Posts by Nicolae Suciu

Abstract


Nonlinearities of coupled flow and transport problems for partially saturated porous media are solved with explicit iterative L-schemes. Their behavior is analyzed with the aid of the computational orders of convergence. This approach allows highlighting the influence of the truncation errors in the numerical schemes on the convergence of the iterations. Further, by using manufactured exact solutions, error-based orders of convergence of the iterative schemes are assessed and the convergence of the numerical solutions is demonstrated numerically through grid-convergence tests.

Authors

Nicolae Suciu
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania 

Florin A. Radu
Center for Modeling of Coupled Subsurface Dynamics, University of Bergen, Norway 

Emil Cătinaş
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania 

Keywords

Richards’ equation; coupled flow and transport; finite differences; global random walk; iterative schemes; convergence order

Paper coordinates

N. Suciu, F.A. Radu, E. Cătinaş, Iterative schemes for coupled flow and transport in porous media – Convergence and truncation errors, J. Numer. Anal. Approx. Theory, 53 (2024) no. 1, pp. 158-183, https://doi.org/10.33993/jnaat531-1429

PDF

About this paper

Journal

Journal of Numerical Analysis and Approximation Theory

Publisher Name

Romanian Academy Publishing House

Editura Academiei Romane

Print ISSN

2457-6794

Online ISSN

2501-059X

google scholar link

]1] C.D. Alecsa, I. Boros, F. Frank, P. Knabner, M. Nechita, A. Prechtel, A.RuppandN. Suciu,Numerical benchmark study for fow in heterogeneous aquifers,Adv. Water Resour.,138(2020), 103558.https://doi.org/10.1016/j.advwatres.2020.103558
[2] E. Catinas, A survey on the high convergence orders and computational convergenceorders of sequences, Appl. Math. Comput.,343(2019), pp. 1–20.
https://doi.org/10.1016/j.amc.2018.08.006
[3] E. Catinas, How many steps stil l left to x*?, SIAM Rev.,63(2021) no. 3, pp. 585–624.https://doi.org/10.1137/19M1244858
[4] D. Illiano, I.S. Pop and F.A. Radu,Iterative schemes for surfactant transport inporous media, Comput. Geosci.,25(2021), pp. 805–822.https://doi.org/10.1007/s10596-020-09949-2
[5] P. Knabner, S. Bitterlich, R. Iza Teran, R., A. Prechtel and E. Schneid, Influence of surfactants on spreading of contaminants and soil remediation, pp.152–161,in Jager, W., Krebs, H.J. (Eds.),Mathematics–Key Technology for the Future, Springer,Berlin, Heidelberg, 2003.https://doi.org/10.1007/978-3-642-55753-8_12
[6] P. Knabne rand L. Angermann, Numerical Methods for El liptic and Parabolic PartialDifferential Equations, Springer, New York, 2003.https://doi.org/10.1007/b97419
[7] F. List and F.A. Radu, A study on iterative methods for solving Richards’ equa-tion, Comput. Geosci.,20(2016) no. 2, pp. 341–353.https://doi.org/10.1007/s10596-016-9566-3

[8] I.S. Pop, F.A. Radu and P. Knabner,Mixed finite elements for the Richards’ equation:linearization procedure, J. Comput. Appl. Math.,168(2004) no. 1, pp. 365–373.https://doi.org/10.1016/j.cam.2003.04.008
[9] F.A. Radu, K. Kumar, J.M. Nordbotten and I.S. Pop, A robust, mass con-servative scheme for two-phase flow in porous media including Holder continuous nonlinearities, IMA Journal Numer. Anal.,38(2018) no. 2, pp. 884–920. url-https://doi.org/10.1093/imanum/drx032
[10] P.J. Roache,Code verification by the method of manufactured solutions, J. Fluids Eng.,124(2002) no. 1, pp. 4–10.http://dx.doi.org/10.1115/1.1436090
[11] C.J. Roy,Review of code and solution verification procedures for computational simu-lation, J. Comput. Phys.,205(2005), pp. 131–156.
https://doi.org/10.1016/j.jcp.2004.10.036
[12] J.S. Stokke, K. Mitra, E. Storvik, J.W. BothandF.A. Radu, An adaptivesolution strategy for Richards’ equation, Comput. Math. Appl.,152(2023), pp. 155–167.https://doi.org/10.1016/j.camwa.2023.10.020
[13] J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM,2004.https://doi.org/10.1137/1.9780898717938
[14] N. Suciu,Diffusion in Random Fields. Applications to Transport in Groundwater,Birkhauser, Cham, 2019.https://doi.org/10.1007/978-3-030-15081-5
[15] N. Suciu, Global Random Walk Solutions for Flow and Transport in Porous Media,inF.J. VermolenandC. Vuik(eds.),Numerical Mathematics and Advanced Applica-tions ENUMATH 2019, Lecture Notes in Computational Science and Engineering,139,Springer Nature, Switzerland, 2020.https://doi.org/10.1007/978-3-030-55874-1_93
[16] N. Suciu, D. Illiano, A. Prechtel and F.A. Radu, Global random walk solversfor ful ly coupled flow and transport in saturated/unsaturated porous media, Adv. WaterResour.,152(2021), 103935.https://doi.org/10.1016/j.advwatres.2021.103935
[17] N. Suciu and F.A. Radu, Global random walk solvers for reactive transport andbiodegradation processes in heterogeneous porous media, Adv. Water Res.,166(2022),104268.https://doi.org/10.1016/j.advwatres.2022.104268
[18] N. Suciu, F.A. Radu and I.S. Pop, Space-time upscaling of reactive transport inporous media, Adv. Water Resour.,176(2023), 104443.http://dx.doi.org/10.1016/j.advwatres.2023.104443
[19] N. Suciu, F.A. Radu, J.S. Stokke, E. Catinas and A. Malina, Computa-tional orders of convergence of iterative methods for Richards’ equation, arXiv preprintarXiv:2402.00194 (2024),https://doi.org/10.48550/arXiv.2402.00194
[20] C. Vamos, N. Suciu and M Peculea, Numerical model ling of the one-dimensional diffusion by random walkers, Rev. Anal. Numer. Theor. Approx.,26(1997) nos. 1–2, pp. 237–247.https://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art32/
[21] C. Vamos, N. Suciu and H. Vereecken, Generalized random walk algorithm for thenumerical modeling of complex diffusion processes, J. Comput. Phys.,186(2003), pp.527–544.https://doi.org/10.1016/S0021-9991(03)00073-1Received by the editors: May 17, 2024; accepted: June 26, 2024; published online: July11, 2024.

Paper in HTML form

2024_1_Suciu_Radu_Catinas+(3)

ITERATIVE SCHEMES FOR COUPLED FLOW AND TRANSPORT IN POROUS MEDIA - CONVERGENCE AND TRUNCATION ERRORS

NICOLAE SUCIU 1 1 ^(1){ }^{1}1, FLORIN A. RADU 2 2 ^(2){ }^{2}2, and EMIL CĂTINAŞ 1 1 ^(1){ }^{1}1

Abstract

Nonlinearities of coupled flow and transport problems for partially saturated porous media are solved with explicit iterative L L LLL-schemes. Their behavior is analyzed with the aid of the computational orders of convergence. This approach allows highlighting the influence of the truncation errors in the numerical schemes on the convergence of the iterations. Further, by using manufactured exact solutions, error-based orders of convergence of the iterative schemes are assessed and the convergence of the numerical solutions is demonstrated numerically through grid-convergence tests.

MSC. 35G31, 76S05, 76R50, 65M06, 65C35.
Keywords. Richards' equation, coupled flow and transport, finite differences, global random walk, iterative schemes, convergence order.

1. INTRODUCTION

Flow and reactive transport in porous media are modeled by systems of coupled nonlinear partial differential equations. The seepage velocity through the bulk of porous medium is proportional to the hydraulic conductivity and to the gradient of the pressure head, according to Darcy's law, which combined with the conservation equation results in the Richards' equation. In its general, mixed formulation, Richards' equation contains two unknown functions, the volumetric water content and the pressure head. Therefore, it needs to be closed by constitutive relationships for the dependence of the water content on the pressure head and the dependence of the hydraulic conductivity on the water content. Such relationships are highly nonlinear, e.g., the exponential model or the van Genuchten-Mualem model, with discontinuous derivatives when the negative pressure, in unsaturated flow regime, changes into the positive pressure characterizing the saturated regime with constant water content and hydraulic conductivity. Consequently, the resulting Richards' equation for the pressure head is non-linear and parabolic-elliptic degenerate.
The concentration of the chemical compounds transported in soils and aquifers is governed by parabolic advection-diffusion-reaction equations, with flow velocity provided by the solution of the Richards' equation. In the presence of capillarity effects, for instance in problems of surfactant transport, the water content depends on pressure as well as on concentration and the flow and transport equations are coupled in a nonlinear way in both directions. Solving these coupled nonlinear problems requires iterative schemes that use different linearization techniques, such as Newton's method, (modified) Picard method, L L LLL-scheme or their combinations. While Newton's method is second order (under usual circumstances) but only locally convergent, which means that it converges only if the initial choice is not too far from the solution, the L L LLL-scheme is a robust method unconditionally first order convergent, the robustness of the Picard method being somewhere in between [7]. A significant improvement of the convergence can be achieved by starting with L L LLL-scheme iterations and, once an appropriate initial solution is found, switching to the faster and higher order convergent Newton's method [12].
The L L LLL-scheme can be thought as a quasi-Newton method, with derivative of the water content with respect of the pressure head replaced by a positive constant L L LLL. This makes it robust and independent of the initial choice, at the price of being only first order convergent. Given its simplicity, the L L LLL-scheme is particularly suitable in solving intricate and fully coupled nonlinear problems. Most of the implementations of the L L LLL-scheme are implicit linearizations based on finite element [8,7,12] or finite volume [9,4] discretizations. Explicit L L LLL-schemes based on finite difference (FD) and random walk methods, introduced in [16], have been successfully used to solve coupled problems of flow and biodegradation in partially saturated soils and saturated heterogeneous aquifers [17]. The reason of using explicit L L LLL-schemes is that numerical solutions of the flow equations are obtained on the same regular grid on which reactive transport is solved with random walk algorithms free of numerical diffusion [16].
Theoretical proofs of convergence of the linearization schemes essentially show that the errors of the iterative solutions with respect to the exact solution of the nonlinear problem can be made arbitrarily small [7]. However, even if the numerical analysis of the scheme provides estimates of the convergence rates, in general it does not produce a thorough and comprehensive characterization of the type of convergence behavior, by predicting the upper/lower limits of the rates as in the theory of the convergent sequences [ 2 , 3 ] [ 2 , 3 ] [2,3][2,3][2,3]. The analysis can be completed either by assessing computational orders of convergence, with sequences of successive corrections, or by assessing error-based orders, when exact solutions of the problem are available [19]. This approach could be mainly useful when the constraints required by the theoretical proofs are hard to meet, or when there are no convergence proofs at all, but, in practice, the convergence of the scheme is demonstrated numerically.
We investigate in this framework the convergence of the explicit L L LLL-scheme through computational and error-based orders of convergence on three numerical examples: solutions of Richards' equation, fully coupled flow and surfactant transport, and coupled flow and transport with van Genuchten-Mualem parametrization.

2. COUPLED FLOW AND TRANSPORT IN POROUS MEDIA

We consider in the following the fully coupled one-dimensional problem of flow governed by Richards' equation and transport of a single chemical species governed by an advection-diffusion-reaction equation,
(1) t θ ( ψ , c ) z [ K ( θ ( ψ , c ) ) z ( ψ + z ) ] = 0 (2) t [ θ ( ψ , c ) c ] z [ D z c q c ] = R ( c ) (1) t θ ( ψ , c ) z K ( θ ( ψ , c ) ) z ( ψ + z ) = 0 (2) t [ θ ( ψ , c ) c ] z D z c q c = R ( c ) {:[(1)(del)/(del t)theta(psi","c)-(del)/(del z)[K(theta(psi,c))(del)/(del z)(psi+z)]=0],[(2)(del)/(del t)[theta(psi","c)c]-(del)/(del z)[D(del)/(del z)c-qc]=R(c)]:}\begin{gather*} \frac{\partial}{\partial t} \theta(\psi, c)-\frac{\partial}{\partial z}\left[K(\theta(\psi, c)) \frac{\partial}{\partial z}(\psi+z)\right]=0 \tag{1}\\ \frac{\partial}{\partial t}[\theta(\psi, c) c]-\frac{\partial}{\partial z}\left[D \frac{\partial}{\partial z} c-q c\right]=R(c) \tag{2} \end{gather*}(1)tθ(ψ,c)z[K(θ(ψ,c))z(ψ+z)]=0(2)t[θ(ψ,c)c]z[Dzcqc]=R(c)
where ψ ( z , t ) ψ ( z , t ) psi(z,t)\psi(z, t)ψ(z,t) is the pressure head, with z z zzz being the height against the gravitational direction, θ θ theta\thetaθ is the water content, q = K ( θ ( ψ , c ) ) z ( ψ + z ) q = K ( θ ( ψ , c ) ) z ( ψ + z ) q=-K(theta(psi,c))(del)/(del z)(psi+z)q=-K(\theta(\psi, c)) \frac{\partial}{\partial z}(\psi+z)q=K(θ(ψ,c))z(ψ+z) is the water flux (also called Darcy velocity), K K KKK stands for the hydraulic conductivity of the porous medium, c c ccc is the concentration, D D DDD is the diffusion/dispersion coefficient, and R R RRR is the reaction term. The system (1)-(2) is closed via constitutive relationships defining the dependencies θ ( ψ , c ) θ ( ψ , c ) theta(psi,c)\theta(\psi, c)θ(ψ,c) and K ( θ ( ψ , c ) ) K ( θ ( ψ , c ) ) K(theta(psi,c))K(\theta(\psi, c))K(θ(ψ,c)).
Equations (1)-(2) are fully coupled through the terms θ ( ψ , c ) θ ( ψ , c ) theta(psi,c)\theta(\psi, c)θ(ψ,c) and [ θ ( ψ , c ) c ] [ θ ( ψ , c ) c ] [theta(psi,c)c][\theta(\psi, c) c][θ(ψ,c)c]. Richards' equation (1) is parabolic-elliptic degenerate, with variable θ ( ψ , c ) θ ( ψ , c ) theta(psi,c)\theta(\psi, c)θ(ψ,c) if ψ < 0 ψ < 0 psi < 0\psi<0ψ<0 and θ = θ = theta=\theta=θ= const if ψ 0 ψ 0 psi >= 0\psi \geq 0ψ0. Since the system is strongly nonlinear, through the functional dependencies θ ( ψ , c ) θ ( ψ , c ) theta(psi,c)\theta(\psi, c)θ(ψ,c) and K ( θ ( ψ , c ) ) K ( θ ( ψ , c ) ) K(theta(psi,c))K(\theta(\psi, c))K(θ(ψ,c)), linearization methods have to be used to compute numerical solutions.
2.1. Explicit L L LLL-schemes for one-dimensional Richards' equation. Following [16], we start with the staggered FD scheme with backward discretization in time of the Richards' equation (1) decoupled 1 1 ^(1){ }^{1}1 from the transport equation (2),
θ ( ψ i , k ) θ ( ψ i , k 1 ) = = Δ t Δ z 2 { [ K ( θ ( ψ i + 1 / 2 , k ) ) ( ψ i + 1 , k ψ i , k ) K ( θ ( ψ i 1 / 2 , k ) ) ( ψ i , k ψ i 1 , k ) ] (3) + ( K ( θ ( ψ i + 1 / 2 , k ) ) K ( θ ( ψ i 1 / 2 , k ) ) ) Δ z } θ ψ i , k θ ψ i , k 1 = = Δ t Δ z 2 K θ ψ i + 1 / 2 , k ψ i + 1 , k ψ i , k K θ ψ i 1 / 2 , k ψ i , k ψ i 1 , k (3) + K θ ψ i + 1 / 2 , k K θ ψ i 1 / 2 , k Δ z {:[theta(psi_(i,k))-theta(psi_(i,k-1))=],[=(Delta t)/(Deltaz^(2)){[K(theta(psi_(i+1//2,k)))(psi_(i+1,k)-psi_(i,k))-K(theta(psi_(i-1//2,k)))(psi_(i,k)-psi_(i-1,k))]:}],[(3){: quad+(K(theta(psi_(i+1//2,k)))-K(theta(psi_(i-1//2,k))))Delta z}]:}\begin{align*} & \theta\left(\psi_{i, k}\right)-\theta\left(\psi_{i, k-1}\right)= \\ & =\frac{\Delta t}{\Delta z^{2}}\left\{\left[K\left(\theta\left(\psi_{i+1 / 2, k}\right)\right)\left(\psi_{i+1, k}-\psi_{i, k}\right)-K\left(\theta\left(\psi_{i-1 / 2, k}\right)\right)\left(\psi_{i, k}-\psi_{i-1, k}\right)\right]\right. \\ & \left.\quad+\left(K\left(\theta\left(\psi_{i+1 / 2, k}\right)\right)-K\left(\theta\left(\psi_{i-1 / 2, k}\right)\right)\right) \Delta z\right\} \tag{3} \end{align*}θ(ψi,k)θ(ψi,k1)==ΔtΔz2{[K(θ(ψi+1/2,k))(ψi+1,kψi,k)K(θ(ψi1/2,k))(ψi,kψi1,k)](3)+(K(θ(ψi+1/2,k))K(θ(ψi1/2,k)))Δz}
To obtain an iterative method for solving Richard's equation, we denote by ψ i , k s ψ i , k s psi_(i,k)^(s)\psi_{i, k}^{s}ψi,ks the approximate solution after s s sss iterations and add to the l.h.s. a stabilization term L ( ψ i , k s + 1 ψ i , k s ) L ψ i , k s + 1 ψ i , k s L(psi_(i,k)^(s+1)-psi_(i,k)^(s))L\left(\psi_{i, k}^{s+1}-\psi_{i, k}^{s}\right)L(ψi,ks+1ψi,ks), where L L LLL is a constant which has the dimension of an inverse length. Whenever the iterative method converges, this stabilization term vanishes and the limit is the solution of the nonlinear scheme
(3). Defining the dimensionless numbers r i ± 1 / 2 , k s = K ( ψ i ± 1 / 2 , k s ) Δ t / ( L Δ z 2 ) r i ± 1 / 2 , k s = K ψ i ± 1 / 2 , k s Δ t / L Δ z 2 r_(i+-1//2,k)^(s)=K(psi_(i+-1//2,k)^(s))Delta t//(L Deltaz^(2))r_{i \pm 1 / 2, k}^{s}=K\left(\psi_{i \pm 1 / 2, k}^{s}\right) \Delta t /\left(L \Delta z^{2}\right)ri±1/2,ks=K(ψi±1/2,ks)Δt/(LΔz2), one obtains
ψ i , k s + 1 = [ 1 ( r i + 1 / 2 , k s + r i 1 / 2 , k s ) ] ψ i , k s + r i + 1 / 2 , k s ψ i + 1 , k s + r i 1 / 2 , k s ψ i 1 , k s (4) + ( r i + 1 / 2 , k s r i 1 / 2 , k s ) Δ z ( θ ( ψ i , k s ) θ ( ψ i , k 1 ) ) / L ψ i , k s + 1 = 1 r i + 1 / 2 , k s + r i 1 / 2 , k s ψ i , k s + r i + 1 / 2 , k s ψ i + 1 , k s + r i 1 / 2 , k s ψ i 1 , k s (4) + r i + 1 / 2 , k s r i 1 / 2 , k s Δ z θ ψ i , k s θ ψ i , k 1 / L {:[psi_(i,k)^(s+1)=[1-(r_(i+1//2,k)^(s)+r_(i-1//2,k)^(s))]psi_(i,k)^(s)+r_(i+1//2,k)^(s)psi_(i+1,k)^(s)+r_(i-1//2,k)^(s)psi_(i-1,k)^(s)],[(4)+(r_(i+1//2,k)^(s)-r_(i-1//2,k)^(s))Delta z-(theta(psi_(i,k)^(s))-theta(psi_(i,k-1)))//L]:}\begin{gather*} \psi_{i, k}^{s+1}=\left[1-\left(r_{i+1 / 2, k}^{s}+r_{i-1 / 2, k}^{s}\right)\right] \psi_{i, k}^{s}+r_{i+1 / 2, k}^{s} \psi_{i+1, k}^{s}+r_{i-1 / 2, k}^{s} \psi_{i-1, k}^{s} \\ +\left(r_{i+1 / 2, k}^{s}-r_{i-1 / 2, k}^{s}\right) \Delta z-\left(\theta\left(\psi_{i, k}^{s}\right)-\theta\left(\psi_{i, k-1}\right)\right) / L \tag{4} \end{gather*}ψi,ks+1=[1(ri+1/2,ks+ri1/2,ks)]ψi,ks+ri+1/2,ksψi+1,ks+ri1/2,ksψi1,ks(4)+(ri+1/2,ksri1/2,ks)Δz(θ(ψi,ks)θ(ψi,k1))/L
In practice, we run successive iterations s = 1 , 2 , s = 1 , 2 , s=1,2,dotss=1,2, \ldotss=1,2, until a threshold condition is fulfilled, e.g., ψ k s ψ k s 1 ε a + ε r ψ k s ψ k s ψ k s 1 ε a + ε r ψ k s ||psi_(k)^(s)-psi_(k)^(s-1)|| <= epsi_(a)+epsi_(r)||psi_(k)^(s)||\left\|\boldsymbol{\psi}_{k}^{s}-\boldsymbol{\psi}_{k}^{s-1}\right\| \leq \varepsilon_{a}+\varepsilon_{r}\left\|\boldsymbol{\psi}_{k}^{s}\right\|ψksψks1εa+εrψks, where ψ k s ψ k s psi_(k)^(s)\boldsymbol{\psi}_{k}^{s}ψks denotes the solution vector of components ψ i , k s , i = 1 , , I , ψ i , k s , i = 1 , , I , psi_(i,k)^(s),i=1,dots,I,||*||\psi_{i, k}^{s}, i=1, \ldots, I,\|\cdot\|ψi,ks,i=1,,I, is the l 2 l 2 l^(2)l^{2}l2 norm, and ε a 0 ε a 0 epsi_(a) >= 0\varepsilon_{a} \geq 0εa0 and ε r 0 ε r 0 epsi_(r) >= 0\varepsilon_{r} \geq 0εr0 are the absolute and relative tolerances (see e.g., [7]). The relation (4) is an explicit L L LLL-scheme that allows the computation of the approximate solution recursively and avoids the need to solve systems of linear equations, as in implicit finite element [7] or finite volume [9] L L LLL-schemes. Consequently, the explicit scheme (4) vas found to be one order of magnitude faster than the implicit finite volume L L LLL-scheme when solving typical problems for partially saturated flows [16].
To transform the FD scheme (4) into a random walk scheme we represent the solution ψ i , , k s ψ i , , k s psi_(i,,k)^(s)\psi_{i,, k}^{s}ψi,,ks by N N N\mathcal{N}N particles distributed over the lattice sites, ψ i , k s n i , k s a / N ψ i , k s n i , k s a / N psi_(i,k)^(s)~~n_(i,k)^(s)a//N\psi_{i, k}^{s} \approx n_{i, k}^{s} a / \mathcal{N}ψi,ksni,ksa/N, where a a aaa is a unit length that will be disregarded in the following. This results in the following relation summing contributions from neighboring sites to the number of particles at the site i i iii and time step k k kkk,
n i , k s + 1 = [ 1 ( r i + 1 / 2 , k s + r i 1 / 2 , k s ) ] n i , k s + r i + 1 / 2 , k s n i + 1 , k s + r i 1 / 2 , k s n i 1 , k s + N f s n i , k s + 1 = 1 r i + 1 / 2 , k s + r i 1 / 2 , k s n i , k s + r i + 1 / 2 , k s n i + 1 , k s + r i 1 / 2 , k s n i 1 , k s + N f s n_(i,k)^(s+1)=[1-(r_(i+1//2,k)^(s)+r_(i-1//2,k)^(s))]n_(i,k)^(s)+r_(i+1//2,k)^(s)n_(i+1,k)^(s)+r_(i-1//2,k)^(s)n_(i-1,k)^(s)+|__Nf^(s)__|n_{i, k}^{s+1}=\left[1-\left(r_{i+1 / 2, k}^{s}+r_{i-1 / 2, k}^{s}\right)\right] n_{i, k}^{s}+r_{i+1 / 2, k}^{s} n_{i+1, k}^{s}+r_{i-1 / 2, k}^{s} n_{i-1, k}^{s}+\left\lfloor\mathcal{N} f^{s}\right\rfloorni,ks+1=[1(ri+1/2,ks+ri1/2,ks)]ni,ks+ri+1/2,ksni+1,ks+ri1/2,ksni1,ks+Nfs, where f s = ( r i + 1 / 2 , k s r i 1 / 2 , k s ) Δ z [ θ ( n i , k s ) θ ( n i , k 1 ) ] / L f s = r i + 1 / 2 , k s r i 1 / 2 , k s Δ z θ n i , k s θ n i , k 1 / L f^(s)=(r_(i+1//2,k)^(s)-r_(i-1//2,k)^(s))Delta z-[theta(n_(i,k)^(s))-theta(n_(i,k-1))]//Lf^{s}=\left(r_{i+1 / 2, k}^{s}-r_{i-1 / 2, k}^{s}\right) \Delta z-\left[\theta\left(n_{i, k}^{s}\right)-\theta\left(n_{i, k-1}\right)\right] / Lfs=(ri+1/2,ksri1/2,ks)Δz[θ(ni,ks)θ(ni,k1)]/L and |__*__|\lfloor\cdot\rfloor is the floor function.
In order for (5) to be a random walk scheme, the coefficients multiplying numbers of particles at lattice sites [ 1 ( r i + 1 / 2 , k s + r i 1 / 2 , k s ) ] , r i + 1 / 2 , k 1 r i + 1 / 2 , k s + r i 1 / 2 , k s , r i + 1 / 2 , k [1-(r_(i+1//2,k)^(s)+r_(i-1//2,k)^(s))],r_(i+1//2,k)\left[1-\left(r_{i+1 / 2, k}^{s}+r_{i-1 / 2, k}^{s}\right)\right], r_{i+1 / 2, k}[1(ri+1/2,ks+ri1/2,ks)],ri+1/2,k, and r i 1 / 2 , k r i 1 / 2 , k r_(i-1//2,k)r_{i-1 / 2, k}ri1/2,k should be normalized probabilities. This implies the following restriction [ 1 ( r i + 1 / 2 , k s + r i 1 / 2 , k s ) ] 1 1 r i + 1 / 2 , k s + r i 1 / 2 , k s 1 [1-(r_(i+1//2,k)^(s)+r_(i-1//2,k)^(s))] <= 1\left[1-\left(r_{i+1 / 2, k}^{s}+r_{i-1 / 2, k}^{s}\right)\right] \leq 1[1(ri+1/2,ks+ri1/2,ks)]1. A sufficient condition for that is
(6) r i ± 1 / 2 , k s 1 / 2 (6) r i ± 1 / 2 , k s 1 / 2 {:(6)r_(i+-1//2,k)^(s) <= 1//2:}\begin{equation*} r_{i \pm 1 / 2, k}^{s} \leq 1 / 2 \tag{6} \end{equation*}(6)ri±1/2,ks1/2
The first three terms in r.h.s. of (5) represent groups of particles jumping on the site i i iii form the right and from the left, and the ratio of the initial number of particles at the site i i iii which do not undergo jumps,
(7) δ n i i ± 1 , k = r i ± 1 / 2 , k s n i ± 1 , k s , δ n i i , k = [ 1 ( r i + 1 / 2 , k s + r i 1 / 2 , k s ) ] n i , k s (7) δ n i i ± 1 , k = r i ± 1 / 2 , k s n i ± 1 , k s , δ n i i , k = 1 r i + 1 / 2 , k s + r i 1 / 2 , k s n i , k s {:(7)deltan_(i∣i+-1,k)=r_(i+-1//2,k)^(s)n_(i+-1,k)^(s)","deltan_(i∣i,k)=[1-(r_(i+1//2,k)^(s)+r_(i-1//2,k)^(s))]n_(i,k)^(s):}\begin{equation*} \delta n_{i \mid i \pm 1, k}=r_{i \pm 1 / 2, k}^{s} n_{i \pm 1, k}^{s}, \delta n_{i \mid i, k}=\left[1-\left(r_{i+1 / 2, k}^{s}+r_{i-1 / 2, k}^{s}\right)\right] n_{i, k}^{s} \tag{7} \end{equation*}(7)δnii±1,k=ri±1/2,ksni±1,ks,δnii,k=[1(ri+1/2,ks+ri1/2,ks)]ni,ks
With (7), (5) becomes
(8) n i , k s + 1 = δ n i i , k + δ n i i + 1 , k + δ n i i 1 , k + N f s (8) n i , k s + 1 = δ n i i , k + δ n i i + 1 , k + δ n i i 1 , k + N f s {:(8)n_(i,k)^(s+1)=deltan_(i∣i,k)+deltan_(i∣i+1,k)+deltan_(i∣i-1,k)+|__Nf^(s)__|:}\begin{equation*} n_{i, k}^{s+1}=\delta n_{i \mid i, k}+\delta n_{i \mid i+1, k}+\delta n_{i \mid i-1, k}+\left\lfloor\mathcal{N} f^{s}\right\rfloor \tag{8} \end{equation*}(8)ni,ks+1=δnii,k+δnii+1,k+δnii1,k+Nfs
The numbers δ n δ n delta n\delta nδn of random walkers are binomially distributed random variables. Unlike in classical random walk approaches, consisting of generating random walk trajectories and counting particles at lattice sites, we directly evaluate the binomial variables δ n δ n delta n\delta nδn and construct a global random walk (GRW)
[21]. Since there are different probabilities r j ± 1 / 2 , k r j ± 1 / 2 , k r_(j+-1//2,k)r_{j \pm 1 / 2, k}rj±1/2,k for the right/left jumps, one obtains a biased global random walk (BGRW) [14]. The resulting BGRW algorithm moves the particles from a given lattice site j j jjj according to the rule
(9) n j , k s = δ n j j , k s + δ n j + 1 j , k s + δ n j 1 j , k s , (9) n j , k s = δ n j j , k s + δ n j + 1 j , k s + δ n j 1 j , k s , {:(9)n_(j,k)^(s)=deltan_(j∣j,k)^(s)+deltan_(j+1∣j,k)^(s)+deltan_(j-1∣j,k)^(s)",":}\begin{equation*} n_{j, k}^{s}=\delta n_{j \mid j, k}^{s}+\delta n_{j+1 \mid j, k}^{s}+\delta n_{j-1 \mid j, k}^{s}, \tag{9} \end{equation*}(9)nj,ks=δnjj,ks+δnj+1j,ks+δnj1j,ks,
where
(10) δ n j ± 1 j , k = r j ± 1 / 2 , k s n j , k s , δ n i i , k = [ 1 ( r j + 1 / 2 , k s + r j 1 / 2 , k s ) ] n i , k s (10) δ n j ± 1 j , k = r j ± 1 / 2 , k s n j , k s , δ n i i , k = 1 r j + 1 / 2 , k s + r j 1 / 2 , k s n i , k s {:(10)deltan_(j+-1∣j,k)=r_(j+-1//2,k)^(s)n_(j,k)^(s)","deltan_(i∣i,k)=[1-(r_(j+1//2,k)^(s)+r_(j-1//2,k)^(s))]n_(i,k)^(s):}\begin{equation*} \delta n_{j \pm 1 \mid j, k}=r_{j \pm 1 / 2, k}^{s} n_{j, k}^{s}, \delta n_{i \mid i, k}=\left[1-\left(r_{j+1 / 2, k}^{s}+r_{j-1 / 2, k}^{s}\right)\right] n_{i, k}^{s} \tag{10} \end{equation*}(10)δnj±1j,k=rj±1/2,ksnj,ks,δnii,k=[1(rj+1/2,ks+rj1/2,ks)]ni,ks
The random variable δ n j + 1 j , k = r j + 1 / 2 , k s n j , k s δ n j + 1 j , k = r j + 1 / 2 , k s n j , k s deltan_(j+1∣j,k)=r_(j+1//2,k)^(s)n_(j,k)^(s)\delta n_{j+1 \mid j, k}=r_{j+1 / 2, k}^{s} n_{j, k}^{s}δnj+1j,k=rj+1/2,ksnj,ks representing the number of right jumps in (9) is binomially distributed, with parameters n j , k s , p = r j + 1 / 2 , k s / r i , k s n j , k s , p = r j + 1 / 2 , k s / r i , k s n_(j,k)^(s),p=r_(j+1//2,k)^(s)//r_(i,k)^(s)n_{j, k}^{s}, p=r_{j+1 / 2, k}^{s} / r_{i, k}^{s}nj,ks,p=rj+1/2,ks/ri,ks, and q = 1 p = r j 1 / 2 , k s / r i , k s q = 1 p = r j 1 / 2 , k s / r i , k s q=1-p=r_(j-1//2,k)^(s)//r_(i,k)^(s)q=1-p=r_{j-1 / 2, k}^{s} / r_{i, k}^{s}q=1p=rj1/2,ks/ri,ks, where r i , k s = r j + 1 / 2 , k s + r j 1 / 2 , k s r i , k s = r j + 1 / 2 , k s + r j 1 / 2 , k s r_(i,k)^(s)=r_(j+1//2,k)^(s)+r_(j-1//2,k)^(s)r_{i, k}^{s}=r_{j+1 / 2, k}^{s}+r_{j-1 / 2, k}^{s}ri,ks=rj+1/2,ks+rj1/2,ks. The number of left jumps is the difference between the total number of jumps and the number of right jumps δ n j 1 j , k = r i , k s n j , k s δ n j + 1 j , k δ n j 1 j , k = r i , k s n j , k s δ n j + 1 j , k deltan_(j-1∣j,k)=r_(i,k)^(s)n_(j,k)^(s)-deltan_(j+1∣j,k)\delta n_{j-1 \mid j, k}=r_{i, k}^{s} n_{j, k}^{s}-\delta n_{j+1 \mid j, k}δnj1j,k=ri,ksnj,ksδnj+1j,k. Since the computation of the exact binomial distribution could be computationally prohibitive for very large n j , k s n j , k s n_(j,k)^(s)n_{j, k}^{s}nj,ks, one uses its approximation via a "reduced-fluctuations algorithm" similar to that proposed for the unbiased GRW algorithm in [21] as follows:

algorithm 1. Reduced fluctuations algorithm

(i) initialize a real variable rest = 0 = 0 =0=0=0;
(ii) compute δ n δ n delta n\delta nδn with the relations (10);
(iii) split δ n δ n delta n\delta nδn into δ n = δ n + { δ } δ n = δ n + { δ } delta n=|__ delta n __|+{delta}\delta n=\lfloor\delta n\rfloor+\{\delta\}δn=δn+{δ} at every lattice site;
(iv) approximate δ n δ n delta n\delta nδn by δ n δ n |__ delta n __|\lfloor\delta n\rfloorδn;
(v) sum up the remainders into the variable rest = { δ } = { δ } =sum{delta}=\sum\{\delta\}={δ} over all the sites;
(vi) allocate one particle to the first lattice site where rest 1 1 >= 1\geq 11;
(vii) save rest = = === rest -1 and repeat the sequence (ii)-(vi) at every k k kkk.
Specifically, the algorithm is implemented in the Matlab code as follows:
Code 1. Flow-BGRW with reduced fluctuations
restr=0; rest1=0; rest2=0;
D=K(tht); D=D(1:I-1); % conductivity function of water content
r=dt*D/dx^2/L;
rloc=[1-2*r(1),1-(r(1:I-2)+r(2:I-1)),1-2*r(I-1)];
restr=rloc.*n+restr; nn=floor(restr); restr=restr-nn;
rest1=r(2:I-1).*n(3:I)+rest1;
njumpleft=floor(rest1); rest1=rest1-njumpleft; % left jumps
nn(2:I-1)=nn(2:I-1)+njumpleft;
rest2=r(1:I-2).*n(1:I-2)+rest2;
njumpright=floor(rest2); rest2=rest2-njumpright; % right jumps
nn(2:I-1)=nn(2:I-1)+njumpright;
Code 1 computes the solution in the interior of the domain. The Darcy velocity on the boundaries can be computed in several ways: using an approximate forward finite difference discretization of Darcy's law, extending on the boundary the velocity from the first neighboring interior site, computing
the exact velocity analytically when a manufactured solution for the pressure head is available [16, Sect. 5.2.1].
Remark 1. Since the BGRW is an explicit scheme, the source term can be evaluated first, then the first tree terms of (8) which model the transport will be computed according to Code 1. The reduced-fluctuations algorithm preserves the indivisibility of the particles by summing up to unity the fractional parts { } { } {*}\{\cdot\}{} of all the terms defined by (7). Therefore, the floor function in (8) is no longer necessary and the source term becomes N f s N f s Nf^(s)\mathcal{N} f^{s}Nfs. Dividing (8) by N N N\mathcal{N}N, using (7), and taking the average, one retrieves the F D L F D L FDLF D LFDL-scheme (4) for the unknown ψ i , k s = n i , k s / N ψ i , k s = n i , k s ¯ / N psi_(i,k)^(s)= bar(n_(i,k)^(s))//N\psi_{i, k}^{s}=\overline{n_{i, k}^{s}} / \mathcal{N}ψi,ks=ni,ks/N. A condition of kind K Δ t / Δ z 2 1 / 2 K Δ t / Δ z 2 1 / 2 K Delta t//Deltaz^(2) <= 1//2K \Delta t / \Delta z^{2} \leq 1 / 2KΔt/Δz21/2 ensures the stability of the forward-time central-space scheme for the heat equation with constant coefficient K K KKK and is assumed (without carrying out the stability analysis) to hold in case of variable coefficients as well [13]. In the present context, the condition (6) guaranties that particles cannot be created or destroyed otherwise than through boundary conditions or in the presence of an internal source/sink, that is, it ensures the stability of the BGRW L-scheme (5). Since the FD Lscheme (4) is the ensemble average of the BGRW scheme, its stability is also ensured by the constraint (6).
The FD scheme is also retrieved when all floor operators are removed in Code 1. The resulting code sequence can be recast as the FD scheme presented in Code 2 below, where p = n / N p = n / N p=n//Np=n / \mathcal{N}p=n/N and p p = n n / N p p = n n / N pp=nn//Np p=n n / \mathcal{N}pp=nn/N.
Code 2. Flow-FD scheme
D = K ( D = K ( D=K(\mathrm{D}=\mathrm{K}(D=K( th ) ; D = D ( 1 : I 1 ) ; % ) ; D = D ( 1 : I 1 ) ; % );D=D(1:I-1);%) ; \mathrm{D}=\mathrm{D}(1: \mathrm{I}-1) ; \%);D=D(1:I1);% conductivity function of water content
r = dt D / dx 2 / L r = dt D / dx 2 / L r=dt**D//dx^2//L\mathrm{r}=\mathrm{dt} * \mathrm{D} / \mathrm{dx}^{\wedge} 2 / \mathrm{L}r=dtD/dx2/L;
r l o c = [ 1 2 r ( 1 ) , 1 ( r ( 1 : I 2 ) + r ( 2 : I 1 ) ) , 1 2 r ( I 1 ) ] r l o c = [ 1 2 r ( 1 ) , 1 ( r ( 1 : I 2 ) + r ( 2 : I 1 ) ) , 1 2 r ( I 1 ) ] rloc=[1-2**r(1),1-(r(1:I-2)+r(2:I-1)),1-2**r(I-1)]r l o c=[1-2 * r(1), 1-(r(1: I-2)+r(2: I-1)), 1-2 * r(I-1)]rloc=[12r(1),1(r(1:I2)+r(2:I1)),12r(I1)];
pp=rloc.*p;
pp ( 2 : I 1 ) = pp ( 2 : I 1 ) + r ( 2 : I 1 ) p ( 3 : I ) + r ( 1 : I 2 ) p ( 1 : I 2 ) ; pp ( 2 : I 1 ) = pp ( 2 : I 1 ) + r ( 2 : I 1 ) p ( 3 : I ) + r ( 1 : I 2 ) p ( 1 : I 2 ) ; pp(2:I-1)=pp(2:I-1)+r(2:I-1)***p(3:I)+r(1:I-2)***p(1:I-2);\mathrm{pp}(2: \mathrm{I}-1)=\mathrm{pp}(2: \mathrm{I}-1)+\mathrm{r}(2: \mathrm{I}-1) \cdot * \mathrm{p}(3: \mathrm{I})+\mathrm{r}(1: \mathrm{I}-2) \cdot * \mathrm{p}(1: \mathrm{I}-2) ;pp(2:I1)=pp(2:I1)+r(2:I1)p(3:I)+r(1:I2)p(1:I2);
Remark 2. In the particular case of the saturated regime, θ = θ = theta=\theta=θ= const, with space-variable hydraulic conductivity K K KKK and a given source term f f fff, after setting L = 1 L = 1 L=1L=1L=1 and disregarding the time index k k kkk in (4) one obtains a transient scheme to solve the equation for the hydraulic head h = ψ + z h = ψ + z h=psi+zh=\psi+zh=ψ+z,
1 a h s z [ K h z ] = f . 1 a h s z K h z = f . (1)/(a)(del h)/(del s)-(del)/(del z)[K(del h)/(del z)]=f.\frac{1}{a} \frac{\partial h}{\partial s}-\frac{\partial}{\partial z}\left[K \frac{\partial h}{\partial z}\right]=f .1ahsz[Khz]=f.
This scheme has been used to solve coupled flow and transport in saturated aquifers with moderate heterogeneity [15]. However, because the transient scheme may be very slow for highly heterogeneous coefficients K K KKK [1], a more efficient strategy to solve coupled problems for saturated porous media is the coupling between an implicit FD flow scheme [1] and a GRW transport solver, see https://github.com/PMFlow/Coupled_FDM_GRW.
Matlab codes for one- and two-dimensional solutions of Richards' equation, verification tests, and benchmark problems presented in [16] are posted at https://github.com/PMFlow/RichardsEquation.
2.2. Explicit BGRW scheme for reactive transport. Similarly to the derivation of the flow scheme in Section 2.1, we start with a FD scheme with backward time discretization of the equation (2) with a constant diffusion coefficient D D DDD,
θ ( ψ i , k , c i , k ) c i , k θ ( ψ i , k 1 , c i , k 1 ) c i , k 1 = θ ψ i , k , c i , k c i , k θ ψ i , k 1 , c i , k 1 c i , k 1 = theta(psi_(i,k),c_(i,k))c_(i,k)-theta(psi_(i,k-1),c_(i,k-1))c_(i,k-1)=-\theta\left(\psi_{i, k}, c_{i, k}\right) c_{i, k}-\theta\left(\psi_{i, k-1}, c_{i, k-1}\right) c_{i, k-1}=-θ(ψi,k,ci,k)ci,kθ(ψi,k1,ci,k1)ci,k1=
(11) = t frac Δ t 2 Δ z ( q i + 1 , k c i + 1 , k q i 1 , k c i 1 , k ) + D Δ t Δ z 2 ( c i + 1 , k 2 c i , k + c i 1 , k ) + R ( c i , k ) = (11) = t frac Δ t 2 Δ z q i + 1 , k c i + 1 , k q i 1 , k c i 1 , k + D Δ t Δ z 2 c i + 1 , k 2 c i , k + c i 1 , k + R c i , k = {:(11)=-t frac Delta t2Delta z(q_(i+1,k)c_(i+1,k)-q_(i-1,k)c_(i-1,k))+(D Delta t)/(Deltaz^(2))(c_(i+1,k)-2c_(i,k)+c_(i-1,k))+R(c_(i,k))=:}\begin{equation*} =-t \operatorname{frac} \Delta t 2 \Delta z\left(q_{i+1, k} c_{i+1, k}-q_{i-1, k} c_{i-1, k}\right)+\frac{D \Delta t}{\Delta z^{2}}\left(c_{i+1, k}-2 c_{i, k}+c_{i-1, k}\right)+R\left(c_{i, k}\right)= \tag{11} \end{equation*}(11)=tfracΔt2Δz(qi+1,kci+1,kqi1,kci1,k)+DΔtΔz2(ci+1,k2ci,k+ci1,k)+R(ci,k)=
2 D Δ t Δ z 2 c i , k + ( D Δ t Δ z 2 Δ t 2 Δ z q i + 1 , k ) c i + 1 , k + ( D Δ t Δ z 2 + Δ t 2 Δ z q i 1 , k ) c i 1 , k + Δ t R ( c i , k ) 2 D Δ t Δ z 2 c i , k + D Δ t Δ z 2 Δ t 2 Δ z q i + 1 , k c i + 1 , k + D Δ t Δ z 2 + Δ t 2 Δ z q i 1 , k c i 1 , k + Δ t R c i , k -(2D Delta t)/(Deltaz^(2))c_(i,k)+((D Delta t)/(Deltaz^(2))-(Delta t)/(2Delta z)q_(i+1,k))c_(i+1,k)+((D Delta t)/(Deltaz^(2))+(Delta t)/(2Delta z)q_(i-1,k))c_(i-1,k)+Delta tR(c_(i,k))-\frac{2 D \Delta t}{\Delta z^{2}} c_{i, k}+\left(\frac{D \Delta t}{\Delta z^{2}}-\frac{\Delta t}{2 \Delta z} q_{i+1, k}\right) c_{i+1, k}+\left(\frac{D \Delta t}{\Delta z^{2}}+\frac{\Delta t}{2 \Delta z} q_{i-1, k}\right) c_{i-1, k}+\Delta t R\left(c_{i, k}\right)2DΔtΔz2ci,k+(DΔtΔz2Δt2Δzqi+1,k)ci+1,k+(DΔtΔz2+Δt2Δzqi1,k)ci1,k+ΔtR(ci,k),
where ψ i , k ψ i , k psi_(i,k)\psi_{i, k}ψi,k is the solution of the coupled flow solver. Further, we denote by c i , k s c i , k s c_(i,k)^(s)c_{i, k}^{s}ci,ks the approximate solution after s s sss iterations, add to the l.h.s. of (11) a stabilization factor L ( c i , k s + 1 c i , k s ) L c i , k s + 1 c i , k s L(c_(i,k)^(s+1)-c_(i,k)^(s))L\left(c_{i, k}^{s+1}-c_{i, k}^{s}\right)L(ci,ks+1ci,ks), where L L LLL is now a dimensionless constant, and define the dimensionless parameters
(12) r = 2 D Δ t L Δ z 2 , v i ± 1 , k s = Δ t L Δ z q i ± 1 , k s (12) r = 2 D Δ t L Δ z 2 , v i ± 1 , k s = Δ t L Δ z q i ± 1 , k s {:(12)r=(2D Delta t)/(L Deltaz^(2))","quadv_(i+-1,k)^(s)=(Delta t)/(L Delta z)q_(i+-1,k)^(s):}\begin{equation*} r=\frac{2 D \Delta t}{L \Delta z^{2}}, \quad v_{i \pm 1, k}^{s}=\frac{\Delta t}{L \Delta z} q_{i \pm 1, k}^{s} \tag{12} \end{equation*}(12)r=2DΔtLΔz2,vi±1,ks=ΔtLΔzqi±1,ks
Representing the concentration by the distribution of N N N\mathcal{N}N particles on the lattice, c i , k s n i , k s / N c i , k s n i , k s / N c_(i,k)^(s)~~n_(i,k)^(s)//Nc_{i, k}^{s} \approx n_{i, k}^{s} / \mathcal{N}ci,ksni,ks/N, and using the parameters (12), the stabilized version of the scheme (11) becomes an explicit L L LLL-scheme,
(13) n i , k s + 1 = ( 1 r ) n i , k s + 1 2 ( r v i + 1 , k s ) n i + 1 , k s + 1 2 ( r + v i 1 , k s ) n i 1 , k s + g s (13) n i , k s + 1 = ( 1 r ) n i , k s + 1 2 r v i + 1 , k s n i + 1 , k s + 1 2 r + v i 1 , k s n i 1 , k s + g s {:(13)n_(i,k)^(s+1)=(1-r)n_(i,k)^(s)+(1)/(2)(r-v_(i+1,k)^(s))n_(i+1,k)^(s)+(1)/(2)(r+v_(i-1,k)^(s))n_(i-1,k)^(s)+|__g^(s)__|:}\begin{equation*} n_{i, k}^{s+1}=(1-r) n_{i, k}^{s}+\frac{1}{2}\left(r-v_{i+1, k}^{s}\right) n_{i+1, k}^{s}+\frac{1}{2}\left(r+v_{i-1, k}^{s}\right) n_{i-1, k}^{s}+\left\lfloor g^{s}\right\rfloor \tag{13} \end{equation*}(13)ni,ks+1=(1r)ni,ks+12(rvi+1,ks)ni+1,ks+12(r+vi1,ks)ni1,ks+gs
where g s = N { Δ t R ( n i , k s ) / L [ θ ( ψ i , k s , n i , k s ) n i , k s θ ( ψ i , k 1 , n i , k 1 ) n i , k 1 ] / L } g s = N Δ t R n i , k s / L θ ψ i , k s , n i , k s n i , k s θ ψ i , k 1 , n i , k 1 n i , k 1 / L g^(s)=N{Delta tR(n_(i,k)^(s))//L-[theta(psi_(i,k)^(s),n_(i,k)^(s))n_(i,k)^(s)-theta(psi_(i,k-1),n_(i,k-1))n_(i,k-1)]//L}g^{s}=\mathcal{N}\left\{\Delta t R\left(n_{i, k}^{s}\right) / L-\left[\theta\left(\psi_{i, k}^{s}, n_{i, k}^{s}\right) n_{i, k}^{s}-\theta\left(\psi_{i, k-1}, n_{i, k-1}\right) n_{i, k-1}\right] / L\right\}gs=N{ΔtR(ni,ks)/L[θ(ψi,ks,ni,ks)ni,ksθ(ψi,k1,ni,k1)ni,k1]/L}.
With the constrains
(14) r 1 , | v i , k s | r (14) r 1 , v i , k s r {:(14)r <= 1","quad|v_(i,k)^(s)| <= r:}\begin{equation*} r \leq 1, \quad\left|v_{i, k}^{s}\right| \leq r \tag{14} \end{equation*}(14)r1,|vi,ks|r
which ensure the normalization of the jump probabilities, the explicit L L LLL-scheme (13) for reactive transport is defined as a BGRW algorithm. The gathering and the spreading of groups of particles at/from a lattice point are described by relations similar to (8) and (9). The binomial random variables δ n δ n delta n\delta nδn are defined by
(15) δ n j ± 1 j , k s = 1 2 ( r ± v j , k s ) n j , k s , δ n j j , k s = ( 1 r ) n j , k s (15) δ n j ± 1 j , k s = 1 2 r ± v j , k s n j , k s , δ n j j , k s = ( 1 r ) n j , k s {:(15)deltan_(j+-1∣j,k)^(s)=(1)/(2)(r+-v_(j,k)^(s))n_(j,k)^(s)","quad deltan_(j∣j,k)^(s)=(1-r)n_(j,k)^(s):}\begin{equation*} \delta n_{j \pm 1 \mid j, k}^{s}=\frac{1}{2}\left(r \pm v_{j, k}^{s}\right) n_{j, k}^{s}, \quad \delta n_{j \mid j, k}^{s}=(1-r) n_{j, k}^{s} \tag{15} \end{equation*}(15)δnj±1j,ks=12(r±vj,ks)nj,ks,δnjj,ks=(1r)nj,ks
Remark 3. The biased jump probabilities 1 2 ( r ± v j , k s ) 1 2 r ± v j , k s (1)/(2)(r+-v_(j,k)^(s))\frac{1}{2}\left(r \pm v_{j, k}^{s}\right)12(r±vj,ks) in (15) simulate the advective displacement by moving larger numbers of particles in the positive flow direction. With an unbiased GRW, the advection is simulated by moving groups of particles over v j , k s v j , k s v_(j,k)^(s)v_{j, k}^{s}vj,ks lattice sites, i.e., δ n j + v j , k s = ( 1 r ) n j , k s δ n j + v j , k s = ( 1 r ) n j , k s deltan_(j+v∣j,k)^(s)=(1-r)n_(j,k)^(s)\delta n_{j+v \mid j, k}^{s}=(1-r) n_{j, k}^{s}δnj+vj,ks=(1r)nj,ks, where v = v j , k s [ 16 , 17 ] v = v j , k s [ 16 , 17 ] v=v_(j,k)^(s)[16,17]v=v_{j, k}^{s}[16,17]v=vj,ks[16,17]. This procedure is faster but yields overshooting errors when there are important changes in velocity over a time step. The BGRW algorithm which allows only first-neighbor jumps is accurate but can be much slower than the unbiased GRW when a fine discretization is required to describe the spatial variability of the solution. Moreover, the second constraint (14) and the definitions of the parameters (12) imply an upper bound for the local Péclet number, P e ́ = q i , k s Δ z / D 2 P e ́ = q i , k s Δ z / D 2 Pé=q_(i,k)^(s)Delta z//D <= 2P e ́=q_{i, k}^{s} \Delta z / D \leq 2Pé=qi,ksΔz/D2.
The binomial random variables δ n δ n delta n\delta nδn defined by (15) are generated with the Algorithm 1. The Matlab implementation of the advection-diffusion steps of the transport solver is presented in Code 3 below.
Code 3. Transport-BGRW with reduced fluctuations
u=q*dt/Lc/dx; % computation of the BGRW parameters (12)
ru=2*D*dt/Lc/dx^2*ones(1,I);
restr=0; restjump=0;
for x=1:I
if n(x) > 0
    r=ru(x);
    restr=n(x)*(1-r)+restr; nsta=floor(restr);
    restr=restr-nsta; njump=n(x)-nsta;
    nn(x)=nn(x)+nsta;
    if(njump)>0
        restjump=njump*0.5*(1-u(x)/r)+restjump;
        nj(1)=floor(restjump); restjump=njump-nj(1);
        nj(2)=floor(restjump); restjump=restjump-nj(2);
        if x==1
            nn(2)=nn(2)+nj(2);
        elseif x==I
            nn(I-1)=nn(I-1)+nj(1);
        else
            for i=1:2
                xd=x+(2*i-3);
                nn(xd)=nn(xd)+nj(i);
            end
        end
    end
end
end
Remark 4. The ensemble average of the BGRW L-scheme for reactive transport also leads to an equivalent F D F D FDF DFD scheme. However, we do not pursue this approach which gives up the particle indivisibility. The numerical schemes developed in [16, 17] aim at providing a "microscopic" kinematic description of the reactive transport with piecewise-analytic time functions associated to each particle. Using a space-time averaging over this microscopic description we are then able to construct a macroscopic description through almost everywhere continuous fields that can be used to model experimental measurements or to achieve a spatio-temporal upscaling [18].
Matlab codes for coupled flow and transport and test problems are posted in the repository https://github.com/PMFlow/RichardsEquation. BGRW/GRW solvers for decoupled reactive transport with applications to biodegradation
processes in soils and aquifers, presented in [17], may be found in the repository https://github.com/PMFlow/MonodReactions.
2.3. Discussion on convergence. We look for convergence conditions by investigating the evolution of the difference e ψ s = ψ s ψ e ψ s = ψ s ψ e_(psi)^(s)=psi^(s)-psie_{\psi}^{s}=\psi^{s}-\psieψs=ψsψ of the solutions of (4) and (3) and of the difference e c s = c s c e c s = c s c e_(c)^(s)=c^(s)-ce_{c}^{s}=c^{s}-cecs=csc of the solutions of (13) and (11) at fixed position i i iii and time k k kkk.
Let L ψ L ψ L_(psi)L_{\psi}Lψ and L c L c L_(c)L_{c}Lc be the stabilization constants flow the flow and transport schemes, respectively. After denoting by Δ t Δ z 2 D ψ ( ψ ) Δ t Δ z 2 D ψ ( ψ ) (Delta t)/(Deltaz^(2))D_(psi)(psi)\frac{\Delta t}{\Delta z^{2}} \mathcal{D}_{\psi}(\psi)ΔtΔz2Dψ(ψ) the r.h.s. of (3) and subtracting (3) from (4), we have
(16) L ψ ( e ψ s + 1 e ψ s ) + θ ( ψ s , c s ) θ ( ψ , c ) = Δ t Δ z 2 ( D ψ ( ψ s ) D ψ ( ψ ) ) (16) L ψ e ψ s + 1 e ψ s + θ ψ s , c s θ ( ψ , c ) = Δ t Δ z 2 D ψ ψ s D ψ ( ψ ) {:(16)L_(psi)(e_(psi)^(s+1)-e_(psi)^(s))+theta(psi^(s),c^(s))-theta(psi","c)=(Delta t)/(Deltaz^(2))(D_(psi)(psi^(s))-D_(psi)(psi)):}\begin{equation*} L_{\psi}\left(e_{\psi}^{s+1}-e_{\psi}^{s}\right)+\theta\left(\psi^{s}, c^{s}\right)-\theta(\psi, c)=\frac{\Delta t}{\Delta z^{2}}\left(\mathcal{D}_{\psi}\left(\psi^{s}\right)-\mathcal{D}_{\psi}(\psi)\right) \tag{16} \end{equation*}(16)Lψ(eψs+1eψs)+θ(ψs,cs)θ(ψ,c)=ΔtΔz2(Dψ(ψs)Dψ(ψ))
Similarly, with Δ t 2 Δ z D q ( c ) Δ t 2 Δ z D q ( c ) (Delta t)/(2Delta z)D_(q)(c)\frac{\Delta t}{2 \Delta z} \mathcal{D}_{q}(c)Δt2ΔzDq(c) and Δ t Δ z 2 D D ( c ) Δ t Δ z 2 D D ( c ) (Delta t)/(Deltaz^(2))D_(D)(c)\frac{\Delta t}{\Delta z^{2}} \mathcal{D}_{D}(c)ΔtΔz2DD(c) denoting the advection and diffusion operators in the r.h.s. of (11), converting the numbers of particles to concentrations, c i , k s = n i , k s / N c i , k s = n i , k s / N c_(i,k)^(s)=n_(i,k)^(s)//Nc_{i, k}^{s}=n_{i, k}^{s} / \mathcal{N}ci,ks=ni,ks/N, and subtracting (11) from (13) we have
L c ( e c s + 1 e c s ) + θ ( ψ s , c s ) c s θ ( ψ , c ) c = Δ t 2 Δ z ( D q ( c s ) D q ( c ) ) + Δ t Δ z 2 ( D D ( c s ) D D ( c ) ) L c e c s + 1 e c s + θ ψ s , c s c s θ ( ψ , c ) c = Δ t 2 Δ z D q c s D q ( c ) + Δ t Δ z 2 D D c s D D ( c ) L_(c)(e_(c)^(s+1)-e_(c)^(s))+theta(psi^(s),c^(s))c^(s)-theta(psi,c)c=(Delta t)/(2Delta z)(D_(q)(c^(s))-D_(q)(c))+(Delta t)/(Deltaz^(2))(D_(D)(c^(s))-D_(D)(c))L_{c}\left(e_{c}^{s+1}-e_{c}^{s}\right)+\theta\left(\psi^{s}, c^{s}\right) c^{s}-\theta(\psi, c) c=\frac{\Delta t}{2 \Delta z}\left(\mathcal{D}_{q}\left(c^{s}\right)-\mathcal{D}_{q}(c)\right)+\frac{\Delta t}{\Delta z^{2}}\left(\mathcal{D}_{D}\left(c^{s}\right)-\mathcal{D}_{D}(c)\right)Lc(ecs+1ecs)+θ(ψs,cs)csθ(ψ,c)c=Δt2Δz(Dq(cs)Dq(c))+ΔtΔz2(DD(cs)DD(c)).
Assuming
(A1) θ / ψ > 0 , θ / c > 0 , ( θ c ) / ψ > 0 , ( θ c ) / c > 0 (A2) | D ψ ( ψ s ) D ψ ( ψ ) | L D ψ | e ψ s | , D D ( c s ) D D ( c ) | L D D | e c s  (A1)  θ / ψ > 0 , θ / c > 0 , ( θ c ) / ψ > 0 , ( θ c ) / c > 0  (A2)  D ψ ψ s D ψ ( ψ ) L D ψ e ψ s , D D c s D D ( c ) L D D e c s {:[" (A1) "quad del theta//del psi > 0","quad del theta//del c > 0","quad del(theta c)//del psi > 0","quad del(theta c)//del c > 0],[" (A2) "quad|D_(psi)(psi^(s))-D_(psi)(psi)| <= L_(D_(psi))|e_(psi)^(s)|","quadD_(D)(c^(s))-D_(D)(c)| <= L_(D_(D))|e_(c)^(s)∣]:}\begin{aligned} & \text { (A1) } \quad \partial \theta / \partial \psi>0, \quad \partial \theta / \partial c>0, \quad \partial(\theta c) / \partial \psi>0, \quad \partial(\theta c) / \partial c>0 \\ & \text { (A2) } \quad\left|\mathcal{D}_{\psi}\left(\psi^{s}\right)-\mathcal{D}_{\psi}(\psi)\right| \leq L_{\mathcal{D}_{\psi}}\left|e_{\psi}^{s}\right|, \quad \mathcal{D}_{D}\left(c^{s}\right)-\mathcal{D}_{D}(c)\left|\leq L_{\mathcal{D}_{D}}\right| e_{c}^{s} \mid \end{aligned} (A1) θ/ψ>0,θ/c>0,(θc)/ψ>0,(θc)/c>0 (A2) |Dψ(ψs)Dψ(ψ)|LDψ|eψs|,DD(cs)DD(c)|LDD|ecs
(16) and (17) give
(18) ( e ψ s + 1 ) 2 ( e ψ s ) 2 ( 1 1 L ψ θ ( ψ , c ) ψ + L D ψ Δ t L ψ Δ z 2 ) 2 + ( e c s ) 2 ( 1 L ψ θ ( ψ , c ) c ) 2 (18) e ψ s + 1 2 e ψ s 2 1 1 L ψ θ ( ψ , c ) ψ + L D ψ Δ t L ψ Δ z 2 2 + e c s 2 1 L ψ θ ( ψ , c ) c 2 {:(18)(e_(psi)^(s+1))^(2) <= (e_(psi)^(s))^(2)(1-(1)/(L_(psi))(del theta(psi,c))/(del psi)+(L_(D_(psi))Delta t)/(L_(psi)Deltaz^(2)))^(2)+(e_(c)^(s))^(2)((1)/(L_(psi))(del theta(psi,c))/(del c))^(2):}\begin{equation*} \left(e_{\psi}^{s+1}\right)^{2} \leq\left(e_{\psi}^{s}\right)^{2}\left(1-\frac{1}{L_{\psi}} \frac{\partial \theta(\psi, c)}{\partial \psi}+\frac{L_{\mathcal{D}_{\psi}} \Delta t}{L_{\psi} \Delta z^{2}}\right)^{2}+\left(e_{c}^{s}\right)^{2}\left(\frac{1}{L_{\psi}} \frac{\partial \theta(\psi, c)}{\partial c}\right)^{2} \tag{18} \end{equation*}(18)(eψs+1)2(eψs)2(11Lψθ(ψ,c)ψ+LDψΔtLψΔz2)2+(ecs)2(1Lψθ(ψ,c)c)2
(19) ( e c s + 1 ) 2 ( e c s ) 2 ( 1 1 L c ( θ ( ψ , c ) c ) c + L D q Δ t 2 L c Δ z + L D D Δ t L c Δ z 2 ) 2 + ( e ψ s ) 2 ( 1 L c ( θ ( ψ , c ) c ) ψ ) 2 . (19) e c s + 1 2 e c s 2 1 1 L c ( θ ( ψ , c ) c ) c + L D q Δ t 2 L c Δ z + L D D Δ t L c Δ z 2 2 + e ψ s 2 1 L c ( θ ( ψ , c ) c ) ψ 2 . {:(19)(e_(c)^(s+1))^(2) <= (e_(c)^(s))^(2)(1-(1)/(L_(c))(del(theta(psi,c)c))/(del c)+(L_(D_(q))Delta t)/(2L_(c)Delta z)+(L_(D_(D))Delta t)/(L_(c)Deltaz^(2)))^(2)+(e_(psi)^(s))^(2)((1)/(L_(c))(del(theta(psi,c)c))/(del psi))^(2).:}\begin{equation*} \left(e_{c}^{s+1}\right)^{2} \leq\left(e_{c}^{s}\right)^{2}\left(1-\frac{1}{L_{c}} \frac{\partial(\theta(\psi, c) c)}{\partial c}+\frac{L_{\mathcal{D}_{q}} \Delta t}{2 L_{c} \Delta z}+\frac{L_{\mathcal{D}_{D}} \Delta t}{L_{c} \Delta z^{2}}\right)^{2}+\left(e_{\psi}^{s}\right)^{2}\left(\frac{1}{L_{c}} \frac{\partial(\theta(\psi, c) c)}{\partial \psi}\right)^{2} . \tag{19} \end{equation*}(19)(ecs+1)2(ecs)2(11Lc(θ(ψ,c)c)c+LDqΔt2LcΔz+LDDΔtLcΔz2)2+(eψs)2(1Lc(θ(ψ,c)c)ψ)2.
Let F F FFF denote one of the factors of ( e ψ s ) 2 e ψ s 2 (e_(psi)^(s))^(2)\left(e_{\psi}^{s}\right)^{2}(eψs)2 and ( e c s ) 2 e c s 2 (e_(c)^(s))^(2)\left(e_{c}^{s}\right)^{2}(ecs)2 in (18) and (19). Assuming for all factors the condition F 1 ϵ 2 F 1 ϵ 2 F <= (1-epsilon)/(2)F \leq \frac{1-\epsilon}{2}F1ϵ2, where ϵ ( 0 , 1 ] ϵ ( 0 , 1 ] epsilon in(0,1]\epsilon \in(0,1]ϵ(0,1], one obtains
inf ψ { θ ( ψ , c ) / ψ } L D ψ Δ t Δ z 2 + 1 1 ϵ 2 sup ψ { θ ( ψ , c ) / ψ } L D ψ Δ t Δ z 2 + 1 + 1 ϵ 2 (20) 1 L ψ θ ( ψ , c ) c 1 ϵ 2 inf ψ { θ ( ψ , c ) / ψ } L D ψ Δ t Δ z 2 + 1 1 ϵ 2 sup ψ { θ ( ψ , c ) / ψ } L D ψ Δ t Δ z 2 + 1 + 1 ϵ 2 (20) 1 L ψ θ ( ψ , c ) c 1 ϵ 2 {:[i n f_(psi){del theta(psi","c)//del psi} >= L_(D_(psi))(Delta t)/(Deltaz^(2))+1-sqrt((1-epsilon)/(2))],[s u p_(psi){del theta(psi","c)//del psi} <= L_(D_(psi))(Delta t)/(Deltaz^(2))+1+sqrt((1-epsilon)/(2))],[(20)(1)/(L_(psi))(del theta(psi,c))/(del c) <= sqrt((1-epsilon)/(2))]:}\begin{align*} \inf _{\psi}\{\partial \theta(\psi, c) / \partial \psi\} & \geq L_{\mathcal{D}_{\psi}} \frac{\Delta t}{\Delta z^{2}}+1-\sqrt{\frac{1-\epsilon}{2}} \\ \sup _{\psi}\{\partial \theta(\psi, c) / \partial \psi\} & \leq L_{\mathcal{D}_{\psi}} \frac{\Delta t}{\Delta z^{2}}+1+\sqrt{\frac{1-\epsilon}{2}} \\ \frac{1}{L_{\psi}} \frac{\partial \theta(\psi, c)}{\partial c} & \leq \sqrt{\frac{1-\epsilon}{2}} \tag{20} \end{align*}infψ{θ(ψ,c)/ψ}LDψΔtΔz2+11ϵ2supψ{θ(ψ,c)/ψ}LDψΔtΔz2+1+1ϵ2(20)1Lψθ(ψ,c)c1ϵ2
inf c { ( θ ( ψ , c ) c ) / c } L D q Δ t 2 Δ z + L D D Δ t Δ z 2 + 1 1 ϵ 2 sup c { ( θ ( ψ , c ) c ) / c } L D q Δ t 2 Δ z + L D D Δ t Δ z 2 + 1 + 1 ϵ 2 (21) 1 L c ( θ ( ψ , c ) c ) ψ 1 ϵ 2 inf c { ( θ ( ψ , c ) c ) / c } L D q Δ t 2 Δ z + L D D Δ t Δ z 2 + 1 1 ϵ 2 sup c { ( θ ( ψ , c ) c ) / c } L D q Δ t 2 Δ z + L D D Δ t Δ z 2 + 1 + 1 ϵ 2 (21) 1 L c ( θ ( ψ , c ) c ) ψ 1 ϵ 2 {:[i n f_(c){del(theta(psi","c)c)//del c} >= L_(D_(q))(Delta t)/(2Delta z)+L_(D_(D))(Delta t)/(Deltaz^(2))+1-sqrt((1-epsilon)/(2))],[s u p_(c){del(theta(psi","c)c)//del c} <= L_(D_(q))(Delta t)/(2Delta z)+L_(D_(D))(Delta t)/(Deltaz^(2))+1+sqrt((1-epsilon)/(2))],[(21)(1)/(L_(c))(del(theta(psi,c)c))/(del psi) <= sqrt((1-epsilon)/(2))]:}\begin{align*} \inf _{c}\{\partial(\theta(\psi, c) c) / \partial c\} & \geq L_{\mathcal{D}_{q}} \frac{\Delta t}{2 \Delta z}+L_{\mathcal{D}_{D}} \frac{\Delta t}{\Delta z^{2}}+1-\sqrt{\frac{1-\epsilon}{2}} \\ \sup _{c}\{\partial(\theta(\psi, c) c) / \partial c\} & \leq L_{\mathcal{D}_{q}} \frac{\Delta t}{2 \Delta z}+L_{\mathcal{D}_{D}} \frac{\Delta t}{\Delta z^{2}}+1+\sqrt{\frac{1-\epsilon}{2}} \\ \frac{1}{L_{c}} \frac{\partial(\theta(\psi, c) c)}{\partial \psi} & \leq \sqrt{\frac{1-\epsilon}{2}} \tag{21} \end{align*}infc{(θ(ψ,c)c)/c}LDqΔt2Δz+LDDΔtΔz2+11ϵ2supc{(θ(ψ,c)c)/c}LDqΔt2Δz+LDDΔtΔz2+1+1ϵ2(21)1Lc(θ(ψ,c)c)ψ1ϵ2
Adding the inequalities (18) and (19) and using (20) and (21) one gets
(22) ( e ψ s + 1 ) 2 + ( e c s + 1 ) 2 ( 1 ϵ ) [ ( e ψ s ) 2 + ( e c s ) 2 ] (22) e ψ s + 1 2 + e c s + 1 2 ( 1 ϵ ) e ψ s 2 + e c s 2 {:(22)(e_(psi)^(s+1))^(2)+(e_(c)^(s+1))^(2) <= (1-epsilon)[(e_(psi)^(s))^(2)+(e_(c)^(s))^(2)]:}\begin{equation*} \left(e_{\psi}^{s+1}\right)^{2}+\left(e_{c}^{s+1}\right)^{2} \leq(1-\epsilon)\left[\left(e_{\psi}^{s}\right)^{2}+\left(e_{c}^{s}\right)^{2}\right] \tag{22} \end{equation*}(22)(eψs+1)2+(ecs+1)2(1ϵ)[(eψs)2+(ecs)2]
With e s 2 = i = 1 I [ ( ψ i , k s ψ i , k ) 2 + ( c i , k s c i , k ) 2 ] e s 2 = i = 1 I ψ i , k s ψ i , k 2 + c i , k s c i , k 2 ||e^(s)||^(2)=sum_(i=1)^(I)[(psi_(i,k)^(s)-psi_(i,k))^(2)+(c_(i,k)^(s)-c_(i,k))^(2)]\left\|\boldsymbol{e}^{s}\right\|^{2}=\sum_{i=1}^{I}\left[\left(\psi_{i, k}^{s}-\psi_{i, k}\right)^{2}+\left(c_{i, k}^{s}-c_{i, k}\right)^{2}\right]es2=i=1I[(ψi,ksψi,k)2+(ci,ksci,k)2] being the squared error norm of the solution vector x s = ( ψ k s , c k s ) R 2 I x s = ψ k s , c k s R 2 I x^(s)=(psi_(k)^(s),c_(k)^(s))inR^(2I)\boldsymbol{x}^{s}=\left(\boldsymbol{\psi}_{k}^{s}, \boldsymbol{c}_{k}^{s}\right) \in \mathbb{R}^{2 I}xs=(ψks,cks)R2I, the inequality (22) implies
(23) e s + 1 2 ( 1 ϵ ) e s 2 (23) e s + 1 2 ( 1 ϵ ) e s 2 {:(23)||e^(s+1)||^(2) <= (1-epsilon)||e^(s)||^(2):}\begin{equation*} \left\|\boldsymbol{e}^{s+1}\right\|^{2} \leq(1-\epsilon)\left\|\boldsymbol{e}^{s}\right\|^{2} \tag{23} \end{equation*}(23)es+12(1ϵ)es2
and thus a contractive property of the coupled L L LLL-schemes. Further, (23) can be used to show that { x s } x s {x^(s)}\left\{\boldsymbol{x}^{s}\right\}{xs} is a convergent Cauchy sequence (see e.g. [6, Sect. 8.1]) and its limit is unique, because R 2 I R 2 I R^(2I)\mathbb{R}^{2 I}R2I is a complete metric space.
For given Δ z Δ z Delta z\Delta zΔz, the time step Δ t Δ t Delta t\Delta tΔt is constrained by the stability conditions of the flow and transport schemes. With the positive constant α α alpha\alphaα defined as α = max ( 2 r i ± 1 / 2 , k s ) α = max 2 r i ± 1 / 2 , k s alpha=max(2r_(i+-1//2,k)^(s))\alpha=\max \left(2 r_{i \pm 1 / 2, k}^{s}\right)α=max(2ri±1/2,ks), the stability condition (6) for the flow scheme becomes α 1 α 1 alpha <= 1\alpha \leq 1α1. Further, from α = 2 max ( K ( ψ k s ) Δ t ψ / ( L ψ Δ z 2 ) α = 2 max K ψ k s Δ t ψ / L ψ Δ z 2 alpha=2max(K(psi_(k)^(s))Deltat_(psi)//(L_(psi)Deltaz^(2)):}\alpha=2 \max \left(K\left(\boldsymbol{\psi}_{k}^{s}\right) \Delta t_{\psi} /\left(L_{\psi} \Delta z^{2}\right)\right.α=2max(K(ψks)Δtψ/(LψΔz2), we determine the corresponding time step Δ t ψ Δ t ψ Deltat_(psi)\Delta t_{\psi}Δtψ by
(24) Δ t ψ = α L ψ Δ z 2 2 max ( K ( ψ k s ) ) (24) Δ t ψ = α L ψ Δ z 2 2 max K ψ k s {:(24)Deltat_(psi)=(alphaL_(psi)Deltaz^(2))/(2max(K(psi_(k)^(s)))):}\begin{equation*} \Delta t_{\psi}=\frac{\alpha L_{\psi} \Delta z^{2}}{2 \max \left(K\left(\psi_{k}^{s}\right)\right)} \tag{24} \end{equation*}(24)Δtψ=αLψΔz22max(K(ψks))
Similarly, with β = max ( r ) β = max ( r ) beta=max(r)\beta=\max (r)β=max(r), the stability condition (14) becomes β 1 β 1 beta <= 1\beta \leq 1β1, β = 2 D Δ t c / L c Δ z 2 β = 2 D Δ t c / L c Δ z 2 beta=2D Deltat_(c)//L_(c)Deltaz^(2)\beta=2 D \Delta t_{c} / L_{c} \Delta z^{2}β=2DΔtc/LcΔz2, and the time step Δ t c Δ t c Deltat_(c)\Delta t_{c}Δtc is given by
(25) Δ t c = β L c Δ z 2 2 D (25) Δ t c = β L c Δ z 2 2 D {:(25)Deltat_(c)=(betaL_(c)Deltaz^(2))/(2D):}\begin{equation*} \Delta t_{c}=\frac{\beta L_{c} \Delta z^{2}}{2 D} \tag{25} \end{equation*}(25)Δtc=βLcΔz22D
The schemes (4) and (13) are coupled by alternating flow and transport steps at every time iteration [4, 16], which require a unique time step, defined as
(26) Δ t = min ( Δ t ψ , Δ t c ) (26) Δ t = min Δ t ψ , Δ t c {:(26)Delta t=min(Deltat_(psi),Deltat_(c)):}\begin{equation*} \Delta t=\min \left(\Delta t_{\psi}, \Delta t_{c}\right) \tag{26} \end{equation*}(26)Δt=min(Δtψ,Δtc)
Using (24)-(26) we introduce the factor γ γ gamma\gammaγ,
(27) γ = Δ t Δ z 2 = min ( α L ψ 2 max ( K ( ψ k s ) ) , β L c 2 D ) (27) γ = Δ t Δ z 2 = min α L ψ 2 max K ψ k s , β L c 2 D {:(27)gamma=(Delta t)/(Deltaz^(2))=min((alphaL_(psi))/(2max(K(psi_(k)^(s)))),(betaL_(c))/(2D)):}\begin{equation*} \gamma=\frac{\Delta t}{\Delta z^{2}}=\min \left(\frac{\alpha L_{\psi}}{2 \max \left(K\left(\boldsymbol{\psi}_{k}^{s}\right)\right)}, \frac{\beta L_{c}}{2 D}\right) \tag{27} \end{equation*}(27)γ=ΔtΔz2=min(αLψ2max(K(ψks)),βLc2D)
Inserting (27) and γ Δ z γ Δ z gamma Delta z\gamma \Delta zγΔz in (20) and (21), the convergence conditions explicitly depend on the parameters L ψ L ψ L_(psi)L_{\psi}Lψ and L c L c L_(c)L_{c}Lc and become more robust, with only one term (coming from the advection term of (2)) depending on discretization through Δ z Δ z Delta z\Delta zΔz. By relating the parameters L ψ L ψ L_(psi)L_{\psi}Lψ and L c L c L_(c)L_{c}Lc to the physical parameters of the problem, the conditions (20) and (21) also provide a general frame for an adaptive L L LLL-scheme.
We note that, even though the conditions (20) and (21) show that the coupled L L LLL-schemes should converge, they are of limited use in practice: actually
they only can be verified if the solution of the problem is known. Therefore, in the following we investigate the convergence by using sequences of iterates and the definitions of the computational and error-based orders of convergence.

3. NUMERICAL EXAMPLES

We illustrate the explicit iterative methods presented in Section 2 by three numerical examples. First, we solve a problem with transition between unsaturated and saturated flow regimes for the degenerate Richards' equation with both the FD and the BGRW scheme presented in Section 2.1. Then, we consider a fully coupled flow and surfactant transport problem [5] with an academic example of constitutive laws θ ( ψ ) θ ( ψ ) theta(psi)\theta(\psi)θ(ψ) and K θ ( ψ ) K θ ( ψ ) K theta(psi)K \theta(\psi)Kθ(ψ), and a one way coupled flow and transport problem with the realistic van Genuchten-Mualem parametrization of θ θ theta\thetaθ and K K KKK. The last two problems are solved by the coupled FD-flow and BGRW-transport schemes presented in Section 2.1 and Section 2.2.
The convergence of the iterative schemes is investigated numerically with tools from the theory of abstract convergent sequences [2]. The convergence of an arbitrary sequence of real numbers x s x R x s x R x_(s)rarrx^(**)inRx_{s} \rightarrow x^{*} \in \mathbb{R}xsxR is characterized by the behavior of the successive errors e s = | x x s | e s = x x s e_(s)=|x^(**)-x_(s)|e_{s}=\left|x^{*}-x_{s}\right|es=|xxs|. The sequence { x s } x s {x_(s)}\left\{x_{s}\right\}{xs} converges with the (classical) C C CCC-order p 1 p 1 p >= 1p \geq 1p1 if
(28) (C) lim s e s + 1 ( e s ) p = Q p { ( 0 , ) , p > 1 ( 0 , 1 ) , p = 1 , (28)  (C)  lim s e s + 1 e s p = Q p ( 0 , ) , p > 1 ( 0 , 1 ) , p = 1 , {:(28)" (C) "quadlim_(s rarr oo)(e_(s+1))/((e_(s))^(p))=Q_(p)in{[(0","oo)",",p > 1],[(0","1)",",p=1","]:}:}\text { (C) } \quad \lim _{s \rightarrow \infty} \frac{e_{s+1}}{\left(e_{s}\right)^{p}}=Q_{p} \in \begin{cases}(0, \infty), & p>1 \tag{28}\\ (0,1), & p=1,\end{cases}(28) (C) limses+1(es)p=Qp{(0,),p>1(0,1),p=1,
which implies the (weaker) order 2 Q order 2 Q order^(2)Q\operatorname{order}^{2} Qorder2Q (see [3]),
(29) (Q) lim s ln e s + 1 ln e s = p (29)  (Q)  lim s ln e s + 1 ln e s = p {:(29)" (Q) "quadlim_(s rarr oo)(ln e_(s+1))/(ln e_(s))=p:}\begin{equation*} \text { (Q) } \quad \lim _{s \rightarrow \infty} \frac{\ln e_{s+1}}{\ln e_{s}}=p \tag{29} \end{equation*}(29) (Q) limslnes+1lnes=p
While Eq. (29) is a common way to identify the Q Q QQQ-order of convergence, Eq. (28) can subsequently be used to check whether a classical convergence order exists.
If the limit x x x^(**)x^{*}x is not known, the errors e s e s e_(s)e_{s}es are replaced by the corrections | x s + 1 x s | x s + 1 x s |x_(s+1)-x_(s)|\left|x_{s+1}-x_{s}\right||xs+1xs| and (28)-(29) define "computational orders of convergence", denoted by a prime, C C C^(')C^{\prime}C and Q Q Q^(')Q^{\prime}Q. If p > 1 p > 1 p > 1p>1p>1, computational and error-based orders of convergence are equivalent, denoting this by using curly braces, and they are related by
{ C , C } { Q , Q } . C , C Q , Q . {C,C^(')}=>⇍{Q,Q^(')}.\left\{C, C^{\prime}\right\} \underset{\nLeftarrow}{\Rightarrow}\left\{Q, Q^{\prime}\right\} .{C,C}{Q,Q}.
However, when p = 1 p = 1 p=1p=1p=1, the above equivalences do not hold in general [3] and the existence of the error-based orders has to be checked on a case by case basis.
Results from the theory of convergent sequences in R n R n R^(n)\mathbb{R}^{n}Rn [2] cannot be directly extrapolated to flow and transport iterative schemes for porous media, where
the convergence is investigated in function spaces with norms that often depend on the particular problem formulation (e.g., [7, 9, 12]). Therefore we rely on the sequences of positive real numbers provided by iterative methods, e.g., ψ s ψ s 1 ψ s ψ s 1 ||psi^(s)-psi^(s-1)||\left\|\boldsymbol{\psi}^{s}-\boldsymbol{\psi}^{s-1}\right\|ψsψs1 and c s c s 1 c s c s 1 ||c^(s)-c^(s-1)||\left\|\boldsymbol{c}^{s}-\boldsymbol{c}^{s-1}\right\|cscs1. If the method converges, which in a restricted sense means that the successive corrections become arbitrarily small (e.g., [9]), the corrections form sequences { x s } x s {x_(s)}\left\{x_{s}\right\}{xs} converging to zero that can be analyzed with the definitions of the error-based orders of convergence (28) and (29) [19]. Further, based on numerical evaluations of the Q Q QQQ or C C CCC orders of convergence of the sequences { x s } x s {x_(s)}\left\{x_{s}\right\}{xs} we may assume the Q Q Q^(')Q^{\prime}Q or C C C^(')C^{\prime}C convergence of the solution ( ψ s , c s ψ s , c s psi^(s),c^(s)\psi^{s}, c^{s}ψs,cs ) of the coupled problem.
Remark 5. Let s s s^(**)s^{*}s be the iteration count for which (28) written for the sequence of successive corrections ψ s + 1 ψ s ψ s + 1 ψ s ||psi^(s+1)-psi^(s)||\left\|\boldsymbol{\psi}^{s+1}-\boldsymbol{\psi}^{s}\right\|ψs+1ψs defines a constant quotient Q 1 ( s ) = Q Q 1 s = Q Q_(1)(s^(**))=QQ_{1}\left(s^{*}\right)=QQ1(s)=Q within a given absolute tolerance ε a ε a epsi_(a)\varepsilon_{a}εa. Then, from (28), we have
ψ s + 1 ψ s Q ψ s ψ s 1 Q 2 ψ s 1 ψ s 2 (30) Q s s ψ s + 1 ψ s . ψ s + 1 ψ s Q ψ s ψ s 1 Q 2 ψ s 1 ψ s 2 (30) Q s s ψ s + 1 ψ s . {:[||psi^(s+1)-psi^(s)|| <= Q||psi^(s)-psi^(s-1)|| <= Q^(2)||psi^(s-1)-psi^(s-2)|| <= cdots],[(30) <= Q^(s-s^(**))||psi^(s^(**)+1)-psi^(s^(**))||.]:}\begin{align*} \left\|\boldsymbol{\psi}^{s+1}-\boldsymbol{\psi}^{s}\right\| & \leq Q\left\|\boldsymbol{\psi}^{s}-\boldsymbol{\psi}^{s-1}\right\| \leq Q^{2}\left\|\boldsymbol{\psi}^{s-1}-\boldsymbol{\psi}^{s-2}\right\| \leq \cdots \\ & \leq Q^{s-s^{*}}\left\|\boldsymbol{\psi}^{s^{*}+1}-\boldsymbol{\psi}^{s^{*}}\right\| . \tag{30} \end{align*}ψs+1ψsQψsψs1Q2ψs1ψs2(30)Qssψs+1ψs.
Using (30) we also have, for any s > s , m N s > s , m N s > s^(**),m inNs>s^{*}, m \in \mathbb{N}s>s,mN,
ψ s + m ψ s = = ψ s + 1 ψ s + ψ s + 2 ψ s + 1 + + ψ s + m ψ s + m 1 ( Q s s + Q s s + 1 + + Q s s + m 1 ) ψ s + 1 ψ s = Q s s ( 1 + Q + + Q m 1 ) ψ s + 1 ψ s Q s s ( m = 0 Q m ) ψ s + 1 ψ s (31) = Q s s lim m 1 Q m 1 Q ψ s + 1 ψ s = Q s s 1 Q ψ s + 1 ψ s . ψ s + m ψ s = = ψ s + 1 ψ s + ψ s + 2 ψ s + 1 + + ψ s + m ψ s + m 1 Q s s + Q s s + 1 + + Q s s + m 1 ψ s + 1 ψ s = Q s s 1 + Q + + Q m 1 ψ s + 1 ψ s Q s s m = 0 Q m ψ s + 1 ψ s (31) = Q s s lim m 1 Q m 1 Q ψ s + 1 ψ s = Q s s 1 Q ψ s + 1 ψ s . {:[||psi^(s+m)-psi^(s)||=],[=||psi^(s+1)-psi^(s)+psi^(s+2)-psi^(s+1)+cdots+psi^(s+m)-psi^(s+m-1)||],[ <= (Q^(s-s^(**))+Q^(s-s^(**)+1)+cdots+Q^(s-s^(**)+m-1))||psi^(s^(**)+1)-psi^(s^(**))||],[=Q^(s-s^(**))(1+Q+cdots+Q^(m-1))||psi^(s^(**)+1)-psi^(s^(**))||],[ <= Q^(s-s^(**))(sum_(m=0)^(oo)Q^(m))||psi^(s^(**)+1)-psi^(s^(**))||],[(31)=Q^(s-s^(**))lim_(m rarr oo)(1-Q^(m))/(1-Q)||psi^(s^(**)+1)-psi^(s^(**))||=(Q^(s-s^(**)))/(1-Q)||psi^(s^(**)+1)-psi^(s^(**))||.]:}\begin{align*} & \left\|\boldsymbol{\psi}^{s+m}-\boldsymbol{\psi}^{s}\right\|= \\ & =\left\|\boldsymbol{\psi}^{s+1}-\boldsymbol{\psi}^{s}+\boldsymbol{\psi}^{s+2}-\boldsymbol{\psi}^{s+1}+\cdots+\boldsymbol{\psi}^{s+m}-\boldsymbol{\psi}^{s+m-1}\right\| \\ & \leq\left(Q^{s-s^{*}}+Q^{s-s^{*}+1}+\cdots+Q^{s-s^{*}+m-1}\right)\left\|\boldsymbol{\psi}^{s^{*}+1}-\boldsymbol{\psi}^{s^{*}}\right\| \\ & =Q^{s-s^{*}}\left(1+Q+\cdots+Q^{m-1}\right)\left\|\boldsymbol{\psi}^{s^{*}+1}-\boldsymbol{\psi}^{s^{*}}\right\| \\ & \leq Q^{s-s^{*}}\left(\sum_{m=0}^{\infty} Q^{m}\right)\left\|\boldsymbol{\psi}^{s^{*}+1}-\boldsymbol{\psi}^{s^{*}}\right\| \\ & =Q^{s-s^{*}} \lim _{m \rightarrow \infty} \frac{1-Q^{m}}{1-Q}\left\|\boldsymbol{\psi}^{s^{*}+1}-\boldsymbol{\psi}^{s^{*}}\right\|=\frac{Q^{s-s^{*}}}{1-Q}\left\|\boldsymbol{\psi}^{s^{*}+1}-\boldsymbol{\psi}^{s^{*}}\right\| . \tag{31} \end{align*}ψs+mψs==ψs+1ψs+ψs+2ψs+1++ψs+mψs+m1(Qss+Qss+1++Qss+m1)ψs+1ψs=Qss(1+Q++Qm1)ψs+1ψsQss(m=0Qm)ψs+1ψs(31)=Qsslimm1Qm1Qψs+1ψs=Qss1Qψs+1ψs.
According to (31), lim s ψ s + m ψ s = 0 lim s ψ s + m ψ s = 0 lim_(s rarr oo)||psi^(s+m)-psi^(s)||=0\lim _{s \rightarrow \infty}\left\|\boldsymbol{\psi}^{s+m}-\boldsymbol{\psi}^{s}\right\|=0limsψs+mψs=0, hence { ψ s } ψ s {psi^(s)}\left\{\psi^{s}\right\}{ψs} is a convergent Cauchy sequence and has a unique limit in the complete space R I R I R^(I)\mathbb{R}^{I}RI. The convergence of the iterates of the L L LLL-scheme implies the cancelation of the stabilization terms, e.g., L ( ψ s + 1 ψ s ) L ψ s + 1 ψ s L(psi^(s+1)-psi^(s))L\left(\boldsymbol{\psi}^{s+1}-\boldsymbol{\psi}^{s}\right)L(ψs+1ψs), so that the limit of the sequence { ψ s } ψ s {psi^(s)}\left\{\psi^{s}\right\}{ψs} coincides with the solution of the nonlinear scheme (compare (3) and (4)). Thus, the C C C^(')C^{\prime}C-linear convergence of the L L LLL-scheme is equivalent to the convergence of the successive approximations { ψ s } ψ s {psi^(s)}\left\{\psi^{s}\right\}{ψs} to the unique solution of the nonlinear scheme.
REMARK 6. From a theoretical perspective the C C CCC-linear convergence of the L L LLL-scheme assumes the convergence of the L L LLL-scheme to the exact solution. However, the numerical solution is only an approximation of the exact solution depending on the fineness of the discretization. It follows that a limit quotient Q 1 < 1 Q 1 < 1 Q_(1) < 1Q_{1}<1Q1<1 in (28), which defines the C C CCC-linear convergence, cannot be practically reached in numerical simulations which, necessarily use finite discretizations. For instance, the errors with respect to the exact solution of the second order accurate schemes used in the examples below are of the order O ( Δ z 2 ) O Δ z 2 O(Deltaz^(2))\mathcal{O}\left(\Delta z^{2}\right)O(Δz2). As the
errors e s e s e_(s)e_{s}es in (28) reach this threshold, they cannot be decreased by further iterations. One obtains thus estimations of the quotient Q 1 1 Q 1 1 Q_(1)~~1Q_{1} \approx 1Q11, corresponding to the sublinear convergence of the iterations [2]. The approach to the exact solution is instead quantified by the decay of the errors with respect to the discretization. The common approach [ 11 , 1 , 16 , 19 ] [ 11 , 1 , 16 , 19 ] [11,1,16,19][11,1,16,19][11,1,16,19] is to assess estimated orders of convergence (EOC) by the slope of the decay of the errors in the logarithmic scale after successively halving the discretization parameter Δ z Δ z Delta z\Delta zΔz,
(32) EOC = log ( e l e l + 1 ) / log ( 2 ) , l = 1 , 2 , (32) EOC = log e l e l + 1 / log ( 2 ) , l = 1 , 2 , {:(32)EOC=log((e_(l))/(e_(l+1)))//log(2)","quad l=1","2","cdots:}\begin{equation*} \mathrm{EOC}=\log \left(\frac{e_{l}}{e_{l+1}}\right) / \log (2), \quad l=1,2, \cdots \tag{32} \end{equation*}(32)EOC=log(elel+1)/log(2),l=1,2,
3.1. First example: Richards' equation. For the beginning, let us consider the one-dimensional Richards' equation (1) closed by one of the simplest models, with exponential dependence of the water content on the pressure head and linear dependence of the hydraulic conductivity on the water content [16],
(33) Θ ( ψ ) = { e α ψ , ψ < 0 1 , ψ 0 , (34) K ( θ ( ψ ) ) = { K s a t Θ ( ψ ) , ψ < 0 K s a t , ψ 0 , (33) Θ ( ψ ) = e α ψ , ψ < 0 1 , ψ 0 , (34) K ( θ ( ψ ) ) = K s a t Θ ( ψ ) , ψ < 0 K s a t , ψ 0 , {:[(33)Theta(psi)={[e^(alpha psi)",",psi < 0],[1",",psi >= 0","]:}],[(34)K(theta(psi))={[K_(sat)Theta(psi)",",psi < 0],[K_(sat)",",psi >= 0","]:}]:}\begin{gather*} \Theta(\psi)= \begin{cases}e^{\alpha \psi}, & \psi<0 \\ 1, & \psi \geq 0,\end{cases} \tag{33}\\ K(\theta(\psi))= \begin{cases}K_{s a t} \Theta(\psi), & \psi<0 \\ K_{s a t}, & \psi \geq 0,\end{cases} \tag{34} \end{gather*}(33)Θ(ψ)={eαψ,ψ<01,ψ0,(34)K(θ(ψ))={KsatΘ(ψ),ψ<0Ksat,ψ0,
where Θ = ( θ θ res ) / ( θ sat θ res ) Θ = θ θ res  / θ sat  θ res  Theta=(theta-theta_("res "))//(theta_("sat ")-theta_("res "))\Theta=\left(\theta-\theta_{\text {res }}\right) /\left(\theta_{\text {sat }}-\theta_{\text {res }}\right)Θ=(θθres )/(θsat θres ) is the normalized water content, θ = θ sat θ = θ sat  theta=theta_("sat ")\theta=\theta_{\text {sat }}θ=θsat  and K = K sat K = K sat  K=K_("sat ")K=K_{\text {sat }}K=Ksat  denote the constant water content respectively the constant hydraulic conductivity in the saturated regions ( ψ 0 ψ 0 psi >= 0\psi \geq 0ψ0 ), and θ res θ res  theta_("res ")\theta_{\text {res }}θres  is the residual water content.
We solve a typical problem modeling the experimental study of the flow in variably saturated soil columns, formulated in the domain [ 0 , 2 ] [ 0 , 2 ] [0,2][0,2][0,2]. The boundary conditions are specified by a constant pressure ψ ( 0 , t ) = ψ 0 ψ ( 0 , t ) = ψ 0 psi(0,t)=psi_(0)\psi(0, t)=\psi_{0}ψ(0,t)=ψ0 at the bottom of the soil column and a constant water flux q 0 q 0 q_(0)q_{0}q0 on the top. Together, these constant conditions determine the initial pressure distribution ψ ( z , 0 ) ψ ( z , 0 ) psi(z,0)\psi(z, 0)ψ(z,0) as solution of the steady-state flow problem. For t > 0 t > 0 t > 0t>0t>0, the pressure ψ 0 ψ 0 psi_(0)\psi_{0}ψ0 is kept constant at the bottom of the column and on the top the water flux is increased linearly from q 0 q 0 q_(0)q_{0}q0 to q 1 q 1 q_(1)q_{1}q1 until t t 1 t t 1 t <= t_(1)t \leq t_{1}tt1 and is kept constant for t > t 1 t > t 1 t > t_(1)t>t_{1}t>t1. The texture of an homogeneous soil, representative for a column filled with sand, is parameterized with K sat = 2.77 10 6 , θ res = 0.06 , θ sat = 0.36 , α = 10 K sat  = 2.77 10 6 , θ res  = 0.06 , θ sat  = 0.36 , α = 10 K_("sat ")=2.77*10^(-6),theta_("res ")=0.06,theta_("sat ")=0.36,alpha=10K_{\text {sat }}=2.77 \cdot 10^{-6}, \theta_{\text {res }}=0.06, \theta_{\text {sat }}=0.36, \alpha=10Ksat =2.77106,θres =0.06,θsat =0.36,α=10. The water fluxes on the top boundary are given by q 0 = 2.77 10 7 q 0 = 2.77 10 7 q_(0)=2.77*10^(-7)q_{0}=2.77 \cdot 10^{-7}q0=2.77107 and q 1 = 2.50 10 6 q 1 = 2.50 10 6 q_(1)=2.50*10^(-6)q_{1}=2.50 \cdot 10^{-6}q1=2.50106. To capture the transition from unsaturated to saturated regime, the pressure at the bottom boundary is fixed at ψ 0 = 0.5 ψ 0 = 0.5 psi_(0)=0.5\psi_{0}=0.5ψ0=0.5. For the parameters specified above, we consider meters as length units and seconds as time units. The simulations are conducted up to T = 10 4 T = 10 4 T=10^(4)T=10^{4}T=104 (about 2.78 hours) and the intermediate time is taken as t 1 = T / 10 2 t 1 = T / 10 2 t_(1)=T//10^(2)t_{1}=T / 10^{2}t1=T/102.
We use a regular lattice with Δ z = 10 2 Δ z = 10 2 Delta z=10^(-2)\Delta z=10^{-2}Δz=102. The BGRW computations are initialized by multiplying the initial condition by the total number of particles N N N\mathcal{N}N. Since the hydraulic conductivity varies in time according to (34), the time step is determined according to (24) for the maximum of K K KKK at every time
iteration and by specifying a maximum α = 0.8 α = 0.8 alpha=0.8\alpha=0.8α=0.8 of the parameters r i ± 1 / 2 , k r i ± 1 / 2 , k r_(i+-1//2,k)r_{i \pm 1 / 2, k}ri±1/2,k. The parameter of the regularization term in the L L LLL-scheme is set to L = 1 L = 1 L=1L=1L=1 for the computation of the initial condition (solution of the stationary problem, i.e. for θ / t = 0 θ / t = 0 del theta//del t=0\partial \theta / \partial t=0θ/t=0 in (1)) and to L = 2 L = 2 L=2L=2L=2 for the solution of the non-stationary problem. In both cases, the convergence criterion is verified by choosing ε r = 0 ε r = 0 epsi_(r)=0\varepsilon_{r}=0εr=0 and a fixed absolute tolerance ε a = 10 18 ε a = 10 18 epsi_(a)=10^(-18)\varepsilon_{a}=10^{-18}εa=1018.
To illustrate the consistency of the representation of the solution by ensembles of random walkers and the equivalence of the BGRW and FD schemes, we compare their solutions for increasing N N N\mathcal{N}N between 10 3 10 3 10^(3)10^{3}103 and 10 24 10 24 10^(24)10^{24}1024 at the final time T T TTT (Fig. 1). The errors | ψ B G R W ( z ) ψ F D ( z ) | ψ B G R W ( z ) ψ F D ( z ) |psi^(BGRW)(z)-psi^(FD)(z)|\left|\psi^{B G R W}(z)-\psi^{F D}(z)\right||ψBGRW(z)ψFD(z)| of the BGRW solution with respect to the FD solution shown in Fig. 2 decrease as N 1 N 1 N^(-1)\mathcal{N}^{-1}N1 and approach the machine precision 10 16 10 16 ∼10^(-16)\sim 10^{-16}1016 for N 10 18 N 10 18 N >= 10^(18)\mathcal{N} \geq 10^{18}N1018. The l 2 l 2 l^(2)l^{2}l2 norm ψ B G R W ψ F D ψ B G R W ψ F D ||psi^(BGRW)-psi^(FD)||\left\|\boldsymbol{\psi}^{B G R W}-\boldsymbol{\psi}^{F D}\right\|ψBGRWψFD of the difference of the two solution vectors with I = 2 / Δ z + 1 = 101 I = 2 / Δ z + 1 = 101 I=2//Delta z+1=101I=2 / \Delta z+1=101I=2/Δz+1=101 components decreases at a rate of 10 N 1 10 N 1 ∼10N^(-1)\sim 10 N^{-1}10N1 and reaches a plateau at about 10 14 10 14 10^(-14)10^{-14}1014 (see Table 1). Since the FD solution is the ensemble average of the BGRW solution (see Remark 1), this behavior also illustrates the self-averaging property of the GRW algorithms [21].
N N N\mathcal{N}N 1 e 3 1 e 6 1 e 10 1 e 18 1 e 24
| ψ B G R W ( z ) ψ F D ( z ) | ψ B G R W ( z ) ψ F D ( z ) |psi^(BGRW)(z)-psi^(FD)(z)|\left|\psi^{B G R W}(z)-\psi^{F D}(z)\right||ψBGRW(z)ψFD(z)| 1.70 e 03 1.70 e 03 1.70e-031.70 \mathrm{e}-031.70e03 4.24 e 06 4.24 e 06 4.24e-064.24 \mathrm{e}-064.24e06 2.52 e 10 2.52 e 10 2.52e-102.52 \mathrm{e}-102.52e10 7.13 e 16 7.13 e 16 7.13e-167.13 \mathrm{e}-167.13e16 9.21 e 16 9.21 e 16 9.21e-169.21 \mathrm{e}-169.21e16
ψ B G R W ψ F D ψ B G R W ψ F D ||psi^(BGRW)-psi^(FD)||\left\|\boldsymbol{\psi}^{B G R W}-\boldsymbol{\psi}^{F D}\right\|ψBGRWψFD 2.27 e 02 2.27 e 02 2.27e-022.27 \mathrm{e}-022.27e02 6.52 e 05 6.52 e 05 6.52e-056.52 \mathrm{e}-056.52e05 3.32 e 09 3.32 e 09 3.32e-093.32 \mathrm{e}-093.32e09 1.13 e 14 1.13 e 14 1.13e-141.13 \mathrm{e}-141.13e14 1.40 e 14 1.40 e 14 1.40e-141.40 \mathrm{e}-141.40e14
N 1 e 3 1 e 6 1 e 10 1 e 18 1 e 24 |psi^(BGRW)(z)-psi^(FD)(z)| 1.70e-03 4.24e-06 2.52e-10 7.13e-16 9.21e-16 ||psi^(BGRW)-psi^(FD)|| 2.27e-02 6.52e-05 3.32e-09 1.13e-14 1.40e-14| $\mathcal{N}$ | 1 e 3 | 1 e 6 | 1 e 10 | 1 e 18 | 1 e 24 | | :---: | :---: | :---: | :---: | :---: | :---: | | $\left\|\psi^{B G R W}(z)-\psi^{F D}(z)\right\|$ | $1.70 \mathrm{e}-03$ | $4.24 \mathrm{e}-06$ | $2.52 \mathrm{e}-10$ | $7.13 \mathrm{e}-16$ | $9.21 \mathrm{e}-16$ | | $\left\\|\boldsymbol{\psi}^{B G R W}-\boldsymbol{\psi}^{F D}\right\\|$ | $2.27 \mathrm{e}-02$ | $6.52 \mathrm{e}-05$ | $3.32 \mathrm{e}-09$ | $1.13 \mathrm{e}-14$ | $1.40 \mathrm{e}-14$ |
Table 1. Mean errors and error norms for Section 3.1, Fig. 2.
Let { ψ s } ψ s {psi^(s)}\left\{\psi^{s}\right\}{ψs} be the sequence of iterates of the BGRW L L LLL-scheme and ψ B G R W = lim s ψ s ψ B G R W = lim s ψ s psi^(BGRW)=lim_(s rarr oo)psi^(s)\boldsymbol{\psi}^{B G R W}= \lim _{s \rightarrow \infty} \boldsymbol{\psi}^{s}ψBGRW=limsψs. By the triangle inequality ψ s ψ s 1 ψ s ψ F D + ψ F D ψ s 1 ψ s ψ s 1 ψ s ψ F D + ψ F D ψ s 1 ||psi^(s)-psi^(s-1)|| <= ||psi^(s)-psi^(FD)||+||psi^(FD)-psi^(s-1)||\left\|\boldsymbol{\psi}^{s}-\boldsymbol{\psi}^{s-1}\right\| \leq\left\|\boldsymbol{\psi}^{s}-\boldsymbol{\psi}^{F D}\right\|+\left\|\boldsymbol{\psi}^{F D}-\boldsymbol{\psi}^{s-1}\right\|ψsψs1ψsψFD+ψFDψs1 we have lim s ψ s ψ s 1 2 ψ B G R W ψ F D lim s ψ s ψ s 1 2 ψ B G R W ψ F D lim_(s rarr oo)||psi^(s)-psi^(s-1)|| <= 2||psi^(BGRW)-psi^(FD)||\lim _{s \rightarrow \infty}\left\|\boldsymbol{\psi}^{s}-\boldsymbol{\psi}^{s-1}\right\| \leq 2\left\|\boldsymbol{\psi}^{B G R W}-\boldsymbol{\psi}^{F D}\right\|limsψsψs12ψBGRWψFD. Hence, the order 20 N 1 20 N 1 ∼20N^(-1)\sim 20 \mathcal{N}^{-1}20N1 of convergence of the BGRW solution to the FD solution is an upper limit for corrections. Fig. 3 and Fig. 4 show the decrease of the correction norms for N = 10 10 N = 10 10 N=10^(10)\mathcal{N}=10^{10}N=1010 and N = 10 18 N = 10 18 N=10^(18)\mathcal{N}=10^{18}N=1018, respectively. In the first case the corrections reach a plateau of about 10 9 10 9 10^(-9)10^{-9}109, consistent with the upper bound 20 N 1 20 N 1 20N^(-1)20 \mathcal{N}^{-1}20N1. In the second case, the corrections show a plateau at the machine precision, which, as indicated by Fig. 2, is the same as the plateau for the FD scheme.
Remark 7. The convergence behavior illustrated above can be explained with the reduced fluctuations Algorithm 1. The sum of fractional parts rest = i = 1 I { δ i } = i = 1 I δ i =sum_(i=1)^(I){delta_(i)}= \sum_{i=1}^{I}\left\{\delta_{i}\right\}=i=1I{δi} can be used to evaluate the truncation errors of the algorithm. At a given lattice site i , { δ i } [ 0 , 1 ) i , δ i [ 0 , 1 ) i,{delta_(i)}in[0,1)i,\left\{\delta_{i}\right\} \in[0,1)i,{δi}[0,1) with a mean { δ i } 0.5 δ i ¯ 0.5 bar({delta_(i)})~~0.5\overline{\left\{\delta_{i}\right\}} \approx 0.5{δi}0.5. The sum over the lattice sites is thus rest 0.5 I 0.5 I ~~0.5 I\approx 0.5 I0.5I. The total numbers of particles on the lattice is ntot = i = 1 I n i , k s = i = 1 I | ψ i , k s | N = | ψ | N I = i = 1 I n i , k s = i = 1 I ψ i , k s N = | ψ | ¯ N I =sum_(i=1)^(I)n_(i,k)^(s)=sum_(i=1)^(I)|psi_(i,k)^(s)|N= bar(|psi|)NI=\sum_{i=1}^{I} n_{i, k}^{s}=\sum_{i=1}^{I}\left|\psi_{i, k}^{s}\right| \mathcal{N}=\overline{|\psi|} \mathcal{N} I=i=1Ini,ks=i=1I|ψi,ks|N=|ψ|NI. With these, the truncation error can be evaluated as rest/ntot 0.5 / | ψ | N 1 0.5 / | ψ | ¯ N 1 ~~0.5// bar(|psi|)N^(-1)\approx 0.5 / \overline{|\psi|} \mathcal{N}^{-1}0.5/|ψ|N1, which is independent of the
discretization 3 3 ^(3){ }^{3}3 (i.e., the number of lattice sites I). For verification purposes, we remove all the floor functions in the Code 1, add the truncation sequence rest=nn+rest; nn=floor(rest); rest=rest-nn;
at the end, and perform the computation with N = 10 10 N = 10 10 N=10^(10)\mathcal{N}=10^{10}N=1010. The relative error of the solution ψ T / Δ t ψ T / Δ t psi_(T//Delta t)\boldsymbol{\psi}_{T / \Delta t}ψT/Δt obtained in this way with respect to the solution of the original Code 1, evaluated with the l 2 l 2 l^(2)l^{2}l2 norm, is of about 4.25 10 4 4.25 10 4 4.25*10^(-4)4.25 \cdot 10^{-4}4.25104. At the middle of the time interval [ 0 , T ] [ 0 , T ] [0,T][0, T][0,T] we evaluate | ψ | = 6.45 10 2 | ψ | ¯ = 6.45 10 2 bar(|psi|)=6.45*10^(-2)\overline{|\psi|}=6.45 \cdot 10^{-2}|ψ|=6.45102 and obtain the truncation error 0.5 / | ψ | N 1 = 7.75 10 10 0.5 / | ψ | ¯ N 1 = 7.75 10 10 0.5// bar(|psi|)N^(-1)=7.75*10^(-10)0.5 / \overline{|\psi|} \mathcal{N}^{-1}=7.75 \cdot 10^{-10}0.5/|ψ|N1=7.751010, which corresponds to the average value of the plateau shown by the corrections ψ s ψ s 1 ψ s ψ s 1 ||psi^(s)-psi^(s-1)||\left\|\boldsymbol{\psi}^{s}-\boldsymbol{\psi}^{s-1}\right\|ψsψs1 in this case. Since the original Code 1 contains three truncation sequences, we take rest / I 1.5 / I 1.5 //I~~1.5/ I \approx 1.5/I1.5 and obtain the truncation error 1.5 / | ψ | N 1 = 2.30 10 9 1.5 / | ψ | ¯ N 1 = 2.30 10 9 1.5// bar(|psi|)N^(-1)=2.30*10^(-9)1.5 / \overline{|\psi|} \mathcal{N}^{-1}=2.30 \cdot 10^{-9}1.5/|ψ|N1=2.30109. This error is almost the same as the plateau of the correction from Fig. 3. The plateau arises when the correction norms reach the threshold given by the truncation errors and cannot be further decreased by the iterative method. We note that this threshold is also close to the relative errors of the BGRW solution with respect to the FD solution at the final time T T TTT shown in Fig. 2 and Table 1. Thus, the accuracy of the BGRW L-scheme is limited by the truncation errors produced by the reduced fluctuations Algorithm 1.
The plateau of the order 10 N 1 10 N 1 10N^(-1)10 \mathcal{N}^{-1}10N1 also arises if one adds to the three terms depending on the parameter r r rrr in the FD Code 2 a noisy term randn / N randn / N randn//N\operatorname{randn} / \mathcal{N}randn/N, where randn is a random variable drawn from the standard normal distribution. The results (not shown here) are similar to those from Fig. 3 and Fig. 6. One expects therefore that the accuracy of the random walk methods based on random number generators is limited as well by truncation errors.
Fig. 5 and Fig. 6 show that the length of the sequence of corrections for N = 10 10 N = 10 10 N=10^(10)\mathcal{N}=10^{10}N=1010 not affected by oscillations is too short to allow the estimation of the order of convergence p p ppp with (29) and the evaluation of the quotient Q 1 Q 1 Q_(1)Q_{1}Q1 according to (28). For N = 10 18 N = 10 18 N=10^(18)\mathcal{N}=10^{18}N=1018, the sequence not affected by oscillations is three times longer and the behavior of the estimate p ( s ) 1 p ( s ) 1 p(s)~~1p(s) \approx 1p(s)1 and of the quotient Q 1 ( s ) < 1 Q 1 ( s ) < 1 Q_(1)(s) < 1Q_{1}(s)<1Q1(s)<1 suggest the C C C^(')C^{\prime}C-linear convergence (see Fig. 7 and Fig. 8). This is, according to Remark 5, a numerical argument for the convergence of the iterates to the unique solution which solves the nonlinear scheme (3).
In the absence of an exact solution for this example, we investigate the existence of the "error-based" order C C CCC on sequences of errors with respect to the FD solution taken as a reference. We compute BGRW solutions for N = 10 16 N = 10 16 N=10^(16)\mathcal{N}=10^{16}N=1016 and form the sequence { ψ s ψ F D } ψ s ψ F D {||psi^(s)-psi^(FD)||}\left\{\left\|\boldsymbol{\psi}^{s}-\boldsymbol{\psi}^{F D}\right\|\right\}{ψsψFD}. The errors presented in Fig. 9 maintain a linear trend in semi-logarithmic representation over 130 iterations s s sss and allow the evaluation, according to (28), of a subunit quotient Q 1 Q 1 Q_(1)Q_{1}Q1 in the same interval, shown in Fig. 10. We can therefore assume that the solution of the BGRW scheme converges with the linear C C CCC-order to the reference FD solution.
Fig. 1. Section 3.1: comparison of the BGRW (5) and FD (4) solutions.
Fig. 3. Section 3.1: corrections ( N = 10 10 ) N = 10 10 (N=10^(10))\left(N=10^{10}\right)(N=1010).
Fig. 5. Section 3.1: estimated order of convergence ( N = 10 10 N = 10 10 N=10^(10)N=10^{10}N=1010 ).
Fig. 2. Section 3.1: errors of the BGRW solutions.
Fig. 4. Section 3.1: corrections ( N = 10 18 ) N = 10 18 (N=10^(18))\left(N=10^{18}\right)(N=1018).
Fig. 6. Section 3.1: estimation of the quotient Q 1 ( N = 10 10 ) Q 1 N = 10 10 Q_(1)(N=10^(10))Q_{1}\left(N=10^{10}\right)Q1(N=1010).
3.2. Second example: fully coupled flow and surfactant transport. The next example is the fully coupled problem of variably saturated flow, with transition from saturated to unsaturated regime, and surfactant transport
Fig. 7. Section 3.1: estimated order of convergence ( N = 10 18 N = 10 18 N=10^(18)N=10^{18}N=1018 ).
Fig. 9. Section 3.1: errors of the BGRW solution ( N = 10 16 N = 10 16 N=10^(16)N=10^{16}N=1016 ).
Fig. 8. Section 3.1: estimation of the quotient Q 1 ( N = 10 18 ) Q 1 N = 10 18 Q_(1)(N=10^(18))Q_{1}\left(N=10^{18}\right)Q1(N=1018).
Fig. 10. Section 3.1: error-based quotient Q 1 Q 1 Q_(1)Q_{1}Q1 of the BGRW solution.
governed by Eqs. (1) and (2) with the exact manufactured solutions
ψ m ( z , t ) = t z ( z 1 ) + x 4 , c m ( z , t ) = t z ( z 1 ) + 1 ψ m ( z , t ) = t z ( z 1 ) + x 4 , c m ( z , t ) = t z ( z 1 ) + 1 psi_(m)(z,t)=-tz(z-1)+(x)/(4),quadc_(m)(z,t)=tz(z-1)+1\psi_{m}(z, t)=-t z(z-1)+\frac{x}{4}, \quad c_{m}(z, t)=t z(z-1)+1ψm(z,t)=tz(z1)+x4,cm(z,t)=tz(z1)+1
and the water contend parameterized by
θ ( ψ , c ) = { 1 1 ψ c / 10 , ψ < 0 0.3 , ψ 0 . θ ( ψ , c ) = 1 1 ψ c / 10 , ψ < 0 0.3 , ψ 0 . theta(psi,c)={[(1)/(1-psi-c//10)",",psi < 0],[0.3",",psi >= 0.]:}\theta(\psi, c)= \begin{cases}\frac{1}{1-\psi-c / 10}, & \psi<0 \\ 0.3, & \psi \geq 0 .\end{cases}θ(ψ,c)={11ψc/10,ψ<00.3,ψ0.
The hydraulic conductivity is constant K ( θ ( ψ , c ) ) = 1 K ( θ ( ψ , c ) ) = 1 K(theta(psi,c))=1K(\theta(\psi, c))=1K(θ(ψ,c))=1 and the diffusion coefficient in Eq. (2) is set to D = 1 D = 1 D=1D=1D=1 (in arbitrary units). The manufactured solutions verify Eqs. (1) ans (2) with supplementary source terms [ 10 , 1 , 16 , 17 ] [ 10 , 1 , 16 , 17 ] [10,1,16,17][10,1,16,17][10,1,16,17]. These source terms, generated by inserting the manufactured solutions into the equations, are calculated analytically with the Matlab symbolic toolbox.
We first solve the problem in the domain [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1], on a regular lattice with δ z = 2.5 10 2 δ z = 2.5 10 2 delta z=2.5*10^(-2)\delta z=2.5 \cdot 10^{-2}δz=2.5102, with the coupled FD scheme (4) and BGRW transport scheme (13). The time step Δ t = 1.56 10 3 Δ t = 1.56 10 3 Delta t=1.56*10^(-3)\Delta t=1.56 \cdot 10^{-3}Δt=1.56103 is determined according to (26) with L ψ = L c = 100 , α = 1 L ψ = L c = 100 , α = 1 L_(psi)=L_(c)=100,alpha=1L_{\psi}=L_{c}=100, \alpha=1Lψ=Lc=100,α=1, and β = 0.5 β = 0.5 beta=0.5\beta=0.5β=0.5. The corrections are evaluated in the l 2 l 2 l^(2)l^{2}l2
norm with the absolute tolerance ε a = 10 18 ε a = 10 18 epsi_(a)=10^(-18)\varepsilon_{a}=10^{-18}εa=1018 and the convergence is assessed with the condition max ( ψ s ψ s 1 , c s c s 1 ) ε a max ψ s ψ s 1 , c s c s 1 ε a max(||psi^(s)-psi^(s-1)||,||c^(s)-c^(s-1)||) <= epsi_(a)\max \left(\left\|\boldsymbol{\psi}^{s}-\boldsymbol{\psi}^{s-1}\right\|,\left\|\boldsymbol{c}^{s}-\boldsymbol{c}^{s-1}\right\|\right) \leq \varepsilon_{a}max(ψsψs1,cscs1)εa.
The results obtained for N = 10 10 N = 10 10 N=10^(10)\mathcal{N}=10^{10}N=1010 particles used in the transport scheme presented in Figs. 11 and 12 show that the truncation errors generated by the transport Code 3 yield a plateau 10 10 10 10 ∼10^(-10)\sim 10^{-10}1010 of the concentration corrections and also, due to the coupling, a plateau higher than the machine precision of about 10 13 10 13 10^(-13)10^{-13}1013 of the pressure corrections. The oscillations arising when the corrections reach the plateau do not allow reliable estimations of the order of convergence and of the trend of the quotient Q 1 Q 1 Q_(1)Q_{1}Q1, for both pressure (Figs. 13 and 14) and concentration (Figs. 15 and 16). Increasing the number of particles in the transport scheme to N = 10 24 N = 10 24 N=10^(24)\mathcal{N}=10^{24}N=1024 lowers the plateau to the machine precision for both pressure and concentration corrections (Figs. 17 and 18), renders more reliable the estimates of the order of convergence p = 1 p = 1 p=1p=1p=1 (Figs. 19 and 21), and indicates limits Q 1 < 1 Q 1 < 1 Q_(1) < 1Q_{1}<1Q1<1, consistent with the C C C^(')C^{\prime}C linear convergence (Figs. 20 and 22). According to Remark 5, this result is an indication of the convergence to the solution of the nonlinear schemes (3) and (11).
Tests (not presented here) with a similar two dimensional problem [16, Sec. 5.2.1] also show the plateau 10 13 10 13 ∼10^(-13)\sim 10^{-13}1013 of the pressure corrections produced by the coupling of flow and transport for N = 10 10 N = 10 10 N=10^(10)\mathcal{N}=10^{10}N=1010 particles in the transport code and a plateau at the machine precision for N = 10 24 N = 10 24 N=10^(24)\mathcal{N}=10^{24}N=1024 particles.
Fig. 11. Section 3.2: corrections of the pressure solution ( N = 10 10 ) N = 10 10 (N=10^(10))\left(N=10^{10}\right)(N=1010).
Fig. 12. Section 3.2: corrections of the concentration solution ( N = 10 10 N = 10 10 N=10^(10)N=10^{10}N=1010 ).
The convergence of the iterations does not yet ensure the convergence of the numerical solution to the manufactured solution. This can be verified by a grid convergence test performed by successively halving the space step Δ z Δ z Delta z\Delta zΔz. To do that, we fix the number of particles in the transport code to N = 10 24 N = 10 24 N=10^(24)\mathcal{N}=10^{24}N=1024, which, as seen above, ensures that the truncation errors do not affect the convergence of the corrections, and perform iterations of the linearization schemes (4) and (13) until the corrections fall below the threshold ε a = 10 18 ε a = 10 18 epsi_(a)=10^(-18)\varepsilon_{a}=10^{-18}εa=1018. The solutions for successive Δ z Δ z Delta z\Delta zΔz are further used to evaluate the EOC by the rate of logarithmic decay of the deviations from the manufactured solutions measured with the
Fig. 13. Section 3.2: estimation of the convergence order p p ppp, pressure ( N = 10 10 N = 10 10 N=10^(10)N=10^{10}N=1010 ).
Fig. 15. Section 3.2: estimation of the convergence order p p ppp, concentration ( N = 10 10 N = 10 10 N=10^(10)N=10^{10}N=1010 ).
Fig. 17. Section 3.2: corrections of the pressure solution ( N = 10 24 ) N = 10 24 (N=10^(24))\left(N=10^{24}\right)(N=1024).
Fig. 14. Section 3.2: estimation of the quotient Q 1 Q 1 Q_(1)Q_{1}Q1, pressure ( N = 10 10 N = 10 10 N=10^(10)N=10^{10}N=1010 ).
Fig. 16. Section 3.2: estimation of the quotient Q 1 Q 1 Q_(1)Q_{1}Q1, concentration ( N = 10 10 ) N = 10 10 (N=10^(10))\left(N=10^{10}\right)(N=1010).
Fig. 18. Section 3.2: corrections of the concentration solution ( N = 10 24 ) N = 10 24 (N=10^(24))\left(N=10^{24}\right)(N=1024).
discrete L 2 L 2 L^(2)L^{2}L2 norm Δ z l 2 Δ z l 2 sqrt(Delta z)||*||_(l^(2))\sqrt{\Delta z}\|\cdot\|_{l^{2}}Δzl2. The results presented in Table 2 indicate the second order convergence of the solution { ψ , q , c } { ψ , q , c } {psi,q,c}\{\boldsymbol{\psi}, \boldsymbol{q}, \boldsymbol{c}\}{ψ,q,c}.
Fig. 19. Section 3.2: estimation of the convergence order p p ppp, pressure ( N = 10 24 N = 10 24 N=10^(24)N=10^{24}N=1024 ).
Fig. 21. Section 3.2: estimation of the convergence order p p ppp, concentration ( N = 10 24 N = 10 24 N=10^(24)N=10^{24}N=1024 ).
Fig. 20. Section 3.2: estimation of the quotient Q 1 Q 1 Q_(1)Q_{1}Q1, pressure ( N = 10 24 N = 10 24 N=10^(24)N=10^{24}N=1024 ).
Fig. 22. Section 3.2: estimation of the quotient Q 1 Q 1 Q_(1)Q_{1}Q1, concentration ( N = 10 24 ) N = 10 24 (N=10^(24))\left(N=10^{24}\right)(N=1024).
Δ z Δ z Delta z\Delta zΔz ψ ψ m ψ ψ m ||psi-psi_(m)||\left\|\psi-\psi_{m}\right\|ψψm EOC q m m q m m ||q-m_(m)||\left\|q-m_{m}\right\|qmm EOC c c m c c m ||c-c_(m)||\left\|c-c_{m}\right\|ccm EOC
1.00 e 1 1.00 e 1 1.00e-11.00 \mathrm{e}-11.00e1 4.59 e 02 4.59 e 02 4.59e-024.59 \mathrm{e}-024.59e02 - 1.23 e 01 1.23 e 01 1.23e-011.23 \mathrm{e}-011.23e01 - 3.43 e 02 3.43 e 02 3.43e-023.43 \mathrm{e}-023.43e02 -
5.00 e 1 5.00 e 1 5.00e-15.00 \mathrm{e}-15.00e1 1.14 e 02 1.14 e 02 1.14e-021.14 \mathrm{e}-021.14e02 2.01 3.34 e 02 3.34 e 02 3.34e-023.34 \mathrm{e}-023.34e02 1.89 1.02 e 02 1.02 e 02 1.02e-021.02 \mathrm{e}-021.02e02 1.75
2.50 e 2 2.50 e 2 2.50e-22.50 \mathrm{e}-22.50e2 2.85 e 03 2.85 e 03 2.85e-032.85 \mathrm{e}-032.85e03 2.00 8.68 e 03 8.68 e 03 8.68e-038.68 \mathrm{e}-038.68e03 1.94 2.76 e 03 2.76 e 03 2.76e-032.76 \mathrm{e}-032.76e03 1.88
1.25 e 2 1.25 e 2 1.25e-21.25 \mathrm{e}-21.25e2 7.11 e 04 7.11 e 04 7.11e-047.11 \mathrm{e}-047.11e04 2.00 2.21 e 03 2.21 e 03 2.21e-032.21 \mathrm{e}-032.21e03 1.98 7.21 e 04 7.21 e 04 7.21e-047.21 \mathrm{e}-047.21e04 1.94
Delta z ||psi-psi_(m)|| EOC ||q-m_(m)|| EOC ||c-c_(m)|| EOC 1.00e-1 4.59e-02 - 1.23e-01 - 3.43e-02 - 5.00e-1 1.14e-02 2.01 3.34e-02 1.89 1.02e-02 1.75 2.50e-2 2.85e-03 2.00 8.68e-03 1.94 2.76e-03 1.88 1.25e-2 7.11e-04 2.00 2.21e-03 1.98 7.21e-04 1.94| $\Delta z$ | $\left\\|\psi-\psi_{m}\right\\|$ | EOC | $\left\\|q-m_{m}\right\\|$ | EOC | $\left\\|c-c_{m}\right\\|$ | EOC | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | $1.00 \mathrm{e}-1$ | $4.59 \mathrm{e}-02$ | - | $1.23 \mathrm{e}-01$ | - | $3.43 \mathrm{e}-02$ | - | | $5.00 \mathrm{e}-1$ | $1.14 \mathrm{e}-02$ | 2.01 | $3.34 \mathrm{e}-02$ | 1.89 | $1.02 \mathrm{e}-02$ | 1.75 | | $2.50 \mathrm{e}-2$ | $2.85 \mathrm{e}-03$ | 2.00 | $8.68 \mathrm{e}-03$ | 1.94 | $2.76 \mathrm{e}-03$ | 1.88 | | $1.25 \mathrm{e}-2$ | $7.11 \mathrm{e}-04$ | 2.00 | $2.21 \mathrm{e}-03$ | 1.98 | $7.21 \mathrm{e}-04$ | 1.94 |
Table 2. Orders of convergence of the numerical solution to Section 3.2.
The knowledge of the exact solution allows us to compute error-based orders of convergence as well. Using a finer discretization, Δ z = 1.25 10 2 Δ z = 1.25 10 2 Delta z=1.25*10^(-2)\Delta z=1.25 \cdot 10^{-2}Δz=1.25102, and a larger tolerance ε a = 10 3 ε a = 10 3 epsi_(a)=10^(-3)\varepsilon_{a}=10^{-3}εa=103 we form sequences of discrete L 2 L 2 L^(2)L^{2}L2 norms of errors and corrections for pressure (Figs. 23 and 24) and concentration (Figs. 25 and 26). We note that as the convergence criterion for errors is fulfilled, the corrections are four to five orders of convergence smaller. Estimations (not shown here) of the order of convergence p p ppp with (29) were found to be consistent with the definition of the Q Q QQQ linear convergence, for both errors and the corresponding corrections. The quotient Q 1 Q 1 Q_(1)Q_{1}Q1 computed with (28) from the
sequences of successive errors approaches the unity, indicating the C C CCC sublinear convergence of the linearization schemes for both flow and transport (Figs. 27 and 29 ). We have thus an illustration of the observation made in Remark 6 that C C CCC-linear convergence cannot be obtained in numerical simulations. For the corresponding corrections, Q 1 < 1 Q 1 < 1 Q_(1) < 1Q_{1}<1Q1<1 indicates the C C C^(')C^{\prime}C-linear convergence (Figs. 28 and 30), which, according to Remark 5, indicates the convergence of the iterative schemes to the solutions of the coupled nonlinear schemes (3) and (11).
Fig. 23. Section 3.2: errors of the pressure solution.
Fig. 25. Section 3.2: errors of the concentration solution.
Fig. 24. Section 3.2: corrections of the pressure solution.
Fig. 26. Section 3.2: corrections of the concentration solution.
3.3. Third example: One-way coupled flow and transport problem with van Genuchten-Mualem parameterization. In the following, we consider the one-way coupled system (1)-(2), i.e., θ θ theta\thetaθ independent of c c ccc, with an experimentally based parameterization model. The relationships defining the water content θ ( ψ ) θ ( ψ ) theta(psi)\theta(\psi)θ(ψ) and the hydraulic conductivity K ( θ ( ψ ) ) K ( θ ( ψ ) ) K(theta(psi))K(\theta(\psi))K(θ(ψ)) are given by the
Fig. 27. Section 3.2: estimation of the quotient Q 1 Q 1 Q_(1)Q_{1}Q1, pressure errors.
Fig. 28. Section 3.2: estimation of the quotient Q 1 Q 1 Q_(1)Q_{1}Q1, pressure corrections.
Fig. 29. Section 3.2: estimation of the quotient Q 1 Q 1 Q_(1)Q_{1}Q1, concentration errors.
Fig. 30. Section 3.2: estimation of the quotient Q 1 Q 1 Q_(1)Q_{1}Q1, concentration corrections.
van Genuchten-Mualem model
(35) Θ ( ψ ) = { ( 1 + ( α ψ ) n ) m , ψ < 0 1 , ψ 0 , (36) K ( Θ ( ψ ) ) = { K s a t Θ ( ψ ) 1 2 [ 1 ( 1 Θ ( ψ ) 1 m ) m ] 2 , ψ < 0 K s a t , ψ 0 , (35) Θ ( ψ ) = 1 + ( α ψ ) n m , ψ < 0 1 , ψ 0 , (36) K ( Θ ( ψ ) ) = K s a t Θ ( ψ ) 1 2 1 1 Θ ( ψ ) 1 m m 2 , ψ < 0 K s a t , ψ 0 , {:[(35)Theta(psi)={[(1+(-alpha psi)^(n))^(-m)",",psi < 0],[1",",psi >= 0","]:}],[(36)K(Theta(psi))={[K_(sat)Theta(psi)^((1)/(2))[1-(1-Theta(psi)^((1)/(m)))^(m)]^(2)",",psi < 0],[K_(sat)",",psi >= 0","]:}]:}\begin{gather*} \Theta(\psi)= \begin{cases}\left(1+(-\alpha \psi)^{n}\right)^{-m}, & \psi<0 \\ 1, & \psi \geq 0,\end{cases} \tag{35}\\ K(\Theta(\psi))= \begin{cases}K_{s a t} \Theta(\psi)^{\frac{1}{2}}\left[1-\left(1-\Theta(\psi)^{\frac{1}{m}}\right)^{m}\right]^{2}, & \psi<0 \\ K_{s a t}, & \psi \geq 0,\end{cases} \tag{36} \end{gather*}(35)Θ(ψ)={(1+(αψ)n)m,ψ<01,ψ0,(36)K(Θ(ψ))={KsatΘ(ψ)12[1(1Θ(ψ)1m)m]2,ψ<0Ksat,ψ0,
where Θ = ( θ θ res ) / ( θ sat θ res ) Θ = θ θ res  / θ sat  θ res  Theta=(theta-theta_("res "))//(theta_("sat ")-theta_("res "))\Theta=\left(\theta-\theta_{\text {res }}\right) /\left(\theta_{\text {sat }}-\theta_{\text {res }}\right)Θ=(θθres )/(θsat θres ) is the normalized water content defined in the same way as for the exponential model (33)-(34), α , n , m = 1 1 / n α , n , m = 1 1 / n alpha,n,m=1-1//n\alpha, n, m=1-1 / nα,n,m=11/n are model parameters depending on the soil type, and K sat K sat  K_("sat ")K_{\text {sat }}Ksat  is the constant hydraulic conductivity in the saturated regime. In this example, we consider the parameters of a silt loam used in previously published studies [7, 16, 17], θ sat = 0.396 , θ res = 0.131 , α = 0.423 , n = 2.06 , K sat = 4.96 10 2 θ sat  = 0.396 , θ res  = 0.131 , α = 0.423 , n = 2.06 , K sat  = 4.96 10 2 theta_("sat ")=0.396,theta_("res ")=0.131,alpha=0.423,n=2.06,K_("sat ")=4.96*10^(-2)\theta_{\text {sat }}=0.396, \theta_{\text {res }}=0.131, \alpha=0.423, n=2.06, K_{\text {sat }}=4.96 \cdot 10^{-2}θsat =0.396,θres =0.131,α=0.423,n=2.06,Ksat =4.96102.
We chose the manufactured solutions
ψ m ( z , t ) = t z ( z 1 ) x 4 + x 2 , c m ( z , t ) = t z ( z 1 ) + 1 ψ m ( z , t ) = t z ( z 1 ) x 4 + x 2 , c m ( z , t ) = t z ( z 1 ) + 1 psi_(m)(z,t)=-tz(z-1)-(x)/(4)+(x)/(2),quadc_(m)(z,t)=tz(z-1)+1\psi_{m}(z, t)=-t z(z-1)-\frac{x}{4}+\frac{x}{2}, \quad c_{m}(z, t)=t z(z-1)+1ψm(z,t)=tz(z1)x4+x2,cm(z,t)=tz(z1)+1
which illustrate again the degeneracy of Richards' equation, with transitions from saturated to unsaturated flow regime. The diffusion coefficient in the transport equation (2) is set to D = 0.01 D = 0.01 D=0.01D=0.01D=0.01. The source terms generated by the manufactured solutions are calculated as in Section 3.2 above with the Matlab symbolic toolbox.
Since the flow is now independent of transport it is not influenced the truncation produced by the Code 3. Therefore, we focus here on the error-based orders of convergence of the linearization schemes. The coupled problems are solved in the domain [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1], with Δ z = 1.25 10 2 Δ z = 1.25 10 2 Delta z=1.25*10^(-2)\Delta z=1.25 \cdot 10^{-2}Δz=1.25102 and Δ t = 3.91 10 3 Δ t = 3.91 10 3 Delta t=3.91*10^(-3)\Delta t=3.91 \cdot 10^{-3}Δt=3.91103. The convergence is assessed with discrete L 2 L 2 L^(2)L^{2}L2 norms of pressure and concentration errors with respect to the manufactured solutions for the tolerance ε a = 10 3 ε a = 10 3 epsi_(a)=10^(-3)\varepsilon_{a}=10^{-3}εa=103. Preliminary tests with increasing numbers of particles show that the transport scheme (13) fails to converge if N < 10 8 N < 10 8 N < 10^(8)\mathcal{N}<10^{8}N<108. To completely eliminate the effect to the truncation errors, the computations are carried out with N = 10 18 N = 10 18 N=10^(18)\mathcal{N}=10^{18}N=1018 particles.
As in the previous example, we found that the correction norms reach values that are systematically smaller by several orders of magnitude than the error norms, for both pressure and concentration and the estimates obtained with (29) indicate the Q Q QQQ order of convergence p = 1 p = 1 p=1p=1p=1. The quotient Q 1 Q 1 Q_(1)Q_{1}Q1 computed with (28) approaches the unity for the errors of both the pressure and the concentration (Figs. 31 and 33) indicating the sublinear convergence. For the corresponding corrections (Figs. 32 and 34) Q 1 < 1 Q 1 < 1 Q_(1) < 1Q_{1}<1Q1<1, hence the C C C^(')C^{\prime}C linear convergence of both iterative schemes may be assumed. These results illustrate again the observations made in Remarks 5 and 6.
Fig. 31. Section 3.3: estimation of the quotient Q 1 Q 1 Q_(1)Q_{1}Q1, pressure errors.
Fig. 32. Section 3.3: estimation of the quotient Q 1 Q 1 Q_(1)Q_{1}Q1, pressure corrections.
The grid convergence test, conducted in the same way as in Section 3.2, presented in Table 3 indicates the quadratic convergence of the solution { ψ , q , c } { ψ , q , c } {psi,q,c}\{\boldsymbol{\psi}, \boldsymbol{q}, \boldsymbol{c}\}{ψ,q,c} towards the exact manufactured solution.
Fig. 33. Section 3.3: estimation of the quotient Q 1 Q 1 Q_(1)Q_{1}Q1, concentration errors.
Fig. 34. Section 3.3: estimation of the quotient Q 1 Q 1 Q_(1)Q_{1}Q1, concentration corrections.
Δ z Δ z Delta z\Delta zΔz ψ ψ m ψ ψ m ||psi-psi_(m)||\left\|\psi-\psi_{m}\right\|ψψm EOC q m m q m m ||q-m_(m)||\left\|q-m_{m}\right\|qmm EOC c c m c c m ||c-c_(m)||\left\|c-c_{m}\right\|ccm EOC
1.00 e 1 1.00 e 1 1.00e-11.00 \mathrm{e}-11.00e1 5.85 e 02 5.85 e 02 5.85e-025.85 \mathrm{e}-025.85e02 - 2.28 e 03 2.28 e 03 2.28e-032.28 \mathrm{e}-032.28e03 - 1.23 e 02 1.23 e 02 1.23e-021.23 \mathrm{e}-021.23e02 -
5.00 e 1 5.00 e 1 5.00e-15.00 \mathrm{e}-15.00e1 1.42 e 02 1.42 e 02 1.42e-021.42 \mathrm{e}-021.42e02 2.05 5.69 e 04 5.69 e 04 5.69e-045.69 \mathrm{e}-045.69e04 2.00 3.54 e 03 3.54 e 03 3.54e-033.54 \mathrm{e}-033.54e03 1.80
2.50 e 2 2.50 e 2 2.50e-22.50 \mathrm{e}-22.50e2 3.27 e 03 3.27 e 03 3.27e-033.27 \mathrm{e}-033.27e03 2.11 1.48 e 04 1.48 e 04 1.48e-041.48 \mathrm{e}-041.48e04 1.94 9.19 e 04 9.19 e 04 9.19e-049.19 \mathrm{e}-049.19e04 1.95
1.25 e 2 1.25 e 2 1.25e-21.25 \mathrm{e}-21.25e2 8.09 e 04 8.09 e 04 8.09e-048.09 \mathrm{e}-048.09e04 2.02 4.50 e 05 4.50 e 05 4.50e-054.50 \mathrm{e}-054.50e05 1.72 2.38 e 04 2.38 e 04 2.38e-042.38 \mathrm{e}-042.38e04 1.95
Delta z ||psi-psi_(m)|| EOC ||q-m_(m)|| EOC ||c-c_(m)|| EOC 1.00e-1 5.85e-02 - 2.28e-03 - 1.23e-02 - 5.00e-1 1.42e-02 2.05 5.69e-04 2.00 3.54e-03 1.80 2.50e-2 3.27e-03 2.11 1.48e-04 1.94 9.19e-04 1.95 1.25e-2 8.09e-04 2.02 4.50e-05 1.72 2.38e-04 1.95| $\Delta z$ | $\left\\|\psi-\psi_{m}\right\\|$ | EOC | $\left\\|q-m_{m}\right\\|$ | EOC | $\left\\|c-c_{m}\right\\|$ | EOC | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | $1.00 \mathrm{e}-1$ | $5.85 \mathrm{e}-02$ | - | $2.28 \mathrm{e}-03$ | - | $1.23 \mathrm{e}-02$ | - | | $5.00 \mathrm{e}-1$ | $1.42 \mathrm{e}-02$ | 2.05 | $5.69 \mathrm{e}-04$ | 2.00 | $3.54 \mathrm{e}-03$ | 1.80 | | $2.50 \mathrm{e}-2$ | $3.27 \mathrm{e}-03$ | 2.11 | $1.48 \mathrm{e}-04$ | 1.94 | $9.19 \mathrm{e}-04$ | 1.95 | | $1.25 \mathrm{e}-2$ | $8.09 \mathrm{e}-04$ | 2.02 | $4.50 \mathrm{e}-05$ | 1.72 | $2.38 \mathrm{e}-04$ | 1.95 |
Table 3. Orders of convergence of the numerical solution to Section 3.3.

4. CONCLUSIONS

In this study, we demonstrated through numerical examples the convergence of the explicit L L LLL-schemes for nonlinear and degenerate problems of coupled flow and transport processes in porous media. The convergence issue is two-fold. First it is the convergence of the iterative method which solves the nonlinearity of the problem and provides a solution of the nonlinear numerical scheme, for instance the L L LLL-scheme for Richards' equation (4) which approximates the solution of the nonlinear scheme (3). The second aspect is the convergence of the numerical solution to the exact solution of the problem, provided that there exists a unique solution.
The convergence of the iterative schemes has been investigated through estimations of computational and error-based orders of convergence. The three examples presented in Section 3 provide numerical arguments for the C C C^(')C^{\prime}C-linear convergence. According to Remark 5, the C C C^(')C^{\prime}C-linear convergence indicates the uniqueness of the iterative solutions and their convergence to the solutions of the nonlinear schemes. The sequences of errors with respect to exact manufactured solutions of the coupled problem presented in Section 3.2 and Section 3.3 are only sublinearly C C CCC convergent and illustrate the impossibility of achieving the C C CCC-liner convergence via numerical simulations, pointed out in Remark 6. However, with the FD solution as reference, we have shown that the random walk BGRW L L LLL-scheme for Richards' equation could be C C CCC-linear convergent (Fig. 9). Using grid convergence tests and manufactured solutions
we get strong numerical evidence of second order convergence ( ( Δ z ) 2 ( Δ z ) 2 ∼(Delta z)^(2)\sim(\Delta z)^{2}(Δz)2 ) of the L L LLL-schemes for coupled flow and transport problems (Table 2 and Table 3).
The random walk method for Richards' equation is rather of academic interest. It has been used, for instance, to prove the stability of the equivalent FD scheme (Remark 1). Instead, the random walk approach is essential in modeling the transport because it facilitates a discrete description at the molecular level of the chemical reactions [17] and provides a basis for the space-time upscaling of the reactive transport in porous media [18]. An issue of concern of this approach are the truncation errors produced by the Algorithm 1 which preserves the indivisibility of the particles. We have shown that the truncation errors induce a plateau in the decrease of the successive corrections of the linearization method (Remark 7). The plateau is inversely proportional to the number of particles, N 1 N 1 ∼N^(-1)\sim \mathcal{N}^{-1}N1, and may hinder the evaluation of the convergence orders if N N N\mathcal{N}N is not large enough. In modeling reactive transport, where the amount of molecules is of the order of Avogadro's number, the plateau reaches the machine precision. However, the truncation-limited precision becomes significant in applications for small systems of particles (e.g., [20]), for instance in modeling the isotopic separation of heavy water where the number of deuterium isotopes can be of the order N 10 6 N 10 6 N∼10^(6)\mathcal{N} \sim 10^{6}N106 or even smaller.
Acknowledgements. F.A. Radu acknowledges the support of the VISTA program, The Norwegian Academy of Science and Letters, and Equinor.

REFERENCES

[1] C.D. Alecsa, I. Boros, F. Frank, P. Knabner, M. Nechita, A. Prechtel, A. Rupp and N. Suciu, Numerical benchmark study for fow in heterogeneous aquifers, Adv. Water Resour., 138 (2020), 103558. https://doi.org/10.1016/j.advwatres. 2020.103558 중
[2] E. Cătinaş, A survey on the high convergence orders and computational convergence orders of sequences, Appl. Math. Comput., 343 (2019), pp. 1-20. https://doi.org/10. 1016/j.amc.2018.08.006
[3] E. Cătinaş, How many steps still left to x x x^(**)x^{*}x ?, SIAM Rev., 63 (2021) no. 3, pp. 585-624. https://doi.org/10.1137/19M1244858
[4] D. Illiano, I.S. Pop and F.A. Radu, Iterative schemes for surfactant transport in porous media, Comput. Geosci., 25 (2021), pp. 805-822. https://doi.org/10.1007/ s10596-020-09949-2 준
[5] P. Knabner, S. Bitterlich, R. Iza Teran, R., A. Prechtel and E. Schneid, Influence of surfactants on spreading of contaminants and soil remediation, pp.152-161, in Jäger, W., Krebs, H.J. (Eds.), Mathematics-Key Technology for the Future, Springer, Berlin, Heidelberg, 2003. https://doi.org/10.1007/978-3-642-55753-8_12 [x
[6] P. Knabner and L. Angermann, Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Springer, New York, 2003. https://doi.org/10.1007/b97419
[7] F. List and F.A. Radu, A study on iterative methods for solving Richards' equation, Comput. Geosci., 20 (2016) no. 2, pp. 341-353. https://doi.org/10.1007/ s10596-016-9566-3 중
[8] I.S. Pop, F.A. Radu and P. Knabner, Mixed finite elements for the Richards' equation: linearization procedure, J. Comput. Appl. Math., 168 (2004) no. 1, pp. 365-373. https: //doi.org/10.1016/j.cam.2003.04.008
[9] F.A. Radu, K. Kumar, J.M. Nordbotten and I.S. Pop, A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities, IMA Journal Numer. Anal., 38 (2018) no. 2, pp. 884-920. urlhttps://doi.org/10.1093/imanum/drx032
[10] P.J. Roache, Code verification by the method of manufactured solutions, J. Fluids Eng., 124 (2002) no. 1, pp. 4-10. http://dx.doi.org/10.1115/1.1436090
[11] C.J. Roy, Review of code and solution verification procedures for computational simulation, J. Comput. Phys., 205 (2005), pp. 131-156. https://doi.org/10.1016/j.jcp. 2004.10.036 중
[12] J.S. Stokke, K. Mitra, E. Storvik, J.W. Both and F.A. Radu, An adaptive solution strategy for Richards' equation, Comput. Math. Appl., 152 (2023), pp. 155-167. https://doi.org/10.1016/j.camwa.2023.10.020 [X]
[13] J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM, 2004. https://doi.org/10.1137/1.9780898717938
[14] N. Suciu, Diffusion in Random Fields. Applications to Transport in Groundwater, Birkhäuser, Cham, 2019. https://doi.org/10.1007/978-3-030-15081-5
[15] N. Suciu, Global Random Walk Solutions for Flow and Transport in Porous Media, in F.J. Vermolen and C. Vuik (eds.), Numerical Mathematics and Advanced Applications ENUMATH 2019, Lecture Notes in Computational Science and Engineering, 139, Springer Nature, Switzerland, 2020. https://doi.org/10.1007/978-3-030-55874-1_93
[16] N. Suciu, D. Illiano, A. Prechtel and F.A. Radu, Global random walk solvers for fully coupled flow and transport in saturated/unsaturated porous media, Adv. Water Resour., 152 (2021), 103935. https://doi.org/10.1016/j.advwatres.2021.103935 [
[17] N. Suciu and F.A. Radu, Global random walk solvers for reactive transport and biodegradation processes in heterogeneous porous media, Adv. Water Res., 166 (2022), 104268. https://doi.org/10.1016/j.advwatres.2022.104268 [
[18] N. Suciu, F.A. Radu and I.S. Pop, Space-time upscaling of reactive transport in porous media, Adv. Water Resour., 176 (2023), 104443. http://dx.doi.org/10.1016/ j.advwatres.2023.104443 [
[19] N. Suciu, F.A. Radu, J.S. Stokke, E. Cătinaş and A. Malina, Computational orders of convergence of iterative methods for Richards' equation, arXiv preprint arXiv:2402.00194 (2024), https://doi.org/10.48550/arXiv.2402.00194
[20] C. Vamoş, N. Suciu and M Peculea, Numerical modelling of the onedimensional diffusion by random walkers, Rev. Anal. Numér. Théor. Approx., 26 (1997) nos. 1-2, pp. 237-247. https://ictp.acad.ro/jnaat/journal/article/view/ 1997-vol26-nos1-2-art32/
[21] C. Vamoş, N. Suciu and H. Vereecken, Generalized random walk algorithm for the numerical modeling of complex diffusion processes, J. Comput. Phys., 186 (2003), pp. 527-544. https://doi.org/10.1016/S0021-9991(03)00073-1
Received by the editors: May 17, 2024; accepted: June 26, 2024; published online: July 11, 2024.

  1. 1 1 ^(1){ }^{1}1 Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Fântânele str. no. 57, Cluj-Napoca, Romania, e-mail: nsuciu@ictp.acad.ro, ecatinas@ictp.acad.ro.
    2 2 ^(2){ }^{2}2 Center for Modeling of Coupled Subsurface Dynamics, University of Bergen, Allégaten 41, Bergen, Norway, e-mail: florin.radu@uib.no.
  2. 1 1 ^(1){ }^{1}1 In the fully coupled problem θ ( ψ i , k ) θ ψ i , k theta(psi_(i,k))\theta\left(\psi_{i, k}\right)θ(ψi,k) is replaced by θ ( ψ i , k , c i , k ) θ ψ i , k , c i , k theta(psi_(i,k),c_(i,k))\theta\left(\psi_{i, k}, c_{i, k}\right)θ(ψi,k,ci,k), where c i , k c i , k c_(i,k)c_{i, k}ci,k is the solution of (2) and the coupled scheme consists of alternating flow and transport steps.
  3. 2 2 ^(2){ }^{2}2 This is usually denoted by Q L Q L Q_(L)Q_{L}QL (from logarithm) to distinguish from other types of Q Q QQQ orders. Since only definition (29) will be used in the following, we disregard the subscript L L LLL.
  4. 3 3 ^(3){ }^{3}3 This can be easily verified by doubling the number of lattice sites and taking the appropriate parameter L = 100 L = 100 L=100L=100L=100 in the Matlab code.

Related Posts