On the approximation of the solutions of equations in Banach spaces by sequences

Abstract

Let \(X\) be a Banach space, \(Y\) a normed space \(P:X\rightarrow Y\) a nonlinear operator and the equation \(P\left( x\right) =0\) with solution \(x^{\ast}\). Consider \(\Sigma:=\left( x_{n}\right) _{n\geq0}\) a sequence from \(X\) and define the convergence order of \(\Sigma\) with respect to the solution of equation \(P\left( x\right) =0\). We give a general result with sufficient conditions such that the sequence \(\Sigma\) converge to the solution \(x^{\ast}\) with a given convergence order.

Authors

Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)

Title

Original title (in French)

Sur l’approximation des solutions des equations à l’aide des suites à éléments dans un espace de Banach

English translation of the title

On the approximation of the solutions of equations in Banach spaces by sequences

Keywords

approximation sequences; nonlinear equations in Banach spaces; convergence order.

PDF

Cite this paper as:

I. Păvăloiu, Sur l’approximation des solutions des equations à l’aide des suites à éléments dans un espace de Banach, Anal. Numér. Théor. Approx., 5 (1976) no. 1, pp. 63-67 (in French).

About this paper

Journal

Mathematica – Revue d’Analyse Numérique et de Théorie de l’Approximation
L’Analyse Numérique et la Théorie de l’Approximation

Publisher Name

Editura Academia R. S. Romane

Paper on journal website
Print ISBN

1010-3376

Online ISBN

2457-8118

References

[1] Ghinea, M., Sur la resolution des equations operationnelles dans les espaces de Banach, Revue Francaise de traitement de l’information, 8, 3–22, (1965).

[2] Pavaloiu, I., Sur les procedes iteratifs a un ordre eleve de convergence, Mathematica, 12 (35), 2, 309–324, (1970).

[3] Traub, J. F., Iterative Methods for the Solution of Equations. Prentice-Hall Inc. Englewood Cliffs N. J. (1964).

Paper (preprint) in HTML form

On-the-approximation-of-the-solutions-of-equations-in-Banach-spaces-by-sequences
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

ON THE APPROXIMATION OF SOLUTIONS TO EQUATIONS USING SEQUENCES WITH ELEMENTS IN A BANACH SPACE

byION PĂVĂLOIU(Cluj-Napoca)

Either X X XXXa Banach space and Y Y YYYa normed linear space.
We consider the equation:
(1) P ( x ) = θ (1) P ( x ) = θ {:(1)P(x)=theta:}\begin{equation*} P(x)=\theta \tag{1} \end{equation*}(1)P(x)=θ
Or P : X Y P : X Y P:X rarr YP: X \rightarrow YP:XYAnd θ θ theta\thetaθis the zero element of the space Y Y YYY.
We designate by Σ = ( x n ) n = 0 Σ = x n n = 0 Sigma=(x_(n))_(n=0)^(oo)\Sigma=\left(x_{n}\right)_{n=0}^{\infty}Σ=(xn)n=0, a sequence with elements in space X X XXXand by k k kkkan arbitrary natural number.
DEFINITION 1. We say that the sequence Σ Σ Sigma\SigmaΣto order k k kkkin relation to the application P P PPP, if there exists a non-negative constant ρ ρ rho\rhoρwhich does not depend on n n nnn, and such that for each n = 0 , 1 n = 0 , 1 n=0.1 dotsn=0.1 \ldotsn=0,1the following inequalities are satisfied:
P ( x n + 1 ) ρ P ( x n ) k P x n + 1 ρ P x n k ||P(x_(n+1))|| <= rho||P(x_(n))||^(k)\left\|P\left(x_{n+1}\right)\right\| \leq \rho\left\|P\left(x_{n}\right)\right\|^{k}P(xn+1)ρP(xn)k
Definition 2. We say that the sequence Σ Σ Sigma\SigmaΣhas the order of convergence k k kkkcompared to the application P P PPP, if the following conditions are met:
a) the following Σ Σ Sigma\SigmaΣto order k k kkkcompared to the application P P PPP;
b) the following Σ Σ Sigma\SigmaΣthis convergent.
If S X S X S in XS \in XSXis a set with elements in space X X XXX, we will designate by S = ( S ) S = ( S ) S^(**)=int(S)S^{*}=\int(S)S=(S), the interior of this set.
Either s 2 s 2 s >= 2s \geq 2s2a given natural number and P P PPPthe approximation that determines equation (1).
In this note we will look for conditions imposed on the application P P PPPand following Σ Σ Sigma\SigmaΣ, so that the continuation Σ Σ Sigma\SigmaΣhas the order of convergence s s ssscompared
to the application P P PPPand furthermore, if we designate by x ¯ = lim n x n x ¯ = lim n x n bar(x)=lim_(n rarr oo)x_(n)\bar{x}=\lim _{n \rightarrow \infty} x_{n}x¯=limnxn, so that we then have P ( x ¯ ) = θ P ( x ¯ ) = θ P( bar(x))=thetaP(\bar{x})=\thetaP(x¯)=θ.
With respect to the problem posed above, we can state the following result.
Theorem 1. If the sequence Σ Σ Sigma\SigmaΣ, the application P P PPPand the real and positive number δ δ delta\deltaδare such that for each point x Int ( S ) x Int ( S ) x in Int(S)x \in \operatorname{Int}(S)xInt(S), Or S = { x X : x x 0 δ } S = x X : x x 0 δ S={x in X:||x-x_(0)|| <=delta}S=\left\{x \in X:\left\|x-x_{0}\right\| \leq \delta\right\}S={xX:xx0δ}, the following conditions are met:
(i) the application P P PPPadmits derivatives of the Fréchet type, up to order s s sss( s 2 s 2 s >= 2s \geq 2s2) inclusive, on each point of the set Int ( S ) ( S ) (S)(S)(S)And
sup x Int ( S ) P ( s ) ( x ) M < + ; sup x Int ( S ) P ( s ) ( x ) M < + ; su p_(x in Int(S))||P^((s))(x)|| <= M < +oo;\sup _{x \in \operatorname{Int}(S)}\left\|P^{(s)}(x)\right\| \leq M<+\infty ;supxInt(S)P(s)(x)M<+;
ii) There exists a real and non-negative constant α α alpha\alphaα, which does not depend on n, such that the following inequalities are satisfied
i = 0 s 1 1 i ! P ( i ) ( x n ) ( x n + 1 x n ) i α P ( x n ) s , i = 0 s 1 1 i ! P ( i ) x n x n + 1 x n i α P x n s , ||sum_(i=0)^(s-1)(1)/(i!)P^((i))(x_(n))(x_(n+1)-x_(n))^(i)|| <= alpha||P(x_(n))||^(s),\left\|\sum_{i=0}^{s-1} \frac{1}{i!} P^{(i)}\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)^{i}\right\| \leq \alpha\left\|P\left(x_{n}\right)\right\|^{s},i=0s11i!P(i)(xn)(xn+1xn)iαP(xn)s,
Or x n Σ S , n = 0 , 1 , x n Σ S , n = 0 , 1 , x_(n)in Sigma nnS^(**),n=0,1,dotsx_{n} \in \Sigma \cap S^{*}, n=0.1, \ldotsxnΣS,n=0,1,;
iii) There exists a real and non-negative constant β β beta\betaβwhich does not depend on n n nnnand such that the following inequalities are satisfied
x n + 1 x n β P ( x n ) , x n + 1 x n β P x n , ||x_(n+1)-x_(n)|| <= beta||P(x_(n))||,\left\|x_{n+1}-x_{n}\right\| \leq \beta\left\|P\left(x_{n}\right)\right\|,xn+1xnβP(xn),
Or
x n Σ S , n = 0 , 1 , ; x n Σ S , n = 0 , 1 , ; x_(n)in Sigma nnS^(**),quad n=0,1,dots;x_{n} \in \Sigma \cap S^{*}, \quad n=0.1, \ldots ;xnΣS,n=0,1,;
iv) constants α , β α , β alpha, beta\alpha, \betaα,βand real numbers M M MMMAnd δ δ delta\deltaδsatisfy the following inequalities:
ρ 0 = v P ( x 0 ) < 1 And β ρ 0 ( 1 ρ 0 ) v δ Or v = ( α + M β s s ! ) 1 s 1 ρ 0 = v P x 0 < 1  And  β ρ 0 1 ρ 0 v δ  Or  v = α + M β s s ! 1 s 1 {:[rho_(0)=v*||P(x_(0))|| < 1" et "(betarho_(0))/((1-rho_(0))*v) <= delta" où "],[v=(alpha+(Mbeta^(s))/(s!))^((1)/(s-1))]:}\begin{aligned} \rho_{0} & =v \cdot\left\|P\left(x_{0}\right)\right\|<1 \text { et } \frac{\beta \rho_{0}}{\left(1-\rho_{0}\right) \cdot v} \leq \delta \text { où } \\ v & =\left(\alpha+\frac{M \beta^{s}}{s!}\right)^{\frac{1}{s-1}} \end{aligned}ρ0=vP(x0)<1 And βρ0(1ρ0)vδ Or v=(α+Mβss!)1s1
then relatively to equation (1) and the following Σ Σ Sigma\SigmaΣtake place of the following properties:
j) the sequence Σ Σ Sigma\SigmaΣhas the order of convergence s and if x ¯ = lim n x n x ¯ = lim n x n bar(x)=lim_(n rarr oo)x_(n)\bar{x}=\lim _{n \rightarrow \infty} x_{n}x¯=limnxn, SO P ( x ¯ ) = θ P ( x ¯ ) = θ P( bar(x))=thetaP(\bar{x})=\thetaP(x¯)=θ.
jj) x ¯ S x ¯ S bar(x)in S\bar{x} \in Sx¯S
jjj) x ¯ n + 1 x n β ρ 0 n v x ¯ n + 1 x n β ρ 0 n v || bar(x)_(n+1)-x_(n)|| <= (betarho_(0)^(n))/(v)\left\|\bar{x}_{n+1}-x_{n}\right\| \leq \frac{\beta \rho_{0}^{n}}{v}x¯n+1xnβρ0nv
jv) x ¯ x n β ρ 0 s n v ( 1 ρ 0 s n ) x ¯ x n β ρ 0 s n v 1 ρ 0 s n ||( bar(x))-x_(n)|| <= (betarho_(0)^(s^(n)))/(v(1-rho_(0)^(s^(n))))\left\|\bar{x}-x_{n}\right\| \leq \frac{\beta \rho_{0}^{s^{n}}}{v\left(1-\rho_{0}^{s^{n}}\right)}x¯xnβρ0snv(1ρ0sn)
v) P ( x n ) ρ 0 s n v P x n ρ 0 s n v ||P(x_(n))|| <= (rho_(0)^(s^(n)))/(v)\left\|P\left(x_{n}\right)\right\| \leq \frac{\rho_{0}^{s^{n}}}{v}P(xn)ρ0snv
Proof. We will first demonstrate that the elements of the sequence Σ Σ Sigma\SigmaΣare contained in S S S^(**)S^{*}S, if the conditions of the stated theorem are met.
For x 1 x 1 x_(1)x_{1}x1we have:
(2) x 1 x 0 β P ( x 0 ) β v P ( x 0 ) v β ρ 0 v < β ρ 0 v ( 1 ρ 0 ) δ (2) x 1 x 0 β P x 0 β v P x 0 v β ρ 0 v < β ρ 0 v 1 ρ 0 δ {:(2)||x_(1)-x_(0)|| <= beta||P(x_(0))|| <= (beta v||P(x_(0))||)/(v) <= (betarho_(0))/(v) < (betarho_(0))/(v(1-rho_(0))) <= delta:}\begin{equation*} \left\|x_{1}-x_{0}\right\| \leq \beta\left\|P\left(x_{0}\right)\right\| \leq \frac{\beta v\left\|P\left(x_{0}\right)\right\|}{v} \leq \frac{\beta \rho_{0}}{v}<\frac{\beta \rho_{0}}{v\left(1-\rho_{0}\right)} \leq \delta \tag{2} \end{equation*}(2)x1x0βP(x0)βvP(x0)vβρ0v<βρ0v(1ρ0)δ
from which it follows that x 1 S x 1 S x_(1)inS^(**)x_{1} \in S^{*}x1S. Indeed, using the generalized Taylor formula we deduce
P ( x 1 ) P ( x 1 ) i = 0 s 1 1 i ! P ( i ) ( x 0 ) ( x 1 x 0 ) i + i = 0 s 1 1 i ! P ( i ) ( x 0 ) ( x 1 x 0 ) i M s ! x 1 x 0 s + α P ( x 0 ) s ( M β s s ! + α ) P ( x 0 ) s P x 1 P x 1 i = 0 s 1 1 i ! P ( i ) x 0 x 1 x 0 i + i = 0 s 1 1 i ! P ( i ) x 0 x 1 x 0 i M s ! x 1 x 0 s + α P x 0 s M β s s ! + α P x 0 s {:[||P(x_(1))|| <= ||P(x_(1))-sum_(i=0)^(s-1)(1)/(i!)P^((i))(x_(0))(x_(1)-x_(0))^(i)||],[+||sum_(i=0)^(s-1)(1)/(i!)P^((i))(x_(0))(x_(1)-x_(0))^(i)||],[ <= (M)/(s!)||x_(1)-x_(0)||^(s)+alpha||P(x_(0))||^(s)],[ <= ((Mbeta^(s))/(s!)+alpha)*||P(x_(0))||^(s)]:}\begin{aligned} \left\|P\left(x_{1}\right)\right\| \leq & \left\|P\left(x_{1}\right)-\sum_{i=0}^{s-1} \frac{1}{i!} P^{(i)}\left(x_{0}\right)\left(x_{1}-x_{0}\right)^{i}\right\| \\ & +\left\|\sum_{i=0}^{s-1} \frac{1}{i!} P^{(i)}\left(x_{0}\right)\left(x_{1}-x_{0}\right)^{i}\right\| \\ \leq & \frac{M}{s!}\left\|x_{1}-x_{0}\right\|^{s}+\alpha\left\|P\left(x_{0}\right)\right\|^{s} \\ \leq & \left(\frac{M \beta^{s}}{s!}+\alpha\right) \cdot\left\|P\left(x_{0}\right)\right\|^{s} \end{aligned}P(x1)P(x1)i=0s11i!P(i)(x0)(x1x0)i+i=0s11i!P(i)(x0)(x1x0)iMs!x1x0s+αP(x0)s(Mβss!+α)P(x0)s
from which we deduce:
(3) P ( x 1 ) v s 1 P ( x 0 ) s (3) P x 1 v s 1 P x 0 s {:(3)||P(x_(1))|| <= v^(s-1)*||P(x_(0))||^(s):}\begin{equation*} \left\|P\left(x_{1}\right)\right\| \leq v^{s-1} \cdot\left\|P\left(x_{0}\right)\right\|^{s} \tag{3} \end{equation*}(3)P(x1)vs1P(x0)s
We assume that the following properties are met:
  1. x i S , i = 0 , 1 , , n x i S , i = 0 , 1 , , n x_(i)inS^(**),quad i=0,1,dots,nx_{i} \in S^{*}, \quad i=0,1, \ldots, nxiS,i=0,1,,n;
  2. x i x i 1 β v ρ 0 s i 1 , i = 1 , 2 , , n x i x i 1 β v ρ 0 s i 1 , i = 1 , 2 , , n ||x_(i)-x_(i-1)|| <= (beta )/(v)*rho_(0)^(s^(i-1)),quad i=1,2,dots,n\left\|x_{i}-x_{i-1}\right\| \leq \frac{\beta}{v} \cdot \rho_{0}^{s^{i-1}}, \quad i=1,2, \ldots, nxixi1βvρ0si1,i=1,2,,n;
  3. P ( x i ) v s 1 P ( x i 1 ) s , i = 1 , 2 , , n P x i v s 1 P x i 1 s , i = 1 , 2 , , n ||P(x_(i))|| <= v^(s-1)||P(x_(i-1))||^(s),quad i=1,2,dots,n\left\|P\left(x_{i}\right)\right\| \leq v^{s-1}\left\|P\left(x_{i-1}\right)\right\|^{s}, \quad i=1,2, \ldots, nP(xi)vs1P(xi1)s,i=1,2,,n,
    and in these hypotheses we will demonstrate that:
x n + 1 S , x n + 1 x n β v ρ 0 s n et P ( x n + 1 ) v s 1 P ( x n ) s . x n + 1 S , x n + 1 x n β v ρ 0 s n  et  P x n + 1 v s 1 P x n s . x_(n+1)inS^(**),quad||x_(n+1)-x_(n)|| <= (beta )/(v)rho_(0)^(s^(n))quad" et "quad||P(x_(n+1))|| <= v^(s-1)*||P(x_(n))||^(s).x_{n+1} \in S^{*}, \quad\left\|x_{n+1}-x_{n}\right\| \leq \frac{\beta}{v} \rho_{0}^{s^{n}} \quad \text { et } \quad\left\|P\left(x_{n+1}\right)\right\| \leq v^{s-1} \cdot\left\|P\left(x_{n}\right)\right\|^{s} .xn+1S,xn+1xnβvρ0sn And P(xn+1)vs1P(xn)s.
From what we have demonstrated above, it follows that properties 1)-3) are verified for i = 1 i = 1 i=1i=1i=1.
By multiplying by v v vvvinequality 3) and denote by ρ i = v P ( x i ) , i = 1 , 2 , , n ρ i = v P x i , i = 1 , 2 , , n rho_(i)=v||P(x_(i))||,i=1,2,dots,n\rho_{i}=v\left\|P\left(x_{i}\right)\right\|, i= 1,2, \ldots, nρi=vP(xi),i=1,2,,n, we easily deduce the inequalities:
(4) ρ i ρ 0 s i , i = 1 , 2 , , n . (4) ρ i ρ 0 s i , i = 1 , 2 , , n . {:(4)rho_(i) <= rho_(0)^(s^(i))","quad i=1","2","dots","n.:}\begin{equation*} \rho_{i} \leq \rho_{0}^{s^{i}}, \quad i=1,2, \ldots, n . \tag{4} \end{equation*}(4)ρiρ0si,i=1,2,,n.
From inequalities (4) and (iii) we deduce
(5) x n + 1 x n β P ( x n ) = β v p ( x n ) v β ρ 0 s n v . (5) x n + 1 x n β P x n = β v p x n v β ρ 0 s n v . {:(5)||x_(n+1)-x_(n)|| <= beta||P(x_(n))||=(beta v||p(x_(n))||)/(v) <= (betarho_(0)^(s^(n)))/(v).:}\begin{equation*} \left\|x_{n+1}-x_{n}\right\| \leq \beta\left\|P\left(x_{n}\right)\right\|=\frac{\beta v\left\|p\left(x_{n}\right)\right\|}{v} \leq \frac{\beta \rho_{0}^{s^{n}}}{v} . \tag{5} \end{equation*}(5)xn+1xnβP(xn)=βvp(xn)vβρ0snv.
From (5) we deduce:
x n + 1 x 0 i = 0 n x i + 1 x i β v i = 0 n ρ 0 s i < β ρ 0 v ( 1 ρ 0 ) δ x n + 1 x 0 i = 0 n x i + 1 x i β v i = 0 n ρ 0 s i < β ρ 0 v 1 ρ 0 δ ||x_(n+1)-x_(0)|| <= sum_(i=0)^(n)||x_(i+1)-x_(i)|| <= (beta )/(v)sum_(i=0)^(n)rho_(0)^(s^(i)) < (betarho_(0))/(v(1-rho_(0))) <= delta\left\|x_{n+1}-x_{0}\right\| \leq \sum_{i=0}^{n}\left\|x_{i+1}-x_{i}\right\| \leq \frac{\beta}{v} \sum_{i=0}^{n} \rho_{0}^{s^{i}}<\frac{\beta \rho_{0}}{v\left(1-\rho_{0}\right)} \leq \deltaxn+1x0i=0nxi+1xiβvi=0nρ0si<βρ0v(1ρ0)δ
from which it results x n + 1 S x n + 1 S x_(n+1)inS^(**)x_{n+1} \in S^{*}xn+1S.
Inequality 2) for i = n + 1 i = n + 1 i=n+1i=n+1i=n+1results from (5).
For the last inequality we have:
P ( x n + 1 ) P ( x n + 1 ) i = 0 s 1 1 i ! P ( i ) ( x n ) ( x n + 1 x n ) i + i = 0 s 1 1 i ! P ( i ) ( x n ) ( x n + 1 x n ) i ( α + M β s s ! ) P ( x n ) = v s 1 P ( x n ) s . P x n + 1 P x n + 1 i = 0 s 1 1 i ! P ( i ) x n x n + 1 x n i + i = 0 s 1 1 i ! P ( i ) x n x n + 1 x n i α + M β s s ! P x n = v s 1 P x n s . {:[||P(x_(n+1))|| <= ||P(x_(n+1))-sum_(i=0)^(s-1)(1)/(i!)P^((i))(x_(n))(x_(n+1)-x_(n))^(i)||],[+||sum_(i=0)^(s-1)(1)/(i!)P^((i))(x_(n))(x_(n+1)-x_(n))^(i)||],[ <= (alpha+(Mbeta^(s))/(s!))*||P(x_(n))||=v^(s-1)||P(x_(n))||^(s).]:}\begin{aligned} \left\|P\left(x_{n+1}\right)\right\| \leq & \left\|P\left(x_{n+1}\right)-\sum_{i=0}^{s-1} \frac{1}{i!} P^{(i)}\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)^{i}\right\| \\ & +\left\|\sum_{i=0}^{s-1} \frac{1}{i!} P^{(i)}\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)^{i}\right\| \\ & \leq\left(\alpha+\frac{M \beta^{s}}{s!}\right) \cdot\left\|P\left(x_{n}\right)\right\|=v^{s-1}\left\|P\left(x_{n}\right)\right\|^{s} . \end{aligned}P(xn+1)P(xn+1)i=0s11i!P(i)(xn)(xn+1xn)i+i=0s11i!P(i)(xn)(xn+1xn)i(α+Mβss!)P(xn)=vs1P(xn)s.
Therefore properties 1)-3) are fulfilled for each n = 1 , 2 , n = 1 , 2 , n=1,2,dotsn=1,2, \ldotsn=1,2,
Property 3) shows that the sequence Σ Σ Sigma\SigmaΣto order s s sss.
We will demonstrate in the following that the sequence Σ Σ Sigma\SigmaΣis convergent. To do this we will first demonstrate that the sequence Σ Σ Sigma\SigmaΣis fundamental.
Let n n nnnAnd p p ppptwo natural numbers.
We have:
(6) x n + p x n i = n n + p 1 x i + 1 x n β v i = n n + p 1 ρ 0 s i β ρ 0 s n v ( 1 ρ 0 s n ) . (6) x n + p x n i = n n + p 1 x i + 1 x n β v i = n n + p 1 ρ 0 s i β ρ 0 s n v 1 ρ 0 s n . {:(6)||x_(n+p)-x_(n)|| <= sum_(i=n)^(n+p-1)||x_(i+1)-x_(n)|| <= (beta )/(v)sum_(i=n)^(n+p-1)rho_(0)^(s^(i)) <= (betarho_(0)^(s^(n)))/(v(1-rho_(0)^(s^(n)))).:}\begin{equation*} \left\|x_{n+p}-x_{n}\right\| \leq \sum_{i=n}^{n+p-1}\left\|x_{i+1}-x_{n}\right\| \leq \frac{\beta}{v} \sum_{i=n}^{n+p-1} \rho_{0}^{s^{i}} \leq \frac{\beta \rho_{0}^{s^{n}}}{v\left(1-\rho_{0}^{s^{n}}\right)} . \tag{6} \end{equation*}(6)xn+pxni=nn+p1xi+1xnβvi=nn+p1ρ0siβρ0snv(1ρ0sn).
From inequality (6) it follows that Σ Σ Sigma\SigmaΣThis convergent.
Let x ¯ = lim n x n x ¯ = lim n x n bar(x)=lim_(n rarr oo)x_(n)\bar{x}=\lim _{n \rightarrow \infty} x_{n}x¯=limnxn, then from (6) the inequality results:
x ¯ x n ρ 0 s n v ( 1 ρ 0 s n ) , n = 0 , 1 , x ¯ x n ρ 0 s n v 1 ρ 0 s n , n = 0 , 1 , ||( bar(x))-x_(n)|| <= (rho_(0)^(s^(n)))/(v(1-rho_(0)^(s^(n)))),quad n=0,1,dots\left\|\bar{x}-x_{n}\right\| \leq \frac{\rho_{0}^{s^{n}}}{v\left(1-\rho_{0}^{s^{n}}\right)}, \quad n=0,1, \ldotsx¯xnρ0snv(1ρ0sn),n=0,1,
It follows that x ¯ S x ¯ S bar(x)in S\bar{x} \in Sx¯Sand we also obtained the inequality jv). The inequality jjj) results from (6) for p = 1 p = 1 p=1p=1p=1.
It remains to be demonstrated that x ¯ x ¯ bar(x)\bar{x}x¯is the solution to equation (1).
We have proved that inequality (4) is true for each n = 0 , 1 , n = 0 , 1 , n=0,1,dotsn=0,1, \ldotsn=0,1,. So we get:
lim n ρ n = 0 lim n ρ n = 0 lim_(n rarr oo)rho_(n)=0\lim _{n \rightarrow \infty} \rho_{n}=0limnρn=0
but ρ n = v P ( x n ) ρ n = v P x n rho_(n)=v||P(x_(n))||\rho_{n}=v\left\|P\left(x_{n}\right)\right\|ρn=vP(xn)and so lim n P ( x n ) = P ( x ¯ ) = θ lim n P x n = P ( x ¯ ) = θ lim_(n rarr oo)P(x_(n))=P( bar(x))=theta\lim _{n \rightarrow \infty} P\left(x_{n}\right)=P(\bar{x})=\thetalimnP(xn)=P(x¯)=θ
This completes the proof of the theorem . \square

BIBLIOGRAPHY

[1] Ghinea, M., On the resolution of operational equations in Banach spaces, Revue Francaise de traitement de l'information, 8, 3-22, (1965).
[2] Păvăloiu, I, On iterative processes with a high order of conyergency, Mathematica, 12 (35), 2, 309-324, (1970).
[3] Traub, JF, Iterative Methods for the Solution of Equations. Prentice-Hall Inc. Englewood Cliffs NJ (1964).
Received on30.VI. 1976
1976

Related Posts