y 1 ( b ) y 2 ( b ) y 2 ( t ) s y 1 ( t ) β s y 1 ( b ) s y 2 ( b ) s y 2 ( t ) y 1 ( t ) s y 1 ( t ) + β y 1 ( b ) y 2 ( b ) y 2 ( t ) β s y 1 ( b ) s y 2 ( b ) s y 2 ( t ) {:[|y(t)-s_(y)(t)|=|y_(1)(t)+(beta-y_(1)(b))/(y_(2)(b))y_(2)(t)-s_(y_(1))(t)-(beta-s_(y_(1))(b))/(s_(y_(2))(b))*s_(y_(2))(t)| <= ],[ <= |y_(1)(t)-s_(y_(1))(t)|+|(beta-y_(1)(b))/(y_(2)(b))y_(2)(t)-(beta-s_(y_(1))(b))/(s_(y_(2))(b))*s_(y_(2))(t)|]:}\begin{aligned} \left|y(t)-s_{y}(t)\right|= & \left|y_{1}(t)+\frac{\beta-y_{1}(b)}{y_{2}(b)} y_{2}(t)-s_{y_{1}}(t)-\frac{\beta-s_{y_{1}}(b)}{s_{y_{2}}(b)} \cdot s_{y_{2}}(t)\right| \leq \\ & \leq\left|y_{1}(t)-s_{y_{1}}(t)\right|+\left|\frac{\beta-y_{1}(b)}{y_{2}(b)} y_{2}(t)-\frac{\beta-s_{y_{1}}(b)}{s_{y_{2}}(b)} \cdot s_{y_{2}}(t)\right| \end{aligned}|y(t)sy(t)|=|y1(t)+βy1(b)y2(b)y2(t)sy1(t)βsy1(b)sy2(b)sy2(t)||y1(t)sy1(t)|+|βy1(b)y2(b)y2(t)βsy1(b)sy2(b)sy2(t)|
for every t [ a , b ] t [ a , b ] t in[a,b]t \in[a, b]t[a,b], where s y 1 s y 1 s_(y_(1))s_{y_{1}}sy1 and s y 2 s y 2 s_(y_(2))s_{y_{2}}sy2 are determined by the conditions (**).
Using (28), we obtain
β y 1 ( b ) y 2 ( b ) = β s y 1 ( b ) s y 2 ( b ) + O ( Δ n 3 / 2 ) , β y 1 ( b ) y 2 ( b ) = β s y 1 ( b ) s y 2 ( b ) + O Δ n 3 / 2 , (beta-y_(1)(b))/(y_(2)(b))=(beta-s_(y_(1))(b))/(s_(y_(2))(b))+O(||Delta_(n)||^(3//2)),\frac{\beta-y_{1}(b)}{y_{2}(b)}=\frac{\beta-s_{y_{1}}(b)}{s_{y_{2}}(b)}+O\left(\left\|\Delta_{n}\right\|^{3 / 2}\right),βy1(b)y2(b)=βsy1(b)sy2(b)+O(Δn3/2),
showing that
y ( t ) s y ( t ) = O ( Δ n 3 / 2 ) . y ( t ) s y ( t ) = O Δ n 3 / 2 . ||y(t)-s_(y)(t)||=O(||Delta_(n)||^(3//2)).\left\|y(t)-s_{y}(t)\right\|=O\left(\left\|\Delta_{n}\right\|^{3 / 2}\right) .y(t)sy(t)=O(Δn3/2).
a) The approximative determination of the solution s y 1 s y 1 s_(y_(1))s_{y_{1}}sy1 on the nodes of the division Δ n Δ n Delta_(n)\Delta_{n}Δn
Representation (9) yields
s y 1 ( t ) = u 0 ( t ) α + k = 0 n U k ( t ) y 1 ( t k ) = = u 0 ( t ) α + k = 0 n U k ( t ) [ p ( t k ) y 1 ( t k ) + q ( t k ) ] . s y 1 ( t ) = u 0 ( t ) α + k = 0 n U k ( t ) y 1 t k = = u 0 ( t ) α + k = 0 n U k ( t ) p t k y 1 t k + q t k . {:[s_(y_(1))(t)=u_(0)(t)*alpha+sum_(k=0)^(n)U_(k)(t)*y_(1)^('')(t_(k))=],[=u_(0)(t)*alpha+sum_(k=0)^(n)U_(k)(t)[p(t_(k))*y_(1)(t_(k))+q(t_(k))].]:}\begin{aligned} & s_{y_{1}}(t)=u_{0}(t) \cdot \alpha+\sum_{k=0}^{n} U_{k}(t) \cdot y_{1}^{\prime \prime}\left(t_{k}\right)= \\ = & u_{0}(t) \cdot \alpha+\sum_{k=0}^{n} U_{k}(t)\left[p\left(t_{k}\right) \cdot y_{1}\left(t_{k}\right)+q\left(t_{k}\right)\right] . \end{aligned}sy1(t)=u0(t)α+k=0nUk(t)y1(tk)==u0(t)α+k=0nUk(t)[p(tk)y1(tk)+q(tk)].
Letting
v i := s y i ( t i ) , i = 0 , n e i := y 1 ( t i ) s y 1 ( t i ) , i = 0 , n v i := s y i t i , i = 0 , n ¯ e i := y 1 t i s y 1 t i , i = 0 , n ¯ {:[v_(i):=s_(y_(i))(t_(i))","quad i= bar(0,n)],[e_(i):=y_(1)(t_(i))-s_(y_(1))(t_(i))","quad i= bar(0,n)]:}\begin{gathered} v_{i}:=s_{y_{i}}\left(t_{i}\right), \quad i=\overline{0, n} \\ e_{i}:=y_{1}\left(t_{i}\right)-s_{y_{1}}\left(t_{i}\right), \quad i=\overline{0, n} \end{gathered}vi:=syi(ti),i=0,nei:=y1(ti)sy1(ti),i=0,n
one obtains the system
s y 1 ( t i ) = u 0 ( t i ) α + k = 0 n U k ( t i ) [ p ( t k ) ( e k + v k ) + q ( t k ) ] = = u 0 ( t i ) α + k = 0 n U k ( t i ) [ p ( t k ) v k + q ( t k ) ] + o ( Δ n 3 / 2 ) , i = 0 , n s y 1 t i = u 0 t i α + k = 0 n U k t i p t k e k + v k + q t k = = u 0 t i α + k = 0 n U k t i p t k v k + q t k + o Δ n 3 / 2 , i = 0 , n ¯ {:[s_(y_(1))(t_(i))=u_(0)(t_(i))alpha+sum_(k=0)^(n)U_(k)(t_(i))[p(t_(k))(e_(k)+v_(k))+q(t_(k))]=],[=u_(0)(t_(i))alpha+sum_(k=0)^(n)U_(k)(t_(i))[p(t_(k))v_(k)+q(t_(k))]+o(||Delta_(n)||^(3//2))","],[i= bar(0,n)]:}\begin{aligned} s_{y_{1}}\left(t_{i}\right)= & u_{0}\left(t_{i}\right) \alpha+\sum_{k=0}^{n} U_{k}\left(t_{i}\right)\left[p\left(t_{k}\right)\left(e_{k}+v_{k}\right)+q\left(t_{k}\right)\right]= \\ & =u_{0}\left(t_{i}\right) \alpha+\sum_{k=0}^{n} U_{k}\left(t_{i}\right)\left[p\left(t_{k}\right) v_{k}+q\left(t_{k}\right)\right]+o\left(\left\|\Delta_{n}\right\|^{3 / 2}\right), \\ i & =\overline{0, n} \end{aligned}sy1(ti)=u0(ti)α+k=0nUk(ti)[p(tk)(ek+vk)+q(tk)]==u0(ti)α+k=0nUk(ti)[p(tk)vk+q(tk)]+o(Δn3/2),i=0,n
The approximative values of the spline solution s y 1 s y 1 s_(y_(1))s_{y_{1}}sy1 on the nodes of Δ n Δ n Delta_(n)\Delta_{n}Δn are the solutions ν κ ν κ nu_(kappa)\nu_{\kappa}νκ of the linear system
v i = u 0 ( t i ) α + k = 0 n U k ( t i ) [ p ( t k ) v k + q ( t k ) ] , i = 0 , n v i = u 0 t i α + k = 0 n U k t i p t k v k + q t k , i = 0 , n ¯ v_(i)=u_(0)(t_(i))alpha+sum_(k=0)^(n)U_(k)(t_(i))[p(t_(k))v_(k)+q(t_(k))],quad i= bar(0,n)v_{i}=u_{0}\left(t_{i}\right) \alpha+\sum_{k=0}^{n} U_{k}\left(t_{i}\right)\left[p\left(t_{k}\right) v_{k}+q\left(t_{k}\right)\right], \quad i=\overline{0, n}vi=u0(ti)α+k=0nUk(ti)[p(tk)vk+q(tk)],i=0,n
b) The approximative determination of the solution s y 2 s y 2 s_(y_(2))s_{y_{2}}sy2 on the nodes of Δ n Δ n Delta_(n)\Delta_{n}Δn Using again representation (9), one obtains
s y 2 ( t ) = u 1 ( t ) + k = 0 n U k ( t ) y 2 ( t k ) = = u 1 ( t ) + k = 0 n U k ( t ) p ( t k ) y 2 ( t k ) . s y 2 ( t ) = u 1 ( t ) + k = 0 n U k ( t ) y 2 t k = = u 1 ( t ) + k = 0 n U k ( t ) p t k y 2 t k . {:[s_(y_(2))(t)=u_(1)(t)+sum_(k=0)^(n)U_(k)(t)*y_(2)^('')(t_(k))=],[=u_(1)(t)+sum_(k=0)^(n)U_(k)(t)*p(t_(k))*y_(2)(t_(k)).]:}\begin{aligned} & s_{y_{2}}(t)=u_{1}(t)+\sum_{k=0}^{n} U_{k}(t) \cdot y_{2}^{\prime \prime}\left(t_{k}\right)= \\ & =u_{1}(t)+\sum_{k=0}^{n} U_{k}(t) \cdot p\left(t_{k}\right) \cdot y_{2}\left(t_{k}\right) . \end{aligned}sy2(t)=u1(t)+k=0nUk(t)y2(tk)==u1(t)+k=0nUk(t)p(tk)y2(tk).
Letting
w i := s y 2 ( t i ) , i = 0 , n e ¯ i := y 2 ( t i ) s y 2 ( t i ) , i = 0 , n w i := s y 2 t i , i = 0 , n ¯ e ¯ i := y 2 t i s y 2 t i , i = 0 , n ¯ {:[w_(i):=s_(y_(2))(t_(i))","quad i= bar(0,n)],[ bar(e)_(i):=y_(2)(t_(i))-s_(y_(2))(t_(i))","quad i= bar(0,n)]:}\begin{gathered} w_{i}:=s_{y_{2}}\left(t_{i}\right), \quad i=\overline{0, n} \\ \bar{e}_{i}:=y_{2}\left(t_{i}\right)-s_{y_{2}}\left(t_{i}\right), \quad i=\overline{0, n} \end{gathered}wi:=sy2(ti),i=0,ne¯i:=y2(ti)sy2(ti),i=0,n
it follows that w i w i w_(i)w_{i}wi are the solutions of the system
w i = u 1 ( t i ) + k = 0 n U k ( t i ) p ( t k ) w k + O ( Δ n 3 / 2 ) w i = u 1 t i + k = 0 n U k t i p t k w k + O Δ n 3 / 2 w_(i)=u_(1)(t_(i))+sum_(k=0)^(n)U_(k)(t_(i))p(t_(k))w_(k)+O(||Delta_(n)||^(3//2))w_{i}=u_{1}\left(t_{i}\right)+\sum_{k=0}^{n} U_{k}\left(t_{i}\right) p\left(t_{k}\right) w_{k}+O\left(\left\|\Delta_{n}\right\|^{3 / 2}\right)wi=u1(ti)+k=0nUk(ti)p(tk)wk+O(Δn3/2)
Therefore, the approximative values of s y 2 ( t i ) s y 2 t i s_(y_(2))(t_(i))s_{y_{2}}\left(t_{i}\right)sy2(ti) can be obtained from the linear system
(30) w i = u 1 ( t i ) + k = 0 n U k ( t i ) p ( t k ) w k , i = 0 , n (30) w i = u 1 t i + k = 0 n U k t i p t k w k , i = 0 , n ¯ {:(30)w_(i)=u_(1)(t_(i))+sum_(k=0)^(n)U_(k)(t_(i))p(t_(k))*w_(k)","i= bar(0,n):}\begin{equation*} w_{i}=u_{1}\left(t_{i}\right)+\sum_{k=0}^{n} U_{k}\left(t_{i}\right) p\left(t_{k}\right) \cdot w_{k}, i=\overline{0, n} \tag{30} \end{equation*}(30)wi=u1(ti)+k=0nUk(ti)p(tk)wk,i=0,n
The approximative values of the spline solution s y S 5 ( Λ n ) s y S 5 Λ n s_(y)inS_(5)(Lambda_(n))s_{y} \in S_{5}\left(\Lambda_{n}\right)syS5(Λn) on the nodes of the division Δ n Δ n Delta_(n)\Delta_{n}Δn are given by
(31)
s y ( t i ) = v i + β v n w n w i , i = 0 , n s y t i = v i + β v n w n w i , i = 0 , n ¯ s_(y)(t_(i))=v_(i)+(beta-v_(n))/(w_(n))w_(i),quad i= bar(0,n)s_{y}\left(t_{i}\right)=v_{i}+\frac{\beta-v_{n}}{w_{n}} w_{i}, \quad i=\overline{0, n}sy(ti)=vi+βvnwnwi,i=0,n
A numerical example. The problem
(D) y = 4 y , t [ 0 , 1 ] y = 4 y , t [ 0 , 1 ] y^('')=4y,t in[0,1]y^{\prime \prime}=4 y, t \in[0,1]y=4y,t[0,1]
y ( 0 ) = 1 , y ( 1 ) = e 2 y ( 0 ) = 1 , y ( 1 ) = e 2 y(0)=1,y(1)=e^(-2)y(0)=1, y(1)=e^{-2}y(0)=1,y(1)=e2
has the exact solution y = e 2 t y = e 2 t y=e^(-2t)y=e^{-2 t}y=e2t.
The associated Cauchy problems are
( C 1 ) y = 4 y , t [ 0 , 1 ] C 1 y = 4 y , t [ 0 , 1 ] (C_(1))y^('')=4y,t in[0,1]\left(C_{1}\right) y^{\prime \prime}=4 y, t \in[0,1](C1)y=4y,t[0,1]
y ( 0 ) = 1 , y ( 0 ) = 0 y ( 0 ) = 1 , y ( 0 ) = 0 y(0)=1,y^(')(0)=0y(0)=1, y^{\prime}(0)=0y(0)=1,y(0)=0
( C 2 C 2 C_(2)C_{2}C2 ) y = 4 y , t [ 0 , 1 ] y = 4 y , t [ 0 , 1 ] y^('')=4y,t in[0,1]y^{\prime \prime}=4 y, t \in[0,1]y=4y,t[0,1]
y ( 0 ) = 0 , y ( 0 ) = 1 y ( 0 ) = 0 , y ( 0 ) = 1 y(0)=0,y^(')(0)=1y(0)=0, y^{\prime}(0)=1y(0)=0,y(0)=1
and have the exact solutions
y 1 ( t ) = 1 2 [ e 2 t + e 2 t ] y 2 ( t ) = 1 4 [ e 2 t e 2 t ] . y 1 ( t ) = 1 2 e 2 t + e 2 t y 2 ( t ) = 1 4 e 2 t e 2 t . {:[y_(1)(t)=(1)/(2)[e^(2t)+e^(-2t)]],[y_(2)(t)=(1)/(4)[e^(2t)-e^(-2t)].]:}\begin{aligned} & y_{1}(t)=\frac{1}{2}\left[e^{2 t}+e^{-2 t}\right] \\ & y_{2}(t)=\frac{1}{4}\left[e^{2 t}-e^{-2 t}\right] . \end{aligned}y1(t)=12[e2t+e2t]y2(t)=14[e2te2t].
For n = 5 n = 5 n=5n=5n=5, let
Δ 5 := { t 0 = 0 , t 1 = 0.2 , t 2 = 0.4 , t 3 = 0.6 , t 4 = 0.8 , t 5 = 1 } Δ 5 := t 0 = 0 , t 1 = 0.2 , t 2 = 0.4 , t 3 = 0.6 , t 4 = 0.8 , t 5 = 1 Delta_(5):={t_(0)=0,t_(1)=0.2,t_(2)=0.4,t_(3)=0.6,t_(4)=0.8,t_(5)=1}\Delta_{5}:=\left\{t_{0}=0, t_{1}=0.2, t_{2}=0.4, t_{3}=0.6, t_{4}=0.8, t_{5}=1\right\}Δ5:={t0=0,t1=0.2,t2=0.4,t3=0.6,t4=0.8,t5=1}.
Using representation (1), one obtains Table 1 for the coefficients of s y 1 s y 1 s_(y_(1))s_{y_{1}}sy1 and s y 2 s y 2 s_(y_(2))s_{y_{2}}sy2.
Table 1
n = 5 n = 5 n=5n=5n=5 s y 1 s y 1 s_(y_(1))s_{y_{1}}sy1 s y 2 s y 2 s_(y_(2))s_{y_{2}}sy2
A 0 A 0 A_(0)A_{0}A0 1 0
A 1 A 1 A_(1)A_{1}A1 0 1
A 2 A 2 A_(2)A_{2}A2 2 0
A 3 A 3 A_(3)A_{3}A3 0.1576268148 0.6678202118
a 0 a 0 a_(0)a_{0}a0 0.8446081893 0.1257524863
a 1 a 1 a_(1)a_{1}a1 -0.6853940844 0.07800170745
a 2 a 2 a_(2)a_{2}a2 -0.6014825811 -0.1770186129
a 3 a 3 a_(3)a_{3}a3 3.020199906 0.7804651905
a 4 a 4 a_(4)a_{4}a4 -5.717416684 -1.970643804
a 5 a 5 a_(5)a_{5}a5 3.139485253 1.163443033
n=5 s_(y_(1)) s_(y_(2)) A_(0) 1 0 A_(1) 0 1 A_(2) 2 0 A_(3) 0.1576268148 0.6678202118 a_(0) 0.8446081893 0.1257524863 a_(1) -0.6853940844 0.07800170745 a_(2) -0.6014825811 -0.1770186129 a_(3) 3.020199906 0.7804651905 a_(4) -5.717416684 -1.970643804 a_(5) 3.139485253 1.163443033| $n=5$ | $s_{y_{1}}$ | $s_{y_{2}}$ | | :--- | :--- | :--- | | $A_{0}$ | 1 | 0 | | $A_{1}$ | 0 | 1 | | $A_{2}$ | 2 | 0 | | $A_{3}$ | 0.1576268148 | 0.6678202118 | | $a_{0}$ | 0.8446081893 | 0.1257524863 | | $a_{1}$ | -0.6853940844 | 0.07800170745 | | $a_{2}$ | -0.6014825811 | -0.1770186129 | | $a_{3}$ | 3.020199906 | 0.7804651905 | | $a_{4}$ | -5.717416684 | -1.970643804 | | $a_{5}$ | 3.139485253 | 1.163443033 |
For the values of s y s y s_(y)s_{y}sy on the nodes of Δ 5 Δ 5 Delta_(5)\Delta_{5}Δ5, one uses
s y ( t i ) = s y 1 ( t i ) + e 2 s y 1 ( 1 ) s y 2 ( 1 ) s y 2 ( t i ) , i = 0 , 5 s y t i = s y 1 t i + e 2 s y 1 ( 1 ) s y 2 ( 1 ) s y 2 t i , i = 0 , 5 ¯ s_(y)(t_(i))=s_(y_(1))(t_(i))+(e^(-2)-s_(y_(1))(1))/(s_(y_(2))(1))s_(y_(2))(t_(i)),i= bar(0,5)s_{y}\left(t_{i}\right)=s_{y_{1}}\left(t_{i}\right)+\frac{e^{-2}-s_{y_{1}}(1)}{s_{y_{2}}(1)} s_{y_{2}}\left(t_{i}\right), i=\overline{0,5}sy(ti)=sy1(ti)+e2sy1(1)sy2(1)sy2(ti),i=0,5
Table 2 contains the values s y ( t i ) , i = 0 , 5 s y t i , i = 0 , 5 ¯ s_(y)(t_(i)),i= bar(0,5)s_{y}\left(t_{i}\right), i=\overline{0,5}sy(ti),i=0,5, and the errors
E i = | y ( t i ) s y ( t i ) | , i = 0 , 5 E i = y t i s y t i , i = 0 , 5 ¯ E_(i)=|y(t_(i))-s_(y)(t_(i))|,quad i= bar(0,5)E_{i}=\left|y\left(t_{i}\right)-s_{y}\left(t_{i}\right)\right|, \quad i=\overline{0,5}Ei=|y(ti)sy(ti)|,i=0,5
Table 2
t i t i t_(i)\boldsymbol{t}_{i}ti s y ( t i ) s y t i s_(y)(t_(i))\boldsymbol{s}_{y}\left(\boldsymbol{t}_{i}\right)sy(ti) E i E i E_(i)\boldsymbol{E}_{i}Ei
0 1 0
0.2 0.6708587727 0.5387267 10 3 0.5387267 10 3 0.5387267*10^(-3)0.5387267 \cdot 10^{-3}0.5387267103
0.4 0.4506125215 0.12835574 10 2 0.12835574 10 2 0.12835574*10^(-2)0.12835574 \cdot 10^{-2}0.12835574102
0.6 0.303315766 0.21215541 10 2 0.21215541 10 2 0.21215541*10^(-2)0.21215541 \cdot 10^{-2}0.21215541102
0.8 0.204249434 0.2352916 10 2 0.2352916 10 2 0.2352916*10^(-2)0.2352916 \cdot 10^{-2}0.2352916102
1 0.135335284 0.8 10 9 0.8 10 9 0.8*10^(-9)0.8 \cdot 10^{-9}0.8109
t_(i) s_(y)(t_(i)) E_(i) 0 1 0 0.2 0.6708587727 0.5387267*10^(-3) 0.4 0.4506125215 0.12835574*10^(-2) 0.6 0.303315766 0.21215541*10^(-2) 0.8 0.204249434 0.2352916*10^(-2) 1 0.135335284 0.8*10^(-9)| $\boldsymbol{t}_{i}$ | $\boldsymbol{s}_{y}\left(\boldsymbol{t}_{i}\right)$ | $\boldsymbol{E}_{i}$ | | :---: | :---: | :---: | | 0 | 1 | 0 | | 0.2 | 0.6708587727 | $0.5387267 \cdot 10^{-3}$ | | 0.4 | 0.4506125215 | $0.12835574 \cdot 10^{-2}$ | | 0.6 | 0.303315766 | $0.21215541 \cdot 10^{-2}$ | | 0.8 | 0.204249434 | $0.2352916 \cdot 10^{-2}$ | | 1 | 0.135335284 | $0.8 \cdot 10^{-9}$ |

REFERENCES

  1. P. Blaga and G. Micula, Polynomial natural spline of even degree, Studia Univ. "BabesBolyai", Mathematica 38, 2 (1993), 31-40.
  2. P. Blaga, R. Gorenflo and G. Micula, Even degree spline technique for numerical solution of delay differential equations, Freic Universität Berlin, Preprint No. A-15 (1996), Serie A-Mathematik.
  3. R. L. Burden and T. Douglas Faires, Numerical Analysis, Third Edition, PWS-KENT Publishing Company, Boston, 1985.
  4. G. Micula, P. Blaga and M. Micula, On even degree polynomial spline functions with applications to numerical solution of differential equations with retarded argument, Technische Hochschule Darmstadt, Preprint No. 1771, Fachbereich Mathematik (1995).
Received May 15, 1996
"Tiberiu Popoviciu" Institute of Numerical Analysis
P.O. Box 68
3400 Cluj-Napoca, 1
Romania
1997

Related Posts