Construction of Baskakov-type operators by wavelets


The purpose of this paper is to introduce a class of Baskakov-type operators by means of Daubechies’ compactly-supported wavelets. The new operators have the same moments as Baskakov operators in an arbitrarily chosen number. The rate of convergence of these operators is in connection with Lipschitz functions with respect to the second-order modulus of smoothness.


Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania


Baskakov operator; Daubechies wavelets; modulus of smoothness.

Paper coordinates

O. Agratini, Construction of Baskakov-type operators by wavelets, Revue d’Analyse Numerique et de Theorie de l’Approximation, 26 (1997) nos. 1-2, pp. 3-11,


About this paper


Revue d’Analyse Numerique et de Theorie de l’Approximation

Publisher Name

Romanian Academy

Print ISSN


Online ISSN

google scholar link

[1] Yu A.Brudnyi and N.Ya. Krugljak,  Interpolation Functors ???? and Interpolation Spaces, vol. I, North-Holland Mathematical Library, 1991.
[2] Ch.K.Chui, An Introduction to Wavelets, Academic Press, Boston, 1992.
[3] Z. Ditzian and V. Totik, Moduli of Smoothness,  Springer Series in Computational Mathematics, vol. 9, Springer Verlag, Berlin-Heidelberg-New York, 1987.
[4] H.H. Gonska and D.X. Zhou,  Using wavelets for Szasz-type operators,  Rev. Anal. Numer. Theorie Approximation 24, 1-2 (1995), 131-145.
[5] Y. Meyer, Wavelets and Operators,  Cambridge University Press, 1992.


Related Posts