Approximation methods obtained by using the umbral calculus

Book summary

Umbral calculus is used in this book for…?


M. Craciun
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Book title

Original title (in Romanian)

Procedee de aproximare construite cu ajutorul calculului umbral

Title in English

Approximation methods obtained by using the umbral calculus

Book cover


  1. Unidimensional umbral calculus
    1.1. Translation invariant operators and binomial sequences
    1.2. Sheffer sequences
    l.3. Umbral operators and umbral composition
    l.4. Umbral translation operators and operatorial formulas
    1.5. Other versions of umbral calculus
    1.6. Classical umbral calculus
  2. Multidimensional umbral calculus
    2.1. Finite dimensional umbral calculus

    • 2.1.1.Binomial sequences
      2.1.2. Umbral translation operators
      2.1.3. Explicit formulas for basic sequences
      2.1.4. Examples of binomial sequences
      2.1.5. Sheffer sequences
      2.1.6. Bi-indexed Sheffer sequences
      2.2. Invariant umbral calculus
      2.2.1. Generalized polynomials and quasi-polynomials
      2.2.2. Binomial sequences
      2.2.3. Invariant orthogonal quasi-polynomials and invariant orthogonal operators
      2.2.4. Examples of invariant binomial sequences
      2.2.5. Invariant Appell and Sheffer sequences
  1. Binomial approximation operators
    3.1. Binomial approximation operators of T. Popoviciu type

    • 3.1.1. Definition and convergence
      3.1.2. Examples of binomial operators
      3.1.3. D. Stancu operator
      3.1.4. Evaluation of approximation orders
      3.1.5. Generalized operators of T. Popoviciu type
      3.2.  Modified binomial operators
      3.3. Bivariate binomial operators
  2. Approximation operators constructed using Sheffer sequences
    4.1. Definition and convergence
    4.2. Examples
    4.3. Evaluation of approximation orders
    4.4. A Kantorovich generalization
    4.5. Lipschitz constants for operators5. Compound operators
    5.1. Compound binomial operators of D.D. Stancu type
    5.1.1. Definition and convergence
    5.1.2. Evaluation of remainder
    5.2. Compound operators depending on s parameters
    5.2.1. Definition and convergence
    5.2.2. Examples
    5.2.3. An integral representation of remainder

    6. Another class of approximation operators
    6.1. Definition and convergence
    6.2. Special cases
    6.3. Evaluation of approximation orders using modulus of continuity
    6.4. D. Stancu operator depending on many parameters

    7. Sheffer sequences, probabililty distributions and approximation operators
    7.1. Results for the standard umbral calculus
    7.2. Generalized umbral calculus
    7.2.1 q- umbral calculus
    7.2.2. Hyperbolic umbral calculus




see below

Cite this book as
TitleApproximation methods obtained by using the umbral calculus

Cluj-Napoca, Risoprint

Print ISBN



Maria Craciun

Online ISBN

Google scholar

The book on google scholar.

[1] Adell, J.A., de la Cal., J., Perez-Palomares, A.,  On the Cheney and Sharma operator,  J. Math. Anal. Appl. 200(1996), no.3, pp 663-679.
[2] Agratini, .O, On the monotonicity of a sequence of Stancu-Bernstein type operators,  Studia Univ. Babeș-Bolyai, athematica, 41 (1996), no.2, pp. 17-23.
[3] Agratini, O., On simulaneous approximation by Stancu-Bernstein operators. Approximation and Optimization, ICAOR Cluj-Napoca, vol. II, pp. 157-162.
[4] Agratini, O., Linear combinations of D.D. Stancuj polynomials, Rev. Anal. Numer. Theor. Approx. 27(1998), no. 1, pp.15-22
[5] Agratini, O., Aproximarea prin operatori liniari,  Presa Univ. Clujeana, 2000
[6] Agratini, O., On a certain class of approximation operators, Pure Math. Appl., 11, (2000), no.2, pp. 119-127 (2001)
[7] Agratini, O., Binomial polynomials and their applications in approximation theory, Conf. Semin. Mat. Univ. Bari, 281, (2001), pp. 1-22
[8] Agratini, O., An approximation process of Kantorovich type, Mathematical Notes Miskolc, 2, (2001), no.1, pp. 3-10.
[9] Agratini, O., Stancu modified operators revisited, Rev. Anal. Numer. Theor. Approx. 31 (2002), no.1, pp. 7-14
[10] Allaway, W.R., Extensions of Sheffere polynomial sets, SIAM J. Math. Anal., 10, (1979), no.1, pp. 38-48.
[11] Al-Salam, W.A., Verma, A.,  Generalized Sheffer polynomials, Duke Mathematical Journal, 37 (1970), no.2, pp. 361-365.
[12] Altomare, F., Campiti, M., Korovkin-tupe approximation theory and its application, Appendix A by Michael Pannenberg and Appendix B by Ferdinand Beckhoff, de Gruyter Studies in Mathematics, 17. Walter de Gruyter & Co., Berlin, 1994, xii+627 pp.
[13] Anderson, C.A.,  Some properties of Appel-like polynomials, J. Amth. Anal. Appl., 19 (1967), pp. 475-491.
[14] Avramjonok, A.K., The theory of operators (n-dimensional case) in combinatorial analysis(Russian), Combinatorial analysis and asymptotic analysis, nr.2 (1977), pp. 103-113.
[15] Bacchelli, S., Lazzaro, D.,  Some practical applications of block recursive matrices,  Umbral calculus and its applications (Cortona, 1998), Comput. Math. Appl. 41 (2000), nr.9, pp. 1183-1198.
[16] Badea, C., Badea, I, Gonska, H.H.,  Improved estimates on simultaneous approximation by Bernstein operators, Rev. Anal. Numer. Theor. Approx., 22(1993), no.1, pp. 1-21.
[17] Barnabei, M., Brini, A., Rota, G.C., Section coefficients and section sequences, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 68(1980), pp. 5-12
[18] Barnabei, M., Brini, A., Nicoletti, G., Recursive matrices and umbral calculus, J. Algebra, 75 (1982), pp. 546-573.
[19] Barnabei, M., Brini, A., Nicoletti, G., A general umbral calculus in infinitely many variables,  Adv. Math., 50 (1983), pp. 49-93.
[20] Barnabei, M.,  Polynomials sequences of integral type and recursive matrices,  Computers and Mathematics with Applications, 41 (2001), pp. 1125-1141.
[21] Bavinck, H.,  Some new results for Laguere. Charlier and Meixner Polynomials, Reports of the Faculty of Technical Mathematics and Informatics, no. 96-41 (1996), Delft.
[22] Bell, E.T., Postulational bases for the umbral calculus, Amer. J. Math., 62 (1940), pp. 717-724.
[23] Bernstein, S.,  Demonstration de la theoreme de Weierstrass fondee sur le calcul des probabilites, Comn. Soc. Math., Kharkow, (2), 13 (1912-1913), pp. 1-2
[24] Bottreau, A., DiBucchianico, A., Loeb., D.E., Computer algebra and umbral calculus, Discrete Mathematics 180 (1998), pp. 65-72.
[25] Bouillon, Th., Seaman, L.J.W., Young, D.M.,  Moments of discrete probability distributions derived using a differential operator, The American statistician, 46 (1992), no.1, pp. 22-24
[26] Boyer, R.P., Thiel, L.C., Generalized Bernstein polynomials and symmetric functions,  Adv. in Appl. Math., 28 (2002), no.1, pp. 17-39.
[27] Brass, H.,  Eine Verallgemeinerung der Bedrnsteinschen Operatoren,  Abhandl. Math. Sem. Univ. Hamburg, 36 (1971), pp. 111-122.
[28] Brown, B.M., Elliot, D., Paget, D.F., Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function,  J. Approx. Theory, 49 (1987), pp. 196-199.
[29] Brown, J.W.,  New generating functions flor classical polynomials, Proc. Amer. Math. Soc., 21, (1969), pp. 263-268.
[30] Brown, J.W.,  On the Sheffer A-type of certain modified polynomials sets,  Proc. Amer. Math. Soc., 23 (1969), pp. 718-722.
[31] Brown, J.W., On multivariable Sheffer sequences,  J. Math. Anal. Appl., 69 (1979), pp. 398-410.
[32] Brown, J.W., Kucsma, M., Self inverse Sheffer sequences, SIAM J., Math. Anal., 7 (1976), no.5, pp. 723-728.
[33] Brown, J.W., On the orthogonality of self-inverse Steffensen sequences,  Glasnik Matematicki, 19 (39) (1984), pp. 65-72.
[34] Buckholtz, J.D., Appell polynomials whose generating funciton is meromorphic on its circle of convergence, Bull. Amer. Math. Soc., 79 (1973), pp. 469-472.
[35] Buckholtz, J.D., Isomorphism theorems for infinite order differential operators,  Proc. Amer. Math. Soc., 40 (1973), pp. 533-538.
[36] Buckholtz, J.D.,Series expansions of analytic functions,  J. Math.Anal. Appl., 41 (1973), pp. 673-684.
[37] Burgmeier, J.W., Prather, R.E., Polynomial calculus with D-like operators,  Amer. Math. Monthly 82 (1975), pp. 730-737.
[38] de la Cal, J., Carcamo, J., On uniform approximation by some classical Bernstein type operators,  J. Math. Anal. Appl., 279 (2003), pp. 625-638.
[39] Canfield, E.R., Central and local limit theorems for the coefficients of polynomial sof binomial type, J. Combinatorial Theory Ser. A 23 (1977), no.3, pp. 275-290.
[40] Carlitz, L., Some generating functions for Laguerre polynomials,  Duke Math., J., 35 (1968), pp;. 825-827.
[41] Carlson, B.C., Polynomials satisfying a binomial theorem,  J. Math. Anal. Appl., 32 (1970), pp. 543-558.
[42] Charalambides, Ch. A., Gould series distributions with applications to fluctuations of sums of random variables, Journal of Statistical Planning and Inference 14 (1986), pp. 15-28, North Holland.
[43] Charalambides, Ch. A., Abel series distributions with applications to fluctuations of sample functions of stochastic processes,  Comm. Statist. Theory Methods, 19 (1990), no.1, pp. 317-335.
[44] Chan, B., Derivation of moment formulas by operator valued probabilitiy generating functions,  The American Statistician, 36 (1982), no.3, pp. 179-181.
[45] Chen, W.Z., Gu, S.M., Approximation theorems for Stancu-type operators, Xiamen Daxue Xuenbo Ziran Kexue Ban, 32 (1993), pp.679-684.
[46] Cheney, E.W., Sharma, A.,  On a generalization of Bernstein polynomials,  Riv. Mat. Univ. Parma, 5 (1964), no.2, pp. 77-84.
[47] Cheney, E.W., Sharma, A., Bernstein power series,  Canadian J. Math., 16 (1964), no.2, pp 241-252.
[48] Chihara, T.S., Orthogonal polynomials with Brenke type generating functions,  Duke Math. J., 35 (1968), pp. 505-517.
[49] Chihara, T.S.,  Orthogonality relations for a class of Brenke polynomials,  Duke Math. J., 38 (1971), pp. 599-603.
[50] Cholewinski, F.M., The finite claculus associated with Bessel functions, Contemporary Mathematics, 75. American Mathematical Society, Providence, RI, 1988, xii+122 pp.
[51] Clarke, F., Hunton, J., Ray, N., Extensions of umbral calculus II: double delta operators,  Leibniz extensions and Hattori-Stong theorems, Annales de l’Institute Fourier, 51 (2001), no.2,  pp. 1-40.
[52] Cigler, J., Some remarks on Rota’s umbral calculus, Indag. Math.,40 (1978), pp. 27-42.
[53] Ciupa, A.,  On the approximation by Favard-Szasz type operators, Rev. Anal. Numer. Theor. Approx., 25 (1996), no.1-2.
[54] Ciupa, A., Positive linear operators obtained by means of Appel polynomials, Approximation and Optimization, ICAOR Cluj-Napoca, vol. II, pp. 63-68.
[55] Consul, P.C., A simple urn model dependent on predetermined strategy,  Sankhy, B36 (1974), pp. 391-399.
[56] Consul, P.C., Some new characterizations of discrete Lagrangian distributions, Statistical distributions in scientific word, editori G.P. Patil, S. Kotz, J.K. Ord. vol. 3, Reidel, 1975, pp. 279-290.
[57] Consul, P.C., Jain, G.C., On some intersting properties of the generalized Poisson distribution,  Biom. Z., 15 (1973), pp. 495-500.
[58] Consul, P.C., Mittal, S.P., A new urn eith predetermined strategy,  Biom. Z., 17 (1975), pp. 67-75.
[59] Cooper, S., Waldron, S., The eigenstructure of the Bernstein operator,  J. Approx. Theory, 105 (2000), no.1, pp. 133-165.
[60] Crăciun, M., Approximation operators constructed means of Sheffer sequences, Rev. Anal. Numer. Theor. Approx., 30 (2001), no.2, pp. 135-150.
[61] Crăciun, M., On an approximation operator and its Lipschitz constant, Rev. Anal. Numer. Theor. Approx., 31 (2002), pp. 55-60.
[62] Crăciun, M., On compound operators constructed with binomial and Sheffer sequences, Rev. Anal. Numer. Theor. Approx., 32 (2003), no.2, pp. 135-144.
[63] Crăciun, M., On compound operators depending on s parameters, Rev. Anal. Numer. Theor. Approx., 33 (1004), no.1, pp. 51-60.
[64] Crăciun, M., On a class of approximation operators, Mathematical Sciences Research Journal, 9(11) (2005), pp. 292-303.
[65] Crăciun, M.,  On a compound approximation operator of D.D. Stancu type, Rev. Anal. Numer. Theor, Approx., 35 (2006), no.1, pp. 33-40.
[66] Crăciun, M., Di Bucchianico, A.,  Sheffer sequences probability distributions and approximation operators,  SPOR Report 2005-04, Tehnische University Eindhoven, 25 pp (
[67] Della Vecchia B., On the approximation of functions by means of the operators of D.D. Stancu,  Studia Univ. Babeș-Bolyai, 37 (1992), pp. 3-36.
[68] Della Vecchia B., A new class of linear positive operators of Bernstein type, Rev. Anal. Numer. Theor. Approx., 17 (1998), no.2, pp. 113-124.
[69] Desarmenien, J., Les q-analogues des polynomes d’Hermite,  Seminaire lotharingien de comnbinatoire B06b, 1982.
[70] Di Bucchianico, A., Polynomials of convolution type,  PhD thesis, 1991.
[71] Di Bucchianico, A., Probabilistic and analytical  aspects of the umbral calculus,  CWI Tract, 119, Stichting Mathematisch Centrum, Centrum voor Viskunde en Informatica, Amsterdam, 1997, 148 pp.
[72] Di Bucchianico, A., Loeb, D.E., A simpler characterization of Sheffer polynomials, Stud. Appl. Math., 92 (1994), no.1, pp. 1-15.
[73] Di Bucchianico, A., Loeb, D.E., A selected survey of umbral calculus,  Electgron. J. Combin., 2 (1995), Dynamic Survey 3, 28 pp (electronic).
[74] Di Bucchianico, A., Loeb, D.E., Operator expansions in the derivative and in multiplication by x,  Integral Transf. Spec. Funct., 4 (1996), no.1-2, pp. 49-68.
[75] Di Bucchianico, A., Loeb, D.E., Sequences of binomial type with persistent roots,  J. Math. Anal. Appl., 199 (1996), pp. 39-58.
[76] Di Bucchianico, A., Loeb, D.E., Natural exponential families and umbral calculus, In Mathematical essays in honor of Gian-Carlo Rota, editori B. Sagan, R.P. Stanley, pp. 195-211, Borkhauser, 1998.
[77] Di Bucchianico, A.,, Loeb, D.E., Rota, G.C., Umbral calculus in Hilbert space, In Mathematical essays in honor of Gian-Carlo Rota, editori B. Sagan, R.P. Stanley, pp. 213-238, Birkhauser, 1998.
[78] Di Bucchianico, A., Loeb, D.E., A coordinate-free approach to multivariate  exponantial families,  Algebraic methods in statistics and probability (Notre Dame, IN, 2000), pp. 37-48, Contemp. Math., 287, Amer. Math. Soc., Providence, RI, 2001.
[79] Di Bucchianico, A., Loeb, D,E., Rota, G.C., Invariant and universal umbral calculus, manuscris in progres.
[80] Di Bucchianico, A., Soto y Koelemeijer, G., Solving linear recurrences using functionals, Algebraic combimnatorics and computer science, Editori H.D. Crapo, D. Senato, pp. 461-472, Springer Italia, Milan, 2001.
[81] Di Crescenzo, A., Rota, G.C., Sul calcolo umbrale, Ricerche di Matematica, 43 (1994), no.1, pp. 129-162.
[82] Dogru, O., On a certain family of linear positive operators, Turkish J. Math.21 (1997), pp. 387-399.
[83] Dunster, T.M., Uniform asymptotic expansions for Charlier polynomials, J. Approx. Theory, 12 *2001), no.1, 93-133.
[84] Ellinas, D., Quatum diffusions and Appell system, J. Comput. Appl. Math., 133 (2001(, pp. 341-353.
[85] Feinsilver, Ph., Franz, U., The affine group and generalized Gegenbauer polynomials,  Umbral calculus and its applications (Cortona, 1998), Comput. Math. Appl., 41 (2001), no.9, pp. 1173-1182.
[86] Ferrari, L., An umbral calculus over infinite coefficient fields of positive characteristic,  Umbral calculus and its applications (Cortona, 1998), Comput. Math. Appl., 41 (2001), no.9, pp. 1099-1108.
[87] Ferrari, L., Polynomial rings in which delta operators are derivations,  European J. Combin. 22 (2001), no.8, pp. 1059-1064.
[88] Finta, Z., On approximation by modified Kantorovich polynomials,  Mathematica Balkanica, 13 (1999), no.3-4, pp. 205-211.
[89] Freeman, J.M., Transforms of operators on K[x][t], Congress Numeratium 48 (1985), pp. 115-132.
[90] Freeman, J.M., A strategy for determining polynomial orthogonality. Math Essays in honor of Gian-Carlo Rota, (eds. B.E. Sagan and R.P. Stanley), 1998, Birkhauser, pp. 239-244.
[91] Frențiu, M., On the asymptotic aspect of the approximation of functions by means of D.D. Stancu operators,  Univ. Babeș-Bolyai, Preprint 8 (1987), pp. 57-64.
[92] Freeman, J.M., New solutions to the Rota-Mullin problem of connection constants, Proc. 9th S-E Conf. Combinatorics, Graph Theory and computing, 1978, pp. 301-305.
[93] Garsia, A.M., Joni, S.A., A new expression for umbral operators and power series inversion, Proc. Amer. Math. Soc. 64 (1977), pp. 179-185.
[94] Garsia, A.M., Joni, S.A., Higher dimensional polynomials of binomial type and formal power series inverstion, Communications in algebra, 6 (12) (1978), pp. 1187-1215
[95] Gavrea, I., Preservation of Lipschitz constants by linear trnasformation, Itinerant Seminar of functional equations, Approximation and convexity, Cluj-Napoca, 1988.
[96] Gessel, I.M., Applications of the classical umbral calculus, Algebra Univ ersalis, 49 (2003), no. 4, pp. 435-457.
[97] Goldberg, J.L., A note on polynomials generated by a(t)ψ[xh(t)], Duke Math. J., 32, (1965), pp. 643-651.
[98] Goldstein, J.A.,  Some applications of the law of large numbers, Bol. Soc. Brasil. Mat., 6 (1975), no.1, pp. 25-38.
[99] Gonska, H.H., Kovacheva, R.K., The second modulus revisited;remarks, applications, problems,  Conferenze del Seminario di Matematica Univ. Bari 257 (1994), pp. 1-32.
[100] Gonska, H.H., Meier, J., Quantitative theorems on approximation by Bernstein-Stancu operators, Calcolo, 21 (1984), no.4, pp. 317-335.
[101] Gonska, H.H., Tachez, G.T., The second Ditzian-Totik modulus revisited: refined esteimates for positive linear operators,  Rev. Anal. Numer. Theor. Approx. 32 (2003), no.1, pp. 39-61.
[102] Grabiner, S., Convergent expansions and bounded operators in the Umbral Calculus, Advances in Mathematics, 72 (1988), pp. 132-167.
[103] Gradska, E., Towards ψ-extension of Rota calculus in Mizar language,  Quantum groups and integrable systems (Prague, 2001). Czechoslovak J. Phys., 51 (2001), no. 12, pp. 1336-1341.
[104] Guo, Li, Baxter algebras and Umbral Calculus, Advances in Applied Mathematics 27 (2001), pp. 405-426.
[105] Gupta, V., Gupta, M.K.,  Rate of convergence for certain families of summation-integral type operators, J. Math. Anal. Appl., 296 (2004), no.2, pp. 608-618.
[106] Gupta, V., The Beizer variant of Kantorivich operators,  Comput. Math. Appl., 47 (2004), no.2-3, pp. 227-232.
[107] Gupta, V., T. Shervashidze, Craciun, M., Rate of simultaneous approximation for certain Bernstein Durrmeyer type operators,  13 (1006), no.2, pp. 277-284.
[108]  Gzyl, H., Um bral Calculus via integral trnasforms, J. Math. Anal. Appl., 129 (1988), pp. 315-325.
[109] He, M.X., Ricci, P.E., Differential equation of Appell polynomials via the factorization method,  J.Comput. Appl.  Math., 139 (2002), no.2, pp. 231-237.
[110] Hildebrand, F.B., Introduction to numerical analysis,  McGraw-Hill Book Company, New York, (1956), 511 p.
[111] Hirschorn, P.S., Raphael, L.A., Coalgebraic foundations of the method of divided differences, Advances in Mathematics, 91 (1992), no.1, pp. 75-135.
[112] Hofbauer, J., A representation of Sheffer polynomias in tgerms of a differential equation for their generating functions, Aequationes Math., 23 (1981), no. 2-3, pp. 156-168.
[113] Horova, I., Budikova, M., A note on D.D. Stancu operators,  Richerche di Matem., 44 (1995), pp. 397-407.
[114] Il’inskii, A., Ostrovska, S., Convergence of generalized Bernstein polynomials,  J. Approx. Theory, 116 (2002) no.1, pp. 100-112.
[115] Ismail, M.E.H., Orthogonal polynomials in a certain class of polynomials, Bul. Inst.Politehnic din Iași, 20 (24) (1974), fasc., 1-2, pp. 45-50.
[116] Ismail, M.E.H., Polynomials of binomial type and approximation  theory, J. Approx. Theory, 23 (1978), pp. 177-186.
[117] Ismail, M.E.H., May, C.P., On a family of approximation operators, J. Math. Anal, Appl., 63(1978), pp. 446-462.
[118] Jakimovski, A., Leviatan, D., Generalized Szasz operators for the approximation in the infinite interval,  Mathematica, 11 (34) 1969, no.1, pp. 97-103.
[119] Joni, S.A., Lagrange inversion in higher dimensions and umbral operators, J. Linear and Multilinear Algebra, 6 (1978), pp. 111-121.
[120] Joni, S.A., Multivariate exponential operators,  Stud. Appl. Math., 72 (1980), pp. 175-182.
[121] Kim, D., Zeng, J., A combinatorial formula for the linearization coefficients of general Sheffer polynomials,  European J. Combin., 22 (2001), no.3, pp. 313-332.
[122] Kisil, V., Polynomial sequences of binomial type and path integrals,  Ann. Comb., 6 (2002), no.1, pp. 45-56.
[123] Kochneff, E., Expansionns in Laquerre polynomials of negative order,  J. Approx. Theory, 81 (1995), pp. 332-346.
[124] Kwasniewski, A.K., On extended umbral calculus, oscillator-like algebras and generalized Clifford algebra,  Adv. Appl. Clifford Algebras, 11 (2001), no.2, pp. 273-285.
[125] Kurbanov, S., Maksimov, V.,  Mutula expan sions of differential operators and divided difference operators,  Dokl. Akad, Nauk UzSSR, 4 (1986), pp. 8-9.
[126] |Kwasniewski, A.K., Gradzka, E., Further remarks on extended umbral calculus,  Proceedings of the 21st Winter School “Geometry and Physics” (Srni, 2001), Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), pp. 117-130
[127] Lewanowicz, S. , Wozny, P., Generalized Bernstein polynomials, BIT Numerical Mathematics, 44 (2004) no.1, pp. 63-78.
[128] Lindvall, T., Bernstein polynomials and the law of largest numbers,  Math. Scientist, 7 (1982), pp. 127-139.
[129] Link, R.F., Moments of discrete probability distributions derived using finite difference operators,  The American Statistician, 35 (1981), no.1, pp. 44-46.
[130] Loeb, D.E., The iterated logarithmic algebra, Advances in Mathematics 86 (1991), no.2, pp. 155-234.
[131] Loeb, D.E., Sets with negative numbers of elements, Advances in Mathematics 91 (1992), pp. 64-74.
[132] Loeb, D.E.,  The world of  generating functions and umbral calculus, In J.P. Kung (editor), Gian-Carlo Rota on Combinatorics: Introductory papers and commentaries, vol. I, Birkhauser, 1995, pp. 201-216.
[133] Lorenz, G.G., Approximation of Functions,  Holt, Rinehart and Winston, New York, 1966.
[134] Lupaș, A., On Bernstein power series, Mathematica, 8(31) (1966), no.2, pp. 287-297.
[135] Lupaș, A., Some properties  of the linear positive operators I, Mathematica 9 (32) 1967, no.1, pp. 77-83.
[136] Lupaș, A., Contribuții la teoria aproximării prin operatori liniari,  Teză de doctorat, Cluj-Napoca, 1976.
[137] Lupaș, A., A characterization of Appell polynomials,  Gazeta  Matematic[, Seria A, 5 (1984), pp. 91-93.
[138] Lupaș, A., A q-analogue of the Bernstein operator, Research Seminar on numerical analysis and statistical calculus, Preprint nr.9 (1978), pp. 85-92.
[139] Lupaș, A., Dobinsky-type formula for binomial polynomials,  Studia Univ. Babeș-Bolyai, Mathematica 33 (1988), pp. 40-44.
[140] Lupaș, A., A conjucture related to the approximation operators of binomial type, General Mathematics 6 (1998), pp. 39-49.
[141] Lupaș, A., Approximation operators of binomial type,  Proc. IDoMAT 98, New developments in approximation  theory, International Series of Numerical Mathematics vol. 132, Birkhauser Verlag, 1999, pp. 175-198.
[142] Lupaș, L., A property of the S.N. Bernstein operator,  Mathematica, 9 (32) (1967), no.2, pp. 299-301.
[143] Lupaș, L., The behaviour of Stancu operators on the cone of convex functions,  Mathematical Analysis and Approximation Theory, The 5th Romanian-German Seminar on approximation Theory and its Applications, 2002, pp. 169-172.
[144] Lupaș, L., Lupaș, A., Polynomials of binomial type and approximation operators, Studia Univ. Bab eș-Bolyai, Mathematica 32 (1987), no.4, pp. 40-44.
[145] Lupaș, A., Lupaș, L., Properties of Stancu operators,  Proceedings of the International Symposium Dedicated to the 75th anniversary of D.D. Stancu, 2002, Cluj-Napoca, pp. 258-275.
[146] Lupaș, A., Manole, C., O clasă de operatori liniari și pozitivi, Buletin Științific I.I.S., ser. teh.-mat., 3 (1980), pp. 21-25.
[147] Manole, C., Dezvoltări în serii  de polinoame Appell generalizate cu aplicații la aproximarea funcțiilor,  Teză de doctorat, Cluj-Napoca, 1984.
[148] Manole, C., Approcimation operators of binomial type, Research Seminar on Numerical and Statistical Calculus, Preprint nr. 9 (1987), pp. 93-98.
[149] Manole, C., O generalizare a operatorilor lui Favard-Szasz,  Studii și  cercetări matematice 32(6) (1980), pp. 663-668.
[150] Manole, C., Asupra unor operatori de aproximare, Buletin Științific I.I.S., ser. teh.-mat., 4 (1981), pp. 23-29.
[151] Manole, C., O generalizare a operatorilor lui D.D. Stancu, Buletin Științific I.I.S., ser. tehn.-mat., 6 (1982).
[152] Manole, C., Polinoame Appell și operatori liniari și pozitivi,  Buletin Științific I.I.S., ser. tehn.-mat., 6 (1982).
[153] Markovsky, G., Differential operators and the theory of binomial enumeration, J. Math. Anal. Appl 63 (1978), pp. 145-155.
[154] Mastroianni, G., Occorsio, M.R., Sulle derivete dei polinomi di Stancu,  Rend. Accad. Sci. MF.N., Ser.IV, 45 (1978), pp. 273-281.
[155] Mastroianni G., Occorsio, M.R.,  Una Generalizzazione dellțOperatore di Stancu,  Rend. Accad. Sci. M.F.N., Ser. IV, 45 (1978), pp. 495-511.
[156] McBride, E.B., Obtaining generating functions,  Springer Tracts in Natural Philosophy 21, 1971, Springer Verlag, Berlin.
[157] Mendez, M.A., Umbral shifts and symmetric functions of Schur type, In Mathematical essays in honor of Gian-Carlo Rota, Editori B. Sagan, R.P. Stanley, pp. 285-303, Birkhauser, 1999.
[158] Michor, P., Contributions to finite operator calculus in several variables,  J. Combin. Inform. system Sci. 4 (1979), no.1, pp. 39-65.
[159] Miheșan, V., Aproximarea funcțiilor prin operatori liniari și pozitivi, Teză de doctorat, 1997, Cluj-Napoca.
[160] Miheșan, V., Lipschitz constants for operators of binomial type of a Lipschitz continuous function,  RoGer 2000-Brașov, Schr. reihe Fachbereichs Math. Gerhard Mercator Univ., 485, Gerhard-Mercator Univ., Duisburg, 2000, 81-87.
[161] Miheșan, V., Linear and positive operators of binomial type, Proceedings of the International Symposium dedicated to the 75th anniversary of D.D. Stancu, Cluj-Napoca,  May 9-11, 2002, pp. 276-283.
[162] Miheșan, V., Positive linear operators, Editura U.T. Pres, Cluj-napoca, 2004.
[163] Miheșan, V., Positive linear operators generated by binomial expansions,  East Journal on Approximations, 10 (2004), no.3, pp. 363-370.
[164] Milne, S.C.,  An umbral calculus for polynomials characterizing U(n) tensor products, Publ. I.R.M.A., Strasbourg, 229/S-08 (1984), pp. 63-70.
[165] Moldovan, G., Asupra unor operatori de tip Bernstein, Studia U.B.B., ser. Math.-Phys. 14 (1969), no.2, pp. 59-64.
[166] Moldovan, G., Generalizări ale operatorilor lui S.N. Bernstein, Teză de doctorat, Cluj, 1971.
[167] Moldovan, G., Sur la convergence la certains operateurs convolutifs positifs, C.R., Acad. Sci, Paris, Ser. A-B 272 (1971), A 1311-A1313.
[168] Moldovan, G., Discrete convolutions and positive operators I, Annales Univ. Sci. Budapest R. Eotvos, 15 (1972), pp. 31-44.
[169] Moldovan, G., Asupra unor relații convultive, Studia Univ. Babeș-Bolyai Ser. Math.-Mech. 17 (1972), no.1, pp. 67-72.
[170] Moldovan, G., Convergența șirurilor valorilor unor operatori convultivi in R^{m}, Studia Univ. Babeș-Bolyai, Ser. Math.-Mech. 18 (1973), no.1, pp. 69-80.
[171] Moldovan, G., Proprietăți algebrice ale unei clase de operatori positivi, Studia Univ. Babeș-Bolyai, 26 (1981), no.1, pp. 9-14.
[172]  Moldovan, G., Caracterisation des fonctions conv exes a l’aide des operateurs convolutifs positifs,  Studia Univ. Babeș-Bolyai, Mathematica 31 (1986), no.3, pp. 45-51.
[173] Morikawa, H., On differential polynomials I, Nagoya Math. J., 148 (1997), pp. 39-72.
[174] Morikawa, H., On differential polynomials II, Nagoya Math. J., 148 (1997), pp. 73-112.
[175] Mullin, R., Rota, G.C., On the foundations of cominatorial theory III,  Theory of binomial enumaration. Graph Theory and its Applications, editor B. Haris, pp. 167-213, Academic Press, 1970.
[176] Niederhausen, H.,  Sequences of binomial type with polynomial coefficients.  Discrete Mathematics, 50 (1984), pp. 271-284.
[177] Niederhausen, H.,  A formula for explicit solutions of certain linear recurions on polynomial sequences, Congr. Num., 49 (1985), pp. 87-98.
[178] Niederhausen, H., Initial value probems in the logarithmic  algebra, Discrete Mathematics 94 (1991), pp. 23-37.
[179] Niederhausen, H.,  Factorial and Stirling numers in the algebra of formal Lurent series II: z^{a}-z^{b}=t,  Discrete Mathematics, 132 (1994), pp. 197-213.
[180] Niederhausen, H.,  Lattice path enumeration and umbral calculus, Advances in Combinatorial Methods and Applications (editor N. Balakrishnan), Birkhauser, Boston, 1997.
[181] Niederhausen, H., Recursive initial value problems for Sheffer sequences, Discrete Mathematics, 204 (1999), no.1-3, pp. 319-327.
[182] Niederhausen, H.,  Generalized Sheffer sequences satisfying piecewise functional conditions, Computers and Mathematics with Applications, 41 (2001), no.9, pp. 1085-1098.
[183] Niederhausen, H., Rota  ‘s umbral calculus and recursions,  Algebra Universalis, 49, (2003), no.4, pp. 435-457.
[184] Niven, I., Formal power series, Amer. Math. Monthly 76 (1969), pp. 871-889.
[185] Occorsio, D., Simoncelli, A.C., Generalized Stancu-Polya curves, Rev. Anal.Numer. Theor. Approx., 27 (1998), pp. 127-146.
[186] Oruç,  H., and Phillips, G.M., q-Bernstein polynomials and Bezier curves, J. Comput. Appl. Math., 151 (2003), no.1, pp. 1-12.
[187]  Oruç,  H., Tuncer, N.,  On the convergence and iterates of q-Bernstein polynomials,  J. Approx. Theory 117 (2002), no.2, pp. 301-313.
[188] Parrish, C., Multivariate umbral calculus,  J. Linear and Multilinear Algebra, 6 (1978), pp. 93-109.
[189] Păvăloiu, I., Rezolvarea ecuațiilor prin interpolare,  Editura Dacia, Cluj-Napoca, 1981.
[190] Pincherle, S.,  Memoire sur le calcul fonctional distributif,  Math. Ann., 49 (1987), pp. 325-382.
[191] Phillips, G.M.,  Bernstein polynomiasl based on the q-integers.  The heritage of P.L. Chebyshev: a Festschrift in honor of the 70th birthday of T.J. Rivlin, Ann. Numer. Math., 4 (1997), no.1-4, pp. 511-518.
[192] Pommeret, D.,  Orthogonal and pseudo-ortogonal multi-dimensional Appell polynomials,  Applied Mathematics and Computation, 117 (2001), no.2-3, pp. 285-299.
[193] Popa, E.C.,  A certain class of linear operators,  Rev. Anal. Numer. Theor. Approx. 26 (1997), no.1-2, pp. 185-190.
[194] Popa, E.C.,  On the Sheffer polynomials, Bul. Științ. Univ. Polith. Timiș. Ser. Mat. Fiz. 43 (57) (1998), no.1, pp. 21-23.
[195] Popa, E.C., Contribuții la calculul operatorial finit, Teză de doctorat, Cluj-Napoca, 1998.
[196] Popa, E.C.,  Some properties of two linear operators, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 12 (2001), pp. 41-47.
[197] Popa, E.C., Note on some approximation operators, Proceedings of the International  Symposium Dedicated to the 75th anniversary of D.D. Stancu, Cluj-Napoca, 2002, pp. 411-417.
[198] Popa, E.C.,  Sheffer polynomials and approximation operators, Tamakang J. Math. 34 (2003), no.2, pp. 117-127.
[199] Popoviciu, T., Remarques sur leds polynomes binomiaux,  Bul. Soc. Sci. Cluj 6 (1931), pp. 146-148.
[200] Popoviciu, T., Asupra demonstrației teoremei lui Weiserstrass cu ajutorul polinoamelor de interpolare, Lucrările Sesiunii Generale Științifice Acad. R.P. Române 1950, pp. 1664-1667.
[201] Popovici, T., Sur le reste dans certaines formules lineaires d’approximation de l’analyse,  Mathematica 1 (24) (1959), no.1, pp. 95-142.
[202] Prada, J., Senosiain, M.J.,  The classical umbral calculus: reading Blissard with the key given by G.C. Rota and D.B. Taylor,  Far East J. Math. Sci. (FJMS) 12 (1), 2004, pp. 121-136.
[203] Precupanu, T.,  Spații liniare topologice și elemente de analiză convexă, Analiza Modernă și Aplicații, Editura Academiei Române, București, 1992.
[204] Rassias, T.M.,  Some general families of generating functions for the Laguerre polynomials, J. Math. Anal. Appl. 174 (1993), pp. 528-538.
[205] Ray, N., Umbral calculus, binomial enumeration and  chromatic polynomials,  Trans. Amer. Math. Soc., 309 (1988), no.1, pp. 191-213.
[206] Ray, N., Universal constructions n umbral calculus, Mathematical essays in honor of Gian-Carlo Rota, ed. B. Sagan and Stanley, pp. 343-357, Birkhauser, 1998.
[207] Rapzet, M.,  An application of the umbral calculus,  J. Math. Anal. Appl. 149 (1990), pp. 1-16.
[208] Razpet, M.,  A new class of polynomials with applications, J. Math. Anal. Appl. 150 (1990), pp. 85-99.
[209] Razpet, M., A note on the Sheffer shift  operator,  J. Math. Anal. Appl. 150 (1990), pp. 284-288.
[210] Reiner, D.L.,  Multivariate sequences of  binomial type, Stud. Appl. Math., 57 (1977), pp. 119-133.
[211] Roman., S.,  The algebra of formal series IIIȘ Several variables, J. Approx. Theory, 26 (1979), pp. 340-381.
[212] Roman, S., The formula of Faa di Bruno,  Amer. Math. Monthly 87 (1980), pp. 805-809.
[213] Roman, S.,  Polynomials power series and interpolation, J. Math. Anal. Appl. 80 (1981), no.2, pp. 333-371.
[214] Roman, S., The theory of the umbral calculus I, J. Math. Anal. Appl. 87 (1982), pp. 58-115.
[215] Roman, S., The theory of the umbral calculus II, J. Math. Anal. Appl. 89 (1982), pp. 290-314.
[216] Roman, S., Operational formulas, Linear and multilinear algeb ra, 12 (1982), pp. 1-20.
[217] Roman, S.,  The umbral calculus, Pure and Applied Mathematics, vol. III. Academic Pres. Inc. New York, 1984, x+193 pp.
[218] Roman, S.,  More on the umbral calculus, with emphasis on the q-umbral calculus, J. Math., Anal. Appl. 107 (1985), no.1, pp. 222-254.
[219] Roman, S., The logarithmic binomial formula, Amer. Math. Monthly, 99 (1992), pp. 641-648.
[220] Roman, S., Rota, G.C., The umbral calculus, Advances in Mathematics, 27 (1978), no.2, pp. 95-188.
[221] Rota, G.C., Kahaner, F., Odlyzko, A., Finite operator calculus, J. Math. Anal. Appl. 42 (1973), no.3, pp. 684-760.
[222] Rota, G.C., Shen, J., On the combinatorics of cumulants, J. Combin. Theory Ser. A 91 (2000), no. 1-2, pp. 283-304.
[223] Rota, G.C., Taylor, B.D., The classical umbral calculus, SIAM J. Math. Anal., 25 (1994), no.2, pp. 694-711.
[224] Rota, G.C., Shen, J., Taylor, B.D., All polynomials of binomial type are represented bu Abel polynomials, Ann. Scuola Norm. Sup. Pisa CI. Sci. 25 (1998), no.3-4, pp. 731-738.
[225] Sablonniere, P., Positive Bernstein-Sheffer operators,  J. Approx. Theory 83 (1995), pp. 330-341.
[226] Schurer, F., Lineaire positive operators in approximation theory,  Math. Inst. Techn. Univ. Delft, Report, 1962.
[227] Sheffer, I.M.,  Some properties of polynomial sets of type zero, Duke Math. Journal, 5 (1939), pp. 590-622,
[228] Shisha, O., Mond, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A., 60 (1968), 1196–2000.
[229] Senato, D., Venezia, A., A set-theoretic interpretation of the umbral calculus, Computers and Mathematics with Applications 41 (2001), no. 9, 1109-1124.
[230] Singh, S. N., Asthana, S., Multivariate shift invariant operators, J. Math. Anal. Appl., 118 (1986), 422-442.
[231] Stam, A.J., Polynomials of binomial type and renewal sequences, Stud. Appl. Math., 77 (1987), 183-193.
[232] Stam, A. J., Polynomials of binomial type and compound Poisson processes, J. Math. Anal. Appl. 130 (1988), no. 2, 493–508.
[233] Stancu, D.D., The remainder of certain linear approximation formulas in two variables, J. SIAM Numer. Anal. B, 1 (1964), 137-163.
[234]   Stancu, D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roum. Math. Pures Appl., 13 (1968), no. 8, 1173-1194.
[235] Stancu, D.D., Use of probabilistic methods in the theory of uniform approximation of continuos functions, Rev. Roum. Math. Pures Appl., 14 (1969), no. 5, 673-691.
[236] Stancu, D.D., On a generalization of the Bernstein polynomials, Studia Univ. Babeş-Bolyai, Cluj, 14 (1969), 31–45.
[237] Stancu, D.D., Approximation properties of a class of linear positive operators, Studia Univ. Babeş-Bolyai, Cluj, 15 (1970), 31–38, .
[238]  Stancu, D.D., Aproximarea funcţiilor de două şi mai multe variabile printr-o clasă de polinoame de tip Bernstein, Stud. Cerc. Mat., 22 (1970), 335-345.
[239] Stancu, D. D., Recurrence relations for the central moments of certain discrete probability laws. (Romanian) Studia Univ. Babeş-Bolyai Ser. Math.-Mech. 15 (1970), no. 1, 55–62.
[240] Stancu, D.D., On the remainder of approximation of functions by means of a parameter dependent linear polynomial operator, Studia Univ. Babeş-Bolyai, Math.-Mec. 16 (1971), no. 2, 59-66.
[241] Stancu, D.D., Approximation of functions by means of some new classes of positive linear operators, Numerische Methoden der Approximationstheorie, Proc. Conf. Oberwolfach 1971 ISNM vol.16, Birkhäuser-Verlag, Basel, 1972, 187–203.
[242] Stancu, D.D., Folosirea interpolării liniare pentru construirea unei clase de polinoame Bernstein, Studii şi Cercetări Matematice, 28 (1976), no. 3, 369-379.
[243] Stancu, D.D., Curs şi culegere de probleme de analiză numerică, vol. I, Cluj–Napoca, 1977.
[244] Stancu, D.D., A study of the remainder in an approximation formula using a Favard-Szász type operator, Studia Univ. Babeş-Bolyai, Mathematica 25 (1980), no. 4, 70-76.
[245] Stancu, D.D., Quadrature formulas constructed by using certain linear positive operators, Numerical Integration, Proc. Conf. Oberwolfach, 1981 ISNM vol.57, Birkhäuser-Verlag, Basel, pp. 241–251, 1982.
[247] Stancu, D.D., A note on a multiparameter Bernstein-type approximating operator. Mathematica (Cluj) 26(49), no. 2, 153–157, 1984.
[248] Stancu, D. D., Generalized Bernstein approximating operators, Itinerant seminar on functional equations, approximation and convexity, Univ. “Babeş-Bolyai”, Cluj-Napoca, Preprint, 84-6 (1984), 185–192.
[249] Stancu, D. D., Bivariate approximation by some Bernstein-type operators, Proc. Colloq. Approx. Optim., Cluj-Napoca, 1984, 25-34.
[250] Stancu, D. D., Probabilistic approach to a class of generalized Bernstein approximating operators, Rev. Anal. Numér. Théor. Approx. 14 (1985), no. 1, 83–89.
[251] Stancu, D. D., On the representation by divided differences of the remainder in Bernstein’s approximation formule, Research seminaries: Seminar on Numerical and Statistical Calculus, Preprint no. 4 (1985), 103–110.
[252] Stancu, D.D., On the beta approximating operators of second kind, Rev. Anal. Numér. Théor. Approx. 24 (1995), no. 1-2, 231-239.
[253] Stancu, D.D., A note on the remainder in a polynomial approximation formula, Studia Univ. Babeş-Bolyai, Mathematica 41 (1996), no. 2, 95-101.
[254] Stancu, D.D., Approximation properties of a class of multiparameter positive linear operators, Approximation and optimization, Proceedings of ICAOR, Vol. I,  Transilvania Press, Cluj-Napoca, 1997, 107-120.
[255] Stancu, D.D., Representation of remainders in approximation formulae by some discrete type linear positive operators. Proceedings of the Third International Conference on Functional Analysis and Approximation Theory, Vol. II (Acquafredda di Maratea, 1996). Rend. Circ. Mat. Palermo (2) Suppl. No. 52 (1998), Vol. II, 781-791.
[256] Stancu, D.D., On the approximation of functions by means of the operators of binomial type of Tiberiu Popoviciu, Rev. Anal. Numér. Théor. Approx. 30 (2001), no. 1, pp. 95-105.
[257] Stancu, D. D., On approximation of functions by means of compound poweroid operators, Mathematical Analysis and Approximation Theory, Proceedings of RoGer 2002-Sibiu, 259-271.
[258] Stancu, D.D,. Methods for construction of liniar positive operators of approximation, Proceedings of the International Symposium dedicated to the 75th anniversary of D.D. Stancu, Cluj-Napoca, May 9-11, 2002, pp. 23-45.
[259] Stancu, D.D., Cismaşiu, C., On an approximating linear positive operator of Cheney-Sharma, Rev. Anal. Numér. Théor. Approx., 26 (1997), no.1-2, 221-227.
[260] Stancu, D.D., Coman Gh., Agratini, O., Trîmbiţaş, R., Analiză numerică şi teoria aproximării, vol. 1, Presa Universitară Clujeană, Cluj-Napoca, 2001.
[261] Stancu, D.D., Coman, Gh., Blaga, P., Analiză numerică şi teoria aproximării, vol. 2, Presa Universitară Clujeană, Cluj-Napoca, 2002.
[262] Stancu, D.D., Drane, J.W., Approximation of functions by means of the poweroid operators S_{m,r,s}^{α}. Trends in approximation theory (Nashville, TN, 2000), Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2001, 401-405
[263] Stancu, D.D., Giurgescu, P., On the evaluations of remainders in some linear approximations formulas, Proceedings of RoGer 2000, , Schriftenreihe Fachbereichs Math. Gerhard Mercator Univ, Gerhard-Mercator-Universität Duisburg, 2000, 485, 141-147.
[264] Stancu, D.D., Occorsio, M.R., On approximation by binomial operators of Tiberiu Popoviciu type, Rev. Anal. Numér. Théor. Approx., 27 (1998), no.1, 167-181.
[265] Stancu, D.D., Simoncelli, A.C., Compound poweroid operators of approximation, Proceedings of the Fourth International Conference on Functional Analysis and Approximation Theory (Acquafredda di Maratea, 2000). Rend. Circ. Mat. Palermo (2) Suppl. 68 (2002), 845-854.
[266] Stancu, D.D., Vernescu, A., Approximation of bivariate functions by means of a class of operators of Tiberiu Popoviciu type, Mathematical Reports, Bucureşti, (1) 51 (1999), no. 3, 411-419.
[267] Stancu, D.D., Vernescu, A., On some remarkable positive polynomial operators of approximation, Rev. Anal. Numér. Théor. Approx., 28 (1999), no.1, 85-95.
[268] Stancu, Felicia, Approximation of functions of two variables by means of a new class of linear positive operators. (Romanian), An. Univ. Timişoara, Ser. Sti. Mat. 11 (1973), 159-168 .
[269] Stancu, Felicia, Construction of a class of Bernstein polynomials for a rectangular domain by means of linear interpolation. (Romanian), Stud. Cercet. Mat. 28 (1976), 605-616.
[270] Stancu, Felicia, Approximation of functions of several variables by means of a class of spline operators, Preprint, “Babes-Bolyai” Univ., Fac. Math., Res. Semin. 2 (1983), 153-158.
[271]  Stancu, Felicia, Construction by linear interpolation of a class of Bernstein polynomials for a triangular domain, (Romanian), Stud. Cercet. Mat. 33 (1981), 553-563.
[272]  Steffensen, J.F., The poweroid, an extension of the mathematical notion of power, Acta Math. 73 (1941), 333-336.
[273] Sun, X.-H., New characteristics of some polynomial sequences in combinatorial theory, J. Math. Anal. Appl. 175 (1993), 199-205.
[274] Sun, X.-H., On Rota’s problem of the explicit representation for umbral operators, Discrete Mathematics, 120 (1993), 297-300.
[275] Sun, X.-H., A note on a recurrence formula, Acta Math. Hungar. 83 (1999), no. 3, 263-265.
[276] Sun, X.-H., On umbral calculus I, J. Math. Anal. Appl. 244 (2000), 279-290.
[277] Taylor, B.D., Difference equations via the classical umbral calculus, Mathematical essays in honor of Gian-Carlo Rota, ed. B. Sagan şi R. P. Stanley, Birkhäuser, 1998, 397-411.
[278] Taylor, B.D., Umbral presentations of polynomial sequences, Computers and mathematics with Applications, 41 (2001), no. 9, 1085-1098.
[279] Teugels, J.L., Bivariate sequences, Bull. Soc. Math. Belg. ser. B 42 (1990), no.1, 1-30.
[280]  Toscano, L., Operatori differenziali e polinomi di Laguerre, Le Mathematiche (Catania) 23 (1968), 197-223.
[281] Ueno, K., General power umbral calculus in several variables, J. Pure Appl. Algebra, 59 (1989), 299-308.
[282] Ueno, K., Hypergeometric series formulas through operator calculus, Funckcialaj Ekvacioij 33 (1990), 493-518.
[283] Van Hamme, L., Continuous operators which commute with translations, on the space of continuous functions on Z_{p}, p-adic Functional Analysis, eds. Martinez, De Grande, De Kimpe, 1992, 75-88.
[284] Verde-Star, L., Srivastava, H. M., Some binomial formulas of the generalized Appell form, J. Math. Anal. Appl. 274 (2002), no. 2, 755-771.
[285] Verdoodt, A., p-adic q-umbral calculus, J. Math. Anal. Appl. 198 (1996), 166-177.
[286] Vernescu, A., On the use of umbral calculus to construct approximation operators of binomial type, Studia Univ. Babeş-Bolyai 42 (1997), 111-116.
[287] Vernescu, A., Contribuţii la aplicarea calcului umbral în teoria aproximării funcţiilor, Teză de doctorat, Cluj-Napoca, 2000.
[288] Vlaic, G., Approximation properties of a class of bivariate operators of D.D. Stancu, Studia Universitatis Babeş-Bolyai, Mathematica, 42 (1997), no. 2, 109-115.
[289] Watanabe, T., On a dual relation for addition formulas of additive groups I, Nagoya Math. J., 94 (1984), 171-191.
[290]  Watanabe, T., On a dual relation for addition formulas of additive groups II, Nagoya Math. J., 97 (1985), 95-135.
[291] Wimp, J., The umbral calculus and identities for hypergeometric functions with special arguments, In Mathematical essays in honor of Gian-Carlo Rota, ed. B. Sagan şi R. P. Stanley, Birkhäuser, 1998, 439-457.
[292] Winkel, R., Generalized Bernstein polynomials and Bézier curves: an application of umbral calculus to computer aided geometric design, Adv. in Appl. Math. 27 (2001),  no. 1, 51-81.
[293] Yang, K.W., Integration in the umbral calculus, J. Math. Anal. Appl. 74 (1980), 200-211.
[294] Zeilberger, D., Some comments on Rota’s umbral calculus, J. Math. Anal. Appl. 74 (1980), 456-463.

Related Posts