Posts by Iulia Buda



Teodora Cătinaș
Babeș-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania

Iulia Buda
Babeș-Bolyai University, Faculty of Mathematics and Computer Science
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy


Cheney-Sharma operator; Stancu operator; modulus of smoothness; Lipschitz function

Paper coordinates

T. Cătinaș, I. Buda, An extension of the Cheney-Sharma operator of the first kind, J. Numer. Anal. Approx. Theory, 52 (2023) no. 2, pp. 172–181,


About this paper


Journal of Numerical Analysis and Approximation Theory

Publisher Name

Publishing House of the Romanian Academy

Print ISSN


Online ISSN


google scholar link

[1] O. Agratini,Approximation by linear operators, Cluj University Press, 2000.
[2] G. Bascanbaz-Tunca, A. Erencin, F. Tasdelen, Some properties of Bernstein type Cheney and Sharma Operators, General Mathematics,24(2016), pp. 17–25.
[3] E.W. Cheney, A. Sharma, On  a  generalization  of  Bernstein  polynomials, Riv. Mat.Univ. Parma,2(1964), pp. 77–84.
[4] T. Bostanci, G. Bascanbaz-Tunca, A Stancu type extension of Cheney and Sharmaoperator, J. Numer. Anal. Approx. Theory,47(2018), pp. 124–134,
[5] D.D. Stancu, C. Cismasiu, On an approximating linear positive operator of Cheney-Sharma, Rev. Anal. Numer. Theor. Approx.,26(1997), pp. 221–227,
[6] D.D. Stancu, Quadrature  formulas  constructed  by  using  certain  linear  positive  operators,  Numerical  Integration  (Proc.  Conf.,  Oberwolfach,  1981),  ISNM  57  (1982),  pp.241–251,
[7] D.D. Stancu, G. Coman, O. Agratini, R.T. Trımbitas, P. Blaga, I. Chiorean, Analiza  numerica  si  teoria  aproximarii, Presa Universitara Clujeana, 2001 (in Romanian).

Related Posts