]1] C.D. Alecsa, I. Boros, F. Frank, P. Knabner, M. Nechita, A. Prechtel, A.RuppandN. Suciu,Numerical benchmark study for fow in heterogeneous aquifers,Adv. Water Resour.,138(2020), 103558.https://doi.org/10.1016/j.advwatres.2020.103558
[2] E. Catinas, A survey on the high convergence orders and computational convergenceorders of sequences, Appl. Math. Comput.,343(2019), pp. 1–20.
https://doi.org/10.1016/j.amc.2018.08.006
[3] E. Catinas, How many steps stil l left to x*?, SIAM Rev.,63(2021) no. 3, pp. 585–624.https://doi.org/10.1137/19M1244858
[4] D. Illiano, I.S. Pop and F.A. Radu,Iterative schemes for surfactant transport inporous media, Comput. Geosci.,25(2021), pp. 805–822.https://doi.org/10.1007/s10596-020-09949-2
[5] P. Knabner, S. Bitterlich, R. Iza Teran, R., A. Prechtel and E. Schneid, Influence of surfactants on spreading of contaminants and soil remediation, pp.152–161,in Jager, W., Krebs, H.J. (Eds.),Mathematics–Key Technology for the Future, Springer,Berlin, Heidelberg, 2003.https://doi.org/10.1007/978-3-642-55753-8_12
[6] P. Knabne rand L. Angermann, Numerical Methods for El liptic and Parabolic PartialDifferential Equations, Springer, New York, 2003.https://doi.org/10.1007/b97419
[7] F. List and F.A. Radu, A study on iterative methods for solving Richards’ equa-tion, Comput. Geosci.,20(2016) no. 2, pp. 341–353.https://doi.org/10.1007/s10596-016-9566-3
[8] I.S. Pop, F.A. Radu and P. Knabner,Mixed finite elements for the Richards’ equation:linearization procedure, J. Comput. Appl. Math.,168(2004) no. 1, pp. 365–373.https://doi.org/10.1016/j.cam.2003.04.008
[9] F.A. Radu, K. Kumar, J.M. Nordbotten and I.S. Pop, A robust, mass con-servative scheme for two-phase flow in porous media including Holder continuous nonlinearities, IMA Journal Numer. Anal.,38(2018) no. 2, pp. 884–920. url-https://doi.org/10.1093/imanum/drx032
[10] P.J. Roache,Code verification by the method of manufactured solutions, J. Fluids Eng.,124(2002) no. 1, pp. 4–10.http://dx.doi.org/10.1115/1.1436090
[11] C.J. Roy,Review of code and solution verification procedures for computational simu-lation, J. Comput. Phys.,205(2005), pp. 131–156.
https://doi.org/10.1016/j.jcp.2004.10.036
[12] J.S. Stokke, K. Mitra, E. Storvik, J.W. BothandF.A. Radu, An adaptivesolution strategy for Richards’ equation, Comput. Math. Appl.,152(2023), pp. 155–167.https://doi.org/10.1016/j.camwa.2023.10.020
[13] J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM,2004.https://doi.org/10.1137/1.9780898717938
[14] N. Suciu,Diffusion in Random Fields. Applications to Transport in Groundwater,Birkhauser, Cham, 2019.https://doi.org/10.1007/978-3-030-15081-5
[15] N. Suciu, Global Random Walk Solutions for Flow and Transport in Porous Media,inF.J. VermolenandC. Vuik(eds.),Numerical Mathematics and Advanced Applica-tions ENUMATH 2019, Lecture Notes in Computational Science and Engineering,139,Springer Nature, Switzerland, 2020.https://doi.org/10.1007/978-3-030-55874-1_93
[16] N. Suciu, D. Illiano, A. Prechtel and F.A. Radu, Global random walk solversfor ful ly coupled flow and transport in saturated/unsaturated porous media, Adv. WaterResour.,152(2021), 103935.https://doi.org/10.1016/j.advwatres.2021.103935
[17] N. Suciu and F.A. Radu, Global random walk solvers for reactive transport andbiodegradation processes in heterogeneous porous media, Adv. Water Res.,166(2022),104268.https://doi.org/10.1016/j.advwatres.2022.104268
[18] N. Suciu, F.A. Radu and I.S. Pop, Space-time upscaling of reactive transport inporous media, Adv. Water Resour.,176(2023), 104443.http://dx.doi.org/10.1016/j.advwatres.2023.104443
[19] N. Suciu, F.A. Radu, J.S. Stokke, E. Catinas and A. Malina, Computa-tional orders of convergence of iterative methods for Richards’ equation, arXiv preprintarXiv:2402.00194 (2024),https://doi.org/10.48550/arXiv.2402.00194
[20] C. Vamos, N. Suciu and M Peculea, Numerical model ling of the one-dimensional diffusion by random walkers, Rev. Anal. Numer. Theor. Approx.,26(1997) nos. 1–2, pp. 237–247.https://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art32/
[21] C. Vamos, N. Suciu and H. Vereecken, Generalized random walk algorithm for thenumerical modeling of complex diffusion processes, J. Comput. Phys.,186(2003), pp.527–544.https://doi.org/10.1016/S0021-9991(03)00073-1Received by the editors: May 17, 2024; accepted: June 26, 2024; published online: July11, 2024.