Approximation properties of a family of integral type operators


In this paper we consider a general class of linear positive processes of integral type. These operators act on functions defined on unbounded interval. Among the particular cases included are Durrmeyer–Jain operators, Păltănea–Szász–Mirakjan operators and operators using Baskakov–Szász type bases. We focus on highlighting some approximation targeting different classes of functions. The main working tools are Bohman–Korovkin theorem, weighted K-functionals and moduli of smoothness.


Octavian Agratini
Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy


Positive linear operator; Weighted K-functional; Modulus of smoothness; Durrmeyer–Jain operator


Cite this paper as:

O. Agratini, Approximation properties of a family of integral type operators, Positivity, 25 (2021), 97–108,

About this paper



Publisher Name


Print ISSN

Not available yet.

Online ISSN

Not available yet.

Google Scholar Profile


[1] Abel, U., Karsli, H.,  Asymptotic expansions for Bernstein–Durrmeyer–Chlodovsky polynomials. Results Math. 73, Article 104 (2018)
[2] Agratini, O., On an approximation process of integral type. Appl. Math. Comput. 236, 195–201 (2014), MathSciNet MATH Google Scholar
[3] Agratini, O., Uniform approximation of some classes of linear positive operators expressed by series. Appl. Anal. 94(8), 1662–1669 (2015), MathSciNet Article Google Scholar
[4] Agrawal, P.N., Mohamed, A.J.: Linear combination of a new sequence of linear positive operators. Rev. Un. Mat. Argentina 42(2), 57–65 (2001), MathSciNet MATH Google Scholar
[5] Agrawal, P.N., Mohamed, A.J.: On L_{p} -approximation by a linear combination of a new sequence of linear positive operators. Turk. J. Math. 27, 389–405 (2003), Google Scholar
[6] de la Cal, J., Cárcamo, J., On uniform approximation by some classical Bernstein-type operators. J. Math. Anal. Appl. 279(2), 625–638 (2003), MathSciNet Article Google Scholar
[7] Derriennic, M.M., Sur l’approximation de fonctions intégrables sur [0,1] par des polynômes de Bernstein modifiés. J. Approx. Theory 31, 325–343 (1981), MathSciNet Article Google Scholar
[8] De Vore, R.A., Lorentz, G.G., Constructive Approximation. A Series of Comprehensive Studies in Mathematics, vol. 303. Springer, Berlin (1993), Google Scholar
[9] Dieudonné, J., Éléments d’Analyse. Tome 1: Fondements de l’Analyse Moderne. Gauthiers Villars, Paris (1968), MATH Google Scholar
[10] Ditzian, Z., Totik, V., Moduli of Smoothness. Springer Series in Computational Mathematics, vol. 9. Springer-Verlag, New York Inc., New York (1987), MATH Google Scholar
[11] Djebali, S., Uniform continuity and growth of real continuous functions. Int. J. Math. Educ. Sci. Technol. 32(5), 677–689 (2001),MathSciNet Article Google Scholar
[12] Durrmeyer, J.-L., Une formule d’inversion de la transformée de Laplace: applications à la théorie des moments. Thèse de 3e cycle, Faculté des Sciences de l’Université de Paris (1967)
[13] Gupta, V., Gupta, M.K., Rate of convergence for certain families of summation-integral type operators. J. Math. Anal. Appl. 296, 608–618 (2004), MathSciNet Article Google Scholar
[14] Jain, G.C., Approximation of functions by a new class of linear operators. J. Aust. Math. Soc. 13(3), 271–276 (1972), MathSciNet Article Google Scholar
[15] Korovkin, P.P., On convergence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk SSSR (N.S.) 90, 961–964 (1953). (Russian), MathSciNet Google Scholar
[16] May, C.P., On Phillips operators. J. Approx. Theory 20(4), 315–332 (1977), MathSciNet Article Google Scholar
[17] Mursaleen, M., Rahman, S., Ansari, K.J., On the approximation by Bézier-Păltănea operators based on Gould-Hopper polynomials. Math. Commun. 24(2), 147–164 (2019), MathSciNet MATH Google Scholar
[18] Păltănea, R., Modified Szász-Mirakjan operators of integral form. Carpathian J. Math. 24(3), 378–385 (2008), MATH Google Scholar
[19] Păltănea, R., Simultaneous approximation by a class of Szász-Mirakjan operators. J. Appl. Funct. Anal. 9(3–4), 356–368 (2014), MathSciNet MATH Google Scholar
[20] Phillips, R.S., An inversion formula for Laplace transforms and semigroups of linear operators. Ann. Math. Second Ser. 59, 325–356 (1954), Article Google Scholar


Related Posts