Analysis and generation of groundwater concentration time series

Abstract

Concentration time series are provided by simulated concentrations of a nonreactive solute transported in groundwater, integrated over the transverse direction of a two-dimensional computational domain and recorded at the plume center of mass. The analysis of a statistical ensemble of time series reveals subtle features that are not captured by the first two moments which characterize the approximate Gaussian distribution of the two-dimensional concentration fields. The concentration time series exhibit a complex preasymptotic behavior driven by a nonstationary trend and correlated fluctuations with time-variable amplitude. Time series with almost the same statistics are generated by successively adding to a time-dependent trend a sum of linear regression terms, accounting for correlations between fluctuations around the trend and their increments in time, and terms of an amplitude modulated autoregressive noise of order one with time-varying parameter. The algorithm generalizes mixing models used in probability density function approaches. The well-known interaction by exchange with the mean mixing model is a special case consisting of a linear regression with constant coefficients.

Authors

M. Crăciun
-Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

C. Vamoș
-Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

N. Suciu
-Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Keywords

Time series analysis; Monte Carlo simulations; Global random walk; Groundwater

Cite this paper as:

M. Crăciun, C. Vamos, N. Suciu, Analysis and generation of groundwater concentration time series, Advances in Water Resources, vol. 111 (2018), pp. 20-30
doi: 10.1016/j.advwatres.2017.10.039

PDF

About this paper

Print ISSN

0169-3913

Online ISSN

1573-1634

MR

?

ZBL

?

Google Scholar

?

Related Posts

Menu