Posts by Flavius Patrulescu

Abstract

A mathematical model describing the contact between a viscoplastic body and a deformable foundation is analyzed under small deformation hypotheses. The process is quasistatic and in normal direction the contact is with adhesion, normal compliance, memory effects and unilateral constraint. We derive a mixed-variational formulation of the problem using Lagrange multipliers. Finally, we prove the unique weak solvability of the contact problem.

Authors

Flavius Patrulescu
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Keywords

variational formulation; frictional contact; normal compliance; unilateral constraint; adhesion

Cite this paper as

F. Pฤƒtrulescu, A mixed variational formulation of a contact problem with adhesion, Appl. Anal., vol. 97, no. 8(2018), pp. 1246-1260

PDF

About this paper

Journal

Applicable Analysis

Publisher Name

Taylor & Francis, Abingdon, Oxfordshire

Print ISSN

0003-6811

Online ISSN

1563-504X

MR

3806223

ZBL

1391.74172

Google Scholar

?

Paper (preprint) in HTML form

A mixed variational formulation of a contact problem with adhesion

Flavius Pฤƒtrulescu
Tiberiu Popoviciu Institute of Numerical Analysis,
Romanian Academy, Cluj-Napoca, Romania
Abstract

A mathematical model describing the contact between a viscoplastic body and a deformable foundation is analyzed under small deformation hypotheses. The process is quasistatic and in normal direction the contact is with adhesion, normal compliance, memory effects and unilateral constraint. We derive a mixed-variational formulation of the problem using Lagrange multipliers. Finally, we prove the unique weak solvability of the contact problem.

1. Introduction

Phenomena of contact between deformable bodies are important in industry and everyday life. Their mathematical analysis was developed in a large number of works. Thus, various existence and uniqueness results, examples, numerical analysis and mechanical interpretation in the study of contact problems can be found in [1โˆ’10][1-10]. To be accurate mathematical models need to take into consideration the additional phenomena as friction, heat generation, wear or adhesion. The analysis of such models leads to a weak formulation. In many cases, it is given in a form of a system which couples a time-dependent variational inequality and integral equations, as illustrated in [ 3,8,113,8,11 ]. Moreover, the weak form of a large number of contact problems with unilateral constraints can be cast in a mixed-variational formulation with Lagrange multipliers. Their study is based on arguments on saddle points theory, fixed point, and duality. We recall that the use of Lagrange multipliers represents a mathematical tool to remove the unilateral constraints. Concerning the literature in the field, see for instance [12-15] and recent papers [16,17].

In this paper, we analyze the weak solvability of a contact problem with adhesion and memory effects. The model was introduced in [11]. There, the contact in normal direction was modeled with normal compliance condition, unilateral constraint, and adhesion. In addition, memory effect of the surfaces was introduced. A similar contact condition was considered in [18] in the study of frictionless contact process without adhesion. A variational formulation of the problem was derived, in a form of the system which couples a history-dependent quasi-variational inequality for displacement field, and an integral equation for adhesion field. The unique solvability of the weak problem was proved in two steps, using arguments on history-dependent quasi-variational inequalities and fixed point.

In the current paper, we introduce two main novelties. The first one concerns the constitutive law since, in contrast with [11], the materialโ€™s behavior is modeled with a viscoplastic constitutive law. The second novelty consists in the fact that we derive a mixed-variational formulation of the problem. The unknowns are the displacement field, the stress field, the adhesion function, and the Lagrange multiplier. We define two history-dependent operators to obtain an equivalent formulation in which the unknowns are only the displacement field and the Lagrange multiplier. Next, we prove its unique solvability using an abstract result provided in [17].

The rest of the paper is structured as follows. In Section 2, we present the geometrical configuration of the contact problem. We also introduce some notations and function spaces and we recall some preliminary results as Greenโ€™s formula. In Section 3, we describe our mathematical model of contact and list the assumptions on the data. Then, in Section 4 we derive the mixed-variational formulation of the problem and state our main existence and uniqueness result in Theorem 4.1. In Section 5, we prove Theorem 4.1. The proof is provided through two steps. More exactly, in the first part an equivalence result, Lemma 5.1, is given. In the second part an existence and uniqueness result, Lemma 5.3, is proved.

2. Notations and preliminaries

In this section we present the notations, the geometrical configuration of the problem and some preliminary material. For a given rโˆˆโ„r\in\mathbb{R} we denote by r+r^{+}its positive part, i.e. r+=maxโก{r,0}r^{+}=\max\{r,0\}. Let dโˆˆโ„•d\in\mathbb{N}. Then, we denote by ๐•Šd\mathbb{S}^{d} the space of second-order symmetric tensors on โ„d\mathbb{R}^{d}. The inner product and norm on โ„d\mathbb{R}^{d} and ๐•Šd\mathbb{S}^{d} are defined by

๐’–โ‹…๐’—=uivi,โ€–๐’—โ€–=(๐’—โ‹…๐’—)12โˆ€๐’–,๐’—โˆˆโ„d๐ˆโ‹…๐‰=ฯƒijฯ„ij,โ€–๐‰โ€–=(๐‰โ‹…๐‰)12โˆ€๐ˆ,๐‰โˆˆ๐•Šd\begin{array}[]{lrrl}\boldsymbol{u}\cdot\boldsymbol{v}=u_{i}v_{i},&\|\boldsymbol{v}\|=(\boldsymbol{v}\cdot\boldsymbol{v})^{\frac{1}{2}}&\forall\boldsymbol{u},\boldsymbol{v}\in\mathbb{R}^{d}\\ \boldsymbol{\sigma}\cdot\boldsymbol{\tau}=\sigma_{ij}\tau_{ij},&\|\boldsymbol{\tau}\|=(\boldsymbol{\tau}\cdot\boldsymbol{\tau})^{\frac{1}{2}}&\forall\boldsymbol{\sigma},\boldsymbol{\tau}\in\mathbb{S}^{d}\end{array}

Here and below the indices i,j,ki,j,k, and ll run between 1 and dd and the summation convention over repeated indices is used. The physical setting of the contact problem is as follows. A viscoplastic body occupies in its reference configuration a bounded domain ฮฉโˆˆโ„d\Omega\in\mathbb{R}^{d} ( d=2,3d=2,3 in applications) with a Lipschitz-continuous boundary ฮ“\Gamma. Body forces of density ๐’‡0\boldsymbol{f}_{0} act in ฮฉ\Omega. The boundary ฮ“\Gamma is divided into three disjoint measurable parts ฮ“=ฮ“1โˆชฮ“2โˆชฮ“3\Gamma=\Gamma_{1}\cup\Gamma_{2}\cup\Gamma_{3}, such that meas (ฮ“1)>0\left(\Gamma_{1}\right)>0, see Figure 1 for more details. The body is fixed on ฮ“1\Gamma_{1} and surface tractions of density f2f_{2} act on ฮ“2\Gamma_{2}. On the part ฮ“3\Gamma_{3}, the body is in contact with a foundation. The foundation is assumed to be made of a hard material covered with a thin layer made of a soft adhesive material with thickness g>0g>0. It has a rigid adhesive viscoelastic behavior; its adhesive viscoelastic behavior is caused by the layer of the soft material while its rigid behavior is caused by the hard material. Thus, in normal direction the contact is modeled with normal compliance condition, unilateral constraint, memory effects, and adhesion.

We use the notation ๐’™=(xi)\boldsymbol{x}=\left(x_{i}\right) for a typical point in ฮฉโˆชฮ“\Omega\cup\Gamma and we denote by ๐’—=(vi)\boldsymbol{v}=\left(v_{i}\right) the outward unit normal at ฮ“\Gamma. Also, an index that follows a comma represents the partial derivative with respect to the corresponding component of the spatial variable, e.g. ui,j=โˆ‚ui/โˆ‚xju_{i,j}=\partial u_{i}/\partial x_{j}. We use standard notations for the Lebesgue and Sobolev spaces associated to ฮฉ\Omega and ฮ“\Gamma and, moreover, we consider the spaces

V={๐’—=(vi)โˆˆH1(ฮฉ)d:๐’—=๐ŸŽ on ฮ“1},\displaystyle V=\left\{\boldsymbol{v}=\left(v_{i}\right)\in H^{1}(\Omega)^{d}:\boldsymbol{v}=\mathbf{0}\text{ on }\Gamma_{1}\right\},
Q={๐‰=(ฯ„ij)โˆˆL2(ฮฉ)dร—d:ฯ„ij=ฯ„ji}\displaystyle Q=\left\{\boldsymbol{\tau}=\left(\tau_{ij}\right)\in L^{2}(\Omega)^{d\times d}:\tau_{ij}=\tau_{ji}\right\}

These are real Hilbert spaces endowed with the inner products

(๐’–,๐’—)V=โˆซฮฉ๐œบ(๐’–)โ‹…๐œบ(๐’—)dx,(๐ˆ,๐‰)Q=โˆซฮฉ๐ˆโ‹…๐‰dx(\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{\varepsilon}(\boldsymbol{u})\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})\mathrm{d}x,\quad(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q}=\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\tau}\mathrm{d}x (2.1)

and the associated norms โˆฅโ‹…โˆฅV\|\cdot\|_{V} and โˆฅโ‹…โˆฅQ\|\cdot\|_{Q}, respectively. Here ๐œบ\boldsymbol{\varepsilon} represents the deformation operator given by

๐œบ(๐’—)=(ฮตij(๐’—)),ฮตij(๐’—)=12(vi,j+vj,i)โˆ€๐’—โˆˆH1(ฮฉ)d.\boldsymbol{\varepsilon}(\boldsymbol{v})=\left(\varepsilon_{ij}(\boldsymbol{v})\right),\quad\varepsilon_{ij}(\boldsymbol{v})=\frac{1}{2}\left(v_{i,j}+v_{j,i}\right)\quad\forall\boldsymbol{v}\in H^{1}(\Omega)^{d}. (2.2)

For an element ๐’—โˆˆV\boldsymbol{v}\in V, we still write ๐’—\boldsymbol{v} for the trace of ๐’—\boldsymbol{v} on the boundary ฮ“\Gamma. The normal and tangential components of ๐’—\boldsymbol{v} on ฮ“\Gamma are defined by vฮฝ=๐’—โ‹…๐’—,๐’—ฯ„=๐’—โˆ’vฮฝ๐’—v_{\nu}=\boldsymbol{v}\cdot\boldsymbol{v},\quad\boldsymbol{v}_{\tau}=\boldsymbol{v}-v_{\nu}\boldsymbol{v}. We introduce the following subset of the Hilbert space VV

U={๐’—โˆˆV:vvโ‰คg on ฮ“3}.U=\left\{\boldsymbol{v}\in V:v_{v}\leq g\text{ on }\Gamma_{3}\right\}. (2.3)

We note that UU is a closed, convex subset of VV such that ๐ŸŽVโˆˆU\mathbf{0}_{V}\in U. We recall that there exists a positive constant c0c_{0} which depends on ฮฉ,ฮ“1\Omega,\Gamma_{1}, and ฮ“3\Gamma_{3} such that

โ€–๐’—โ€–L2(ฮ“3)dโ‰คc0โ€–๐’—โ€–Vโˆ€๐’—โˆˆV.\|\boldsymbol{v}\|_{L^{2}\left(\Gamma_{3}\right)^{d}}\leq c_{0}\|\boldsymbol{v}\|_{V}\quad\forall\boldsymbol{v}\in V. (2.4)

The previous inequality and the constant c0c_{0} will be used in Section 5.
As in [17] we consider the set

W={๐’˜=๐’—|ฮ“3:๐’—โˆˆV}โŠ‚H1/2(ฮ“3;โ„d),W=\left\{\boldsymbol{w}=\left.\boldsymbol{v}\right|_{\Gamma_{3}}:\boldsymbol{v}\in V\right\}\subset H^{1/2}\left(\Gamma_{3};\mathbb{R}^{d}\right), (2.5)

where ๐’—|ฮ“3\left.\boldsymbol{v}\right|_{\Gamma_{3}} denotes the restriction of trace of the element ๐’—โˆˆV\boldsymbol{v}\in V to ฮ“3\Gamma_{3}. We recall that WW can be organized as a Hilbert space. We denote by DD its dual and โŸจโ‹…,โ‹…โŸฉฮ“3\langle\cdot,\cdot\rangle_{\Gamma_{3}} represents the duality pairing between DD and WW. For simplicity, we write โŸจ๐,๐’—โŸฉฮ“3\langle\boldsymbol{\mu},\boldsymbol{v}\rangle_{\Gamma_{3}} instead of โŸจ๐,๐’—|ฮ“3โŸฉฮ“3\left\langle\boldsymbol{\mu},\left.\boldsymbol{v}\right|_{\Gamma_{3}}\right\rangle_{\Gamma_{3}}, when ๐โˆˆD\boldsymbol{\mu}\in D and ๐’—โˆˆV\boldsymbol{v}\in V.

For a regular function ฯƒ:ฮฉโˆชฮ“โ†’๐•Šd\sigma:\Omega\cup\Gamma\rightarrow\mathbb{S}^{d} the normal and the tangential components of the vector ๐ˆ๐’—\boldsymbol{\sigma}\boldsymbol{v} on ฮ“\Gamma are given by ฯƒฮฝ=๐ˆ๐’—โ‹…๐’—\sigma_{\nu}=\boldsymbol{\sigma}\boldsymbol{v}\cdot\boldsymbol{v} and ๐ˆฯ„=๐ˆ๐’—โˆ’ฯƒฮฝ๐’—\boldsymbol{\sigma}_{\tau}=\boldsymbol{\sigma}\boldsymbol{v}-\sigma_{\nu}\boldsymbol{v}.
We introduce the space of fourth-order tensor fields given by

๐โˆž={โ„ฐ=(โ„ฐijkl)โˆฃโ„ฐijkl=โ„ฐjikl=โ„ฐklijโˆˆLโˆž(ฮฉ),1โ‰คi,j,k,lโ‰คd}\mathbf{Q}_{\infty}=\left\{\mathcal{E}=\left(\mathcal{E}_{ijkl}\right)\mid\mathcal{E}_{ijkl}=\mathcal{E}_{jikl}=\mathcal{E}_{klij}\in L^{\infty}(\Omega),\quad 1\leq i,j,k,l\leq d\right\}

and we recall that ๐โˆž\mathbf{Q}_{\infty} is a real Banach space with the norm

โ€–โ„ฐโ€–๐โˆž=max1โ‰คi,j,k,lโ‰คdโกโ€–โ„ฐijklโ€–Lโˆž(ฮฉ).\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}=\max_{1\leq i,j,k,l\leq d}\left\|\mathcal{E}_{ijkl}\right\|_{L^{\infty}(\Omega)}.

Moreover,

โ€–โ„ฐ๐‰โ€–Qโ‰คdโ€–โ„ฐโ€–๐โˆžโ€–๐‰โ€–Qโˆ€โ„ฐโˆˆ๐โˆž,๐‰โˆˆQ.\|\mathcal{E}\boldsymbol{\tau}\|_{Q}\leq d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}\|\boldsymbol{\tau}\|_{Q}\quad\forall\mathcal{E}\in\mathbf{Q}_{\infty},\boldsymbol{\tau}\in Q. (2.6)

Finally, we recall the following Greenโ€™s formula

โˆซฮฉ๐ˆโ‹…๐œบ(๐’—)dx+โˆซฮฉDivโก๐ˆโ‹…๐’—dx=โˆซฮ“๐ˆ๐’—โ‹…๐’—daโˆ€๐’—โˆˆV\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})\mathrm{d}x+\int_{\Omega}\operatorname{Div}\boldsymbol{\sigma}\cdot\boldsymbol{v}\mathrm{d}x=\int_{\Gamma}\boldsymbol{\sigma}\boldsymbol{v}\cdot\boldsymbol{v}\mathrm{d}a\quad\forall\boldsymbol{v}\in V (2.7)

where Div\operatorname{Div} denotes the divergence operator for tensor valued functions, i.e. Divโกฯƒ=(ฯƒij,j)\operatorname{Div}\sigma=\left(\sigma_{ij,j}\right). The previous formula will be used to determine the mixed-weak formulation of our contact problem.

3. Problem statement

In this section, we derive the mathematical model which corresponds to the physical setting intro- duced in Section 2. More exactly, we precise the constitutive law of the material, the balance equation and the boundary and initial conditions, as well. Moreover, we define the evolution equation of adhesion field. To this end, we introduce the following notations. Thus, ๐’–\boldsymbol{u} denotes the displacement field, ๐œบ(๐’–)\boldsymbol{\varepsilon}(\boldsymbol{u}) represents the linearized strain tensor, ๐ˆ\boldsymbol{\sigma} is the stress field, ฮฒ\beta is the adhesion field, and tโˆˆโ„+=[0,+โˆž)t\in\mathbb{R}_{+}=[0,+\infty) represents the time variable.

We assume that the materialโ€™s behavior follows a viscoplastic constitutive law of the form

๐ˆห™(t)=โ„ฐ๐œบ(๐’–ห™(t))+๐’ข(๐ˆ(t),๐œบ(๐’–(t))).\dot{\boldsymbol{\sigma}}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\dot{\boldsymbol{u}}(t))+\mathcal{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))). (3.1)

In (3.1) and everywhere in this paper the dot above a variable represents derivative with respect to time variable tt. Here โ„ฐ\mathcal{E} and ๐’ข\mathcal{G} represent the elasticity tensor and a nonlinear constitutive function, respectively, and are assumed to satisfy the following conditions

{ (a) โ„ฐ=(โ„ฐijkl):ฮฉร—๐•Šdโ†’๐•Šd. (b) โ„ฐijkl=โ„ฐklij=โ„ฐjiklโˆˆLโˆž(ฮฉ),1โ‰คi,j,k,lโ‰คd. (c) There exists mโ„ฐ>0 such that โ„ฐ๐‰โ‹…๐‰โ‰ฅmโ„ฐโ€–๐‰โ€–2โˆ€๐‰โˆˆ๐•Šd, a.e.in ฮฉ.\displaystyle\left\{\begin{array}[]{l}\text{ (a) }\mathcal{E}=\left(\mathcal{E}_{ijkl}\right):\Omega\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}.\\ \text{ (b) }\mathcal{E}_{ijkl}=\mathcal{E}_{klij}=\mathcal{E}_{jikl}\in L^{\infty}(\Omega),1\leq i,j,k,l\leq d.\\ \text{ (c) There exists }m_{\mathcal{E}}>0\text{ such that }\\ \quad\mathcal{E}\boldsymbol{\tau}\cdot\boldsymbol{\tau}\geq m_{\mathcal{E}}\|\boldsymbol{\tau}\|^{2}\forall\boldsymbol{\tau}\in\mathbb{S}^{d},\text{ a.e.in }\Omega.\end{array}\right.
{ (a) ๐’ข:ฮฉร—๐•Šdร—๐•Šdโ†’๐•Šd. (b) There exists L๐’ข>0 such that โ€–๐’ข(๐’™,๐ˆ1,๐œบ1)โˆ’๐’ข(๐’™,๐ˆ2,๐œบ2)โ€–โ‰คL๐’ข(โ€–๐ˆ1โˆ’ฯƒ2โ€–+โ€–๐œบ1โˆ’๐œบ2โ€–)โˆ€๐ˆ1,๐ˆ2,๐œบ1,๐œบ2โˆˆ๐•Šd, a.e. ๐’™โˆˆฮฉ (c) The mapping ๐’™โ†ฆ๐’ข(๐’™,๐ˆ,๐œบ) is measurable on ฮฉ,โˆ€๐ˆ,๐œบโˆˆ๐•Šd (d) The mapping ๐’™โ†ฆ๐’ข(๐’™,๐ŸŽ,๐ŸŽ) belongs to Q\displaystyle\left\{\begin{array}[]{l}\text{ (a) }\mathcal{G}:\Omega\times\mathbb{S}^{d}\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}.\\ \text{ (b) There exists }L_{\mathcal{G}}>0\text{ such that }\\ \left\|\mathcal{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{1},\boldsymbol{\varepsilon}_{1}\right)-\mathcal{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{2}\right)\right\|\leq L_{\mathcal{G}}\left(\left\|\boldsymbol{\sigma}_{1}-\sigma_{2}\right\|+\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|\right)\\ \forall\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\text{ a.e. }\boldsymbol{x}\in\Omega\text{. }\\ \text{ (c) The mapping }\boldsymbol{x}\mapsto\mathcal{G}(\boldsymbol{x},\boldsymbol{\sigma},\boldsymbol{\varepsilon})\text{ is measurable on }\Omega,\forall\boldsymbol{\sigma},\boldsymbol{\varepsilon}\in\mathbb{S}^{d}\text{. }\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto\mathcal{G}(\boldsymbol{x},\mathbf{0},\mathbf{0})\text{ belongs to }Q\text{. }\end{array}\right. (3.2)

Note that in (3.1) and below, in order to simplify the notation, we do not indicate explicitly the dependence of various functions on the spatial variable ๐’™\boldsymbol{x}. To complete the constitutive law (3.1), we assume the following initial conditions

ฯƒ(0)=ฯƒ0,๐’–(0)=๐’–0 in ฮฉ.\sigma(0)=\sigma_{0},\quad\boldsymbol{u}(0)=\boldsymbol{u}_{0}\text{ in }\Omega. (3.4)

In (3.4) ๐’–0\boldsymbol{u}_{0} and ๐ˆ0\boldsymbol{\sigma}_{0} denote the initial displacement and the initial stress field, respectively. We assume that

๐’–0โˆˆU,๐ˆ0โˆˆQ.\boldsymbol{u}_{0}\in U,\quad\boldsymbol{\sigma}_{0}\in Q. (3.5)

A general description of various constitutive relations in solid mechanics can be found in [3,8] or [9].
Integrating (3.1) with initial condition (3.4), we find that

๐ˆ(t)=โ„ฐ๐œบ(๐’–(t))+โˆซ0t๐’ข(๐ˆ(s),๐œบ(๐’–(s)))ds+๐ˆ0โˆ’โ„ฐ๐œบ(๐’–0)\boldsymbol{\sigma}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\int_{0}^{t}\mathcal{G}(\boldsymbol{\sigma}(s),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)))\mathrm{d}s+\boldsymbol{\sigma}_{0}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0}\right) (3.6)

Next, since the process is quasistatic, we use the equilibrium equation

Divโก๐ˆ(t)+๐’‡0(t)=๐ŸŽ in ฮฉ\operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}\quad\text{ in }\Omega (3.7)

Moreover, taking into account the physical setting introduced in Section 2, we impose the following displacement-traction conditions:

๐’–(t)=๐ŸŽ on ฮ“1,\displaystyle\boldsymbol{u}(t)=\mathbf{0}\quad\text{ on }\Gamma_{1}, (3.8)
๐ˆ(t)๐’—=๐’‡2(t) on ฮ“2.\displaystyle\boldsymbol{\sigma}(t)\boldsymbol{v}=\boldsymbol{f}_{2}(t)\quad\text{ on }\Gamma_{2}. (3.9)

We assume that the densities of body forces and surface tractions have regularity

๐’‡0โˆˆC(โ„+;L2(ฮฉ)d),๐’‡2โˆˆC(โ„+;L2(ฮ“2)d).\boldsymbol{f}_{0}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right),\quad\boldsymbol{f}_{2}\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{2}\right)^{d}\right). (3.10)

In addition, we use Riesz representation theorem to define the function f:โ„+โ†’Vf:\mathbb{R}_{+}\rightarrow V by equality

(๐’‡(t),๐’—)V=(๐’‡0(t),๐’—)L2(ฮฉ)d+(๐’‡2(t),๐’—)L2(ฮ“2)d(\boldsymbol{f}(t),\boldsymbol{v})_{V}=\left(\boldsymbol{f}_{0}(t),\boldsymbol{v}\right)_{L^{2}(\Omega)^{d}}+\left(\boldsymbol{f}_{2}(t),\boldsymbol{v}\right)_{L^{2}\left(\Gamma_{2}\right)^{d}} (3.11)

for all ๐’—โˆˆV\boldsymbol{v}\in V and tโˆˆโ„+t\in\mathbb{R}_{+}. It follows from (3.10) that this function has regularity

๐’‡โˆˆC(โ„+;V)\boldsymbol{f}\in C\left(\mathbb{R}_{+};V\right) (3.12)

On the part ฮ“3\Gamma_{3}, the evolution of bonding field is governed by the differential equation

ฮฒห™(t)=โˆ’(ฮณฮฝฮฒ(t)[R(uฮฝ(t))]2โˆ’ฮตa)+ on ฮ“3\dot{\beta}(t)=-\left(\gamma_{\nu}\beta(t)\left[R\left(u_{\nu}(t)\right)\right]^{2}-\varepsilon_{a}\right)^{+}\quad\text{ on }\Gamma_{3} (3.13)

in which ฮณฮฝ\gamma_{\nu} is the adhesion coefficient, ฮตa\varepsilon_{a} represents the Duprรฉ energy, and RR is the truncation operator given by

R(s)={โˆ’L if s<โˆ’Ls if โˆ’Lโ‰คsโ‰คLL if s>LR(s)=\begin{cases}-L&\text{ if }s<-L\\ s&\text{ if }-L\leq s\leq L\\ L&\text{ if }s>L\end{cases}

where L>0L>0. The initial condition for differential equation (3.13) is

ฮฒ(0)=ฮฒ0 on ฮ“3\beta(0)=\beta_{0}\text{ on }\Gamma_{3} (3.15)

and we assume that

ฮณvโˆˆLโˆž(ฮ“3),ฮณvโ‰ฅ0,ฮตaโˆˆLโˆž(ฮ“3),ฮตaโ‰ฅ0ฮฒ0โˆˆL2(ฮ“3),0โ‰คฮฒ0โ‰ค1 a.e. on ฮ“3\begin{array}[]{ll}\gamma_{v}\in L^{\infty}\left(\Gamma_{3}\right),&\gamma_{v}\geq 0,\quad\varepsilon_{a}\in L^{\infty}\left(\Gamma_{3}\right),\quad\varepsilon_{a}\geq 0\\ \beta_{0}\in L^{2}\left(\Gamma_{3}\right),&0\leq\beta_{0}\leq 1\quad\text{ a.e. on }\Gamma_{3}\end{array}

We note that (3.13) does not allow for rebonding, once debonding takes place, since ฮฒห™โ‰ค0\dot{\beta}\leq 0. Moreover, the values of bonding field are restricted to 0โ‰คฮฒโ‰ค10\leq\beta\leq 1. When ฮฒ=0\beta=0 at a point of contact surface, there are no active bonds; when ฮฒ=1\beta=1 the adhesion is complete and all the bonds are active; finally, when 0<ฮฒ<10<\beta<1 partial adhesion takes place. A comprehensive treatment of several models for contact problems with adhesion can be found in [7-9,19-21], and, more recently, in [22]. An application of the theory to rocks and in the medical field was described in [23-25].

Finally, we introduce the normal and tangential conditions on the surface ฮ“3\Gamma_{3}. In the normal direction, we have the following contact condition with normal compliance, memory effect, unilateral
constraint, and adhesion.

{uv(t)โ‰คg,ฯƒv(t)+pv(uv(t))+โˆซ0tb(tโˆ’s)uv+(s)dsโˆ’ฮณvฮฒ2(t)R~(uv(t))โ‰ค0(uv(t)โˆ’g)(ฯƒv(t)+pv(uv(t))+โˆซ0tb(tโˆ’s)uv+(s)dsโˆ’ฮณvฮฒ2(t)R~(uv(t)))=0\left\{\begin{array}[]{l}u_{v}(t)\leq g,\sigma_{v}(t)+p_{v}\left(u_{v}(t)\right)+\int_{0}^{t}b(t-s)u_{v}^{+}(s)\mathrm{d}s-\gamma_{v}\beta^{2}(t)\widetilde{R}\left(u_{v}(t)\right)\leq 0\\ \left(u_{v}(t)-g\right)\left(\sigma_{v}(t)+p_{v}\left(u_{v}(t)\right)+\int_{0}^{t}b(t-s)u_{v}^{+}(s)\mathrm{d}s-\gamma_{v}\beta^{2}(t)\widetilde{R}\left(u_{v}(t)\right)\right)=0\end{array}\right.

It was introduced and justified in [11], and for this reason we give here only a short description. The condition was obtained by assuming an additive decomposition of the normal stress into four components, which describe the deformability, the rigidity, the adhesive, and the surface memory properties of the foundation. The first inequality in (3.18) shows that the penetration is limited by the bound gg and describes a condition with unilateral constraint. In the case 0<uฮฝ(t)<g0<u_{\nu}(t)<g, i.e. there is penetration which did not reach the bound gg, (3.18) yields

โˆ’ฯƒฮฝ(t)=pฮฝ(uฮฝ(t))+โˆซ0tb(tโˆ’s)uฮฝ+(s)ds-\sigma_{\nu}(t)=p_{\nu}\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)\mathrm{d}s (3.19)

Here pvp_{v} and bb are given functions which satisfy

{ (a) pv:ฮ“3ร—โ„โ†’โ„+โ‹… (b) There exists Lv>0 such that |pv(๐’™,r1)โˆ’pv(๐’™,r2)|โ‰คLv|r1โˆ’r2|โˆ€r1,r2โˆˆโ„, a.e. ๐’™โˆˆฮ“3. (c) (pv(๐’™,r1)โˆ’pv(๐’™,r2))(r1โˆ’r2)โ‰ฅ0โˆ€r1,r2โˆˆโ„, a.e. ๐’™โˆˆฮ“3. (d) The mapping ๐’™โ†ฆpv(๐’™,r) is measurable on ฮ“3,โˆ€rโˆˆโ„. (e) pv(๐’™,r)=0 for all rโ‰ค0, a.e. ๐’™โˆˆฮ“3.\displaystyle\left\{\begin{array}[]{l}\text{ (a) }p_{v}:\Gamma_{3}\times\mathbb{R}\rightarrow\mathbb{R}_{+}\cdot\\ \text{ (b) There exists }L_{v}>0\text{ such that }\\ \quad\left|p_{v}\left(\boldsymbol{x},r_{1}\right)-p_{v}\left(\boldsymbol{x},r_{2}\right)\right|\leq L_{v}\left|r_{1}-r_{2}\right|\\ \quad\forall r_{1},r_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (c) }\left(p_{v}\left(\boldsymbol{x},r_{1}\right)-p_{v}\left(\boldsymbol{x},r_{2}\right)\right)\left(r_{1}-r_{2}\right)\geq 0\\ \quad\forall r_{1},r_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto p_{v}(\boldsymbol{x},r)\text{ is measurable on }\Gamma_{3},\forall r\in\mathbb{R}.\\ \text{ (e) }p_{v}(\boldsymbol{x},r)=0\text{ for all }r\leq 0,\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\end{array}\right.
bโˆˆC(โ„+;Lโˆž(ฮ“3)),b(t,๐’™)โ‰ฅ0 for all tโˆˆโ„+,a.e. ๐’™โˆˆฮ“3.\displaystyle b\in C\left(\mathbb{R}_{+};L^{\infty}\left(\Gamma_{3}\right)\right),\quad b(t,\boldsymbol{x})\geq 0\quad\text{ for all }t\in\mathbb{R}_{+},\text{a.e. }\boldsymbol{x}\in\Gamma_{3}.

Equality (3.19) shows that at the moment tt the reaction of foundation depends both on the current value of the penetration (represented by the term pv(uv(t))p_{v}\left(u_{v}(t)\right) ) and on the history of the penetration (represented by the integral term). The term pv(uv(t))p_{v}\left(u_{v}(t)\right) represents the so-called normal compliance condition and describes the deformability of foundation. It assigns a reactive normal pressure that depends on the interpenetration of the asperities on the bodys surface and those of the foundation. We recall that the normal compliance contact condition was first used in [26] and the term normal compliance was first introduced in [27,28]. A commonly example of the normal compliance function pฮฝp_{\nu} is

pv(r)=cvr+p_{v}(r)=c_{v}r^{+} (3.22)

The constant cฮฝ>0c_{\nu}>0 is the surface stiffness coefficient. An idealization of the normal compliance condition, which is used often in engineering literature, and can also be found in mathematical publications, is the Signorini contact condition, in which the foundation is assumed to be perfectly rigid. This condition was first introduced in [29].

In the case uฮฝ(t)<0u_{\nu}(t)<0, i.e. there is separation between the body and the foundation, (3.18) yields

ฯƒฮฝ(t)=ฮณฮฝฮฒ2(t)R~(uฮฝ(t))\sigma_{\nu}(t)=\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right) (3.23)

where the truncation operator R~\widetilde{R} is given by

R~(s)=(โˆ’R(s))+\widetilde{R}(s)=(-R(s))^{+} (3.24)

The reaction of the foundation is nonnegative and depends on adhesion coefficient, on the square of intensity of adhesion and on the normal displacement, but as it does not exceed the bound length LL. The maximal normal traction is ฮณฮฝL\gamma_{\nu}L. Next, we recall a physical interpretation, given in [18], of the integral term in (3.18). More exactly, assume that in the time interval [0,t][0,t] there is only penetration (i.e. uฮฝ(s)โ‰ฅ0u_{\nu}(s)\geq 0 for all sโˆˆ[0,t]s\in[0,t] ). Then, taking into account assumption (3.21) we deduce that the reaction of the foundation is larger than that given by the term pฮฝ(uฮฝ(t))p_{\nu}\left(u_{\nu}(t)\right) and we conclude that equality (3.19) models the hardening phenomena of the surface. Also, if in the time interval [0,t][0,t] there is separation (i.e. uฮฝ(s)<0u_{\nu}(s)<0 for all sโˆˆ[0,t]s\in[0,t] ) then the integral term vanishes. Now, assume a situation in which uฮฝu_{\nu} is positive in interval [0,t0]\left[0,t_{0}\right] and negative on the interval [t0,t]\left[t_{0},t\right]. Then,

โˆซ0tb(tโˆ’s)uฮฝ+(s)ds=โˆซ0t0b(tโˆ’s)uฮฝ+(s)ds\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)\mathrm{d}s=\int_{0}^{t_{0}}b(t-s)u_{\nu}^{+}(s)\mathrm{d}s (3.25)

In addition, the support of the function bb is included in the interval [0,ฮด][0,\delta] with ฮด>0\delta>0. Two possibilities arise. First, if tโˆ’t0>ฮดt-t_{0}>\delta it follows that b(tโˆ’s)=0b(t-s)=0 for all sโˆˆ[0,t0]s\in\left[0,t_{0}\right] and (3.25) shows that the integral term vanishes. Second, if tโˆ’t0โ‰คฮดt-t_{0}\leq\delta (3.25) implies that a residual pressure exists at the moment tt on the bodyโ€™s surface. In the rest of the paper, we assume that there are no cycles of contact and separation during time interval of interest.

In conclusion, condition (3.18) shows that when there is penetration the contact stress is given by a normal compliance condition with memory term of the form (3.19) but up to the limit gg. When the limit gg is reached, the stress is given by a Signorini-type unilateral condition. Moreover, adhesion takes place when there is separation.

As in [19] or [11], we assume that the tangential traction is given by

โˆ’๐ˆฯ„(t)=pฯ„(ฮฒ(t))๐‘นโˆ—(๐’–ฯ„(t)) on ฮ“3-\boldsymbol{\sigma}_{\tau}(t)=p_{\tau}(\beta(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right)\quad\text{ on }\Gamma_{3} (3.26)

where the truncation operator ๐‘นโˆ—\boldsymbol{R}^{*} is defined by

๐‘นโˆ—(๐’—)={๐’— if โ€–๐’—โ€–โ‰คLLโ€–๐’—โ€–๐’— if โ€–๐’—โ€–โ‰ฅL\boldsymbol{R}^{*}(\boldsymbol{v})=\begin{cases}\boldsymbol{v}&\text{ if }\|\boldsymbol{v}\|\leq L\\ \frac{L}{\|\boldsymbol{v}\|}\boldsymbol{v}&\text{ if }\|\boldsymbol{v}\|\geq L\end{cases}

and the function pฯ„p_{\tau} satisfies

{ (a) pฯ„:ฮ“3ร—โ„โ†’โ„+.(b) There exists Lฯ„>0 such that |pฯ„(๐’™,ฮฒ1)โˆ’pฯ„(๐’™,ฮฒ2)|โ‰คLฯ„|ฮฒ1โˆ’ฮฒ2|โˆ€ฮฒ1,ฮฒ2โˆˆโ„, a.e. ๐’™โˆˆฮ“3. (c) There exists Mฯ„>0 such that pฯ„(๐’™,ฮฒ)โ‰คMฯ„โˆ€ฮฒโˆˆโ„, a.e. ๐’™โˆˆฮ“3. (d) The mapping ๐’™โ†ฆpฯ„(๐’™,ฮฒ) is measurable on ฮ“3,โˆ€ฮฒโˆˆโ„. (e) pฯ„(๐’™,0)=0 a.e. ๐’™โˆˆฮ“3.\left\{\begin{array}[]{l}\text{ (a) }p_{\tau}:\Gamma_{3}\times\mathbb{R}\rightarrow\mathbb{R}_{+}.\\ \text{(b) There exists }L_{\tau}>0\text{ such that }\\ \quad\left|p_{\tau}\left(\boldsymbol{x},\beta_{1}\right)-p_{\tau}\left(\boldsymbol{x},\beta_{2}\right)\right|\leq L_{\tau}\left|\beta_{1}-\beta_{2}\right|\\ \quad\forall\beta_{1},\beta_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (c) There exists }M_{\tau}>0\text{ such that }p_{\tau}(\boldsymbol{x},\beta)\leq M_{\tau}\\ \quad\forall\beta\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto p_{\tau}(\boldsymbol{x},\beta)\text{ is measurable on }\Gamma_{3},\forall\beta\in\mathbb{R}.\\ \text{ (e) }p_{\tau}(\boldsymbol{x},0)=0\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\end{array}\right.

More exactly, (3.26) shows that the resistance to tangential motion is generated mainly by the glue, and frictional traction is neglected. In the particular case, when all the adhesive bonds are inactive the motion is frictionless. Definition (3.27) of operator ๐‘นโˆ—\boldsymbol{R}^{*} implies that the tangential traction depends on the tangential displacement, but only up to the bond length LL. Moreover, pฯ„(ฮฒ)p_{\tau}(\beta) acts as the stiffness or spring constant, and the traction is in direction opposite to the displacement.

The classical formulation of the contact problem is the following.

Problem ๐’ซ\mathcal{P}. Find a displacement field ๐’–:ฮฉร—โ„+โ†’โ„d\boldsymbol{u}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d}, a stress field ฯƒ:ฮฉร—โ„+โ†’๐•Šd\sigma:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d}, and an adhesion field ฮฒ:ฮ“3ร—โ„+โ†’[0,1]\beta:\Gamma_{3}\times\mathbb{R}_{+}\rightarrow[0,1] such that

๐ˆห™(t)=โ„ฐ๐œบ(๐’–ห™(t))+๐’ข(๐ˆ(t),๐œบ(๐’–(t))) in ฮฉ,Divโก๐ˆ(t)+๐’‡0(t)=๐ŸŽ in ฮฉ,๐’–(t)=๐ŸŽ on ฮ“1,๐ˆ(t)๐’—=๐’‡2(t) on ฮ“2,uv(t)โ‰คg,ฯƒv(t)+pv(uv(t))+โˆซ0tb(tโˆ’s)uv+(s)๐‘‘sโˆ’ฮณvฮฒ2(t)R~(uv(t))โ‰ค0,(uv(t)โˆ’g)(ฯƒv(t)+pv(uv(t))+โˆซ0tb(tโˆ’s)uv+(s)dsโˆ’ฮณvฮฒ2(t)R~(uv(t)))=0} on ฮ“3,โˆ’ฯƒฯ„(t)=pฯ„(ฮฒ(t))๐‘นโˆ—(๐’–ฯ„(t)) on ฮ“3,ฮฒห™(t)=โˆ’(ฮณvฮฒ(t)[R(uv(t))]2โˆ’ฮตa)+on ฮ“3,ฮฒ(0)=ฮฒ0 in ฮ“3,๐ˆ(0)=๐ˆ0,๐’–(0)=๐’–0 in ฮฉโ€ฒ.\begin{array}[]{r}\dot{\boldsymbol{\sigma}}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\dot{\boldsymbol{u}}(t))+\mathcal{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))\text{ in }\Omega,\\ \operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}\text{ in }\Omega,\\ \boldsymbol{u}(t)=\mathbf{0}\text{ on }\Gamma_{1},\\ \left.\begin{array}[]{r}\boldsymbol{\sigma}(t)\boldsymbol{v}=\boldsymbol{f}_{2}(t)\text{ on }\Gamma_{2},\\ u_{v}(t)\leq g,\sigma_{v}(t)+p_{v}\left(u_{v}(t)\right)\\ +\int_{0}^{t}b(t-s)u_{v}^{+}(s)ds-\gamma_{v}\beta^{2}(t)\widetilde{R}\left(u_{v}(t)\right)\leq 0,\\ \left(u_{v}(t)-g\right)\left(\sigma_{v}(t)+p_{v}\left(u_{v}(t)\right)\right.\\ \left.+\int_{0}^{t}b(t-s)u_{v}^{+}(s)ds-\gamma_{v}\beta^{2}(t)\widetilde{R}\left(u_{v}(t)\right)\right)=0\end{array}\right\}\text{ on }\Gamma_{3},\\ -\sigma_{\tau}(t)=p_{\tau}(\beta(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right)\text{ on }\Gamma_{3},\\ \dot{\beta}(t)=-\left(\gamma_{v}\beta(t)\left[R\left(u_{v}(t)\right)\right]^{2}-\varepsilon_{a}\right)^{+}\text{on }\Gamma_{3},\\ \beta(0)=\beta_{0}\text{ in }\Gamma_{3},\\ \boldsymbol{\sigma}(0)=\boldsymbol{\sigma}_{0},\quad\boldsymbol{u}(0)=\boldsymbol{u}_{0}\text{ in }\Omega^{\prime}.\end{array}

We end this section with the following assumption. More exactly, we assume that there exists

๐œฝ~โˆˆV such that ฮธ~v=๐œฝ~โ‹…๐’—=1 a.e. on ฮ“3\widetilde{\boldsymbol{\theta}}\in V\text{ such that }\widetilde{\theta}_{v}=\widetilde{\boldsymbol{\theta}}\cdot\boldsymbol{v}=1\text{ a.e. on }\Gamma_{3} (3.38)

This additional assumption concerns only the geometry of the problem and was introduced in [30]. Examples in two- and three-dimensional cases are presented in [31].

4. Mixed variational formulation

In this section, we derive a mixed-variational formulation of problem ๐’ซ\mathcal{P}. To this end, we assume in what follows that ( ๐ˆ,๐’–,ฮฒ\boldsymbol{\sigma},\boldsymbol{u},\beta ) represents a triple of sufficiently regular functions which satisfies (3.29)(3.37). We define the sets KโŠ‚VK\subset V and ฮ›โŠ‚D\Lambda\subset D in the following way

K={๐’—โˆˆV:vvโ‰ค0 a.e. on ฮ“3}\displaystyle K=\left\{\boldsymbol{v}\in V:v_{v}\leq 0\text{ a.e. on }\Gamma_{3}\right\} (4.1)
ฮ›={๐โˆˆD:โŸจ๐,๐’—โŸฉฮ“3โ‰ค0โˆ€๐’—โˆˆK}\displaystyle\Lambda=\left\{\boldsymbol{\mu}\in D:\langle\boldsymbol{\mu},\boldsymbol{v}\rangle_{\Gamma_{3}}\leq 0\quad\forall\boldsymbol{v}\in K\right\} (4.2)

and we introduce the set of admissible bonding fields

Z={ฯ‰โˆˆL2(ฮ“3):0โ‰คฯ‰โ‰ค1 a.e. on ฮ“3}Z=\left\{\omega\in L^{2}\left(\Gamma_{3}\right):0\leq\omega\leq 1\quad\text{ a.e. on }\quad\Gamma_{3}\right\} (4.3)

Let tโˆˆโ„+,๐’—โˆˆVt\in\mathbb{R}_{+},\boldsymbol{v}\in V, and ๐โˆˆฮ›\boldsymbol{\mu}\in\Lambda. We integrate (3.35) with initial condition (3.36) to find that

ฮฒ(t)=ฮฒ0โˆ’โˆซ0t(ฮณฮฝฮฒ(s)[R(uฮฝ(s))]2โˆ’ฮตa)+ds on ฮ“3\beta(t)=\beta_{0}-\int_{0}^{t}\left(\gamma_{\nu}\beta(s)\left[R\left(u_{\nu}(s)\right)\right]^{2}-\varepsilon_{a}\right)^{+}\mathrm{d}s\quad\text{ on }\Gamma_{3} (4.4)

The assumptions (3.16) and (3.17) combined with (4.3) yield

ฮฒ(t)โˆˆZ\beta(t)\in Z (4.5)

see [9,19] or [11] for more details. Next, we introduce the bilinear form b~:Vร—Dโ†’โ„\widetilde{b}:V\times D\rightarrow\mathbb{R} by

b~(๐’—,๐)=โŸจ๐,๐’—โŸฉฮ“3โˆ€๐’—โˆˆV,๐โˆˆD.\widetilde{b}(\boldsymbol{v},\boldsymbol{\mu})=\langle\boldsymbol{\mu},\boldsymbol{v}\rangle_{\Gamma_{3}}\quad\forall\boldsymbol{v}\in V,\boldsymbol{\mu}\in D. (4.6)

We use Green formula (2.7), equilibrium equation (3.30), boundary conditions (3.31), and (3.32), definition (3.11) and

๐ˆ(t)๐’—โ‹…๐’—=ฯƒฮฝ(t)vฮฝ+๐ˆฯ„(t)โ‹…๐’—ฯ„ on ฮ“3,\boldsymbol{\sigma}(t)\boldsymbol{v}\cdot\boldsymbol{v}=\sigma_{\nu}(t)v_{\nu}+\boldsymbol{\sigma}_{\tau}(t)\cdot\boldsymbol{v}_{\tau}\text{ on }\Gamma_{3},

to obtain that

(๐ˆ(t),๐œบ(๐’—))Q=(๐’‡(t),๐’—)V+โˆซฮ“3(ฯƒฮฝ(t)vฮฝ+๐ˆฯ„(t)โ‹…๐’—ฯ„)daโˆ€๐’—โˆˆV(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}=(\boldsymbol{f}(t),\boldsymbol{v})_{V}+\int_{\Gamma_{3}}\left(\sigma_{\nu}(t)v_{\nu}+\boldsymbol{\sigma}_{\tau}(t)\cdot\boldsymbol{v}_{\tau}\right)\mathrm{d}a\quad\forall\boldsymbol{v}\in V (4.7)

Let ฮป(t)โˆˆD\lambda(t)\in D be the Lagrange multiplier given by

โŸจฮป(t),๐’˜โŸฉฮ“3=\displaystyle\langle\lambda(t),\boldsymbol{w}\rangle_{\Gamma_{3}}= โˆ’โˆซฮ“3(ฯƒฮฝ(t)+pฮฝ(uฮฝ(t))\displaystyle-\int_{\Gamma_{3}}\left(\sigma_{\nu}(t)+p_{\nu}\left(u_{\nu}(t)\right)\right.
+โˆซ0tb(tโˆ’s)uฮฝ+(s)dsโˆ’ฮณฮฝฮฒ2(t)R~(uฮฝ(t)))wฮฝdaโˆ€๐’˜โˆˆW\displaystyle\left.+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)\mathrm{d}s-\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)\right)w_{\nu}\mathrm{d}a\quad\forall\boldsymbol{w}\in W (4.8)

Using (3.33), (4.1), and (4.2) we deduce that ฮป(t)โˆˆฮ›\lambda(t)\in\Lambda.
Taking into account (4.6), we can write

โˆซฮ“3ฯƒฮฝ(t)vฮฝda=\displaystyle\int_{\Gamma_{3}}\sigma_{\nu}(t)v_{\nu}\mathrm{d}a= โˆ’b~(๐’—,ฮป(t))โˆ’โˆซฮ“3pฮฝ(uฮฝ(t))vฮฝda\displaystyle-\widetilde{b}(\boldsymbol{v},\lambda(t))-\int_{\Gamma_{3}}p_{\nu}\left(u_{\nu}(t)\right)v_{\nu}\mathrm{d}a
โˆ’โˆซฮ“3(โˆซ0tb(tโˆ’s)uฮฝ+(s)ds)vฮฝda+โˆซฮ“3ฮณฮฝฮฒ2(t)R~(uฮฝ(t))vฮฝdaโˆ€๐’—โˆˆV\displaystyle-\int_{\Gamma_{3}}\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)\mathrm{d}s\right)v_{\nu}\mathrm{d}a+\int_{\Gamma_{3}}\gamma_{\nu}\beta^{2}(t)\widetilde{R}\left(u_{\nu}(t)\right)v_{\nu}\mathrm{d}a\quad\forall\boldsymbol{v}\in V (4.9)

and, combining this equality with (4.7) and tangential condition (3.34) we obtain that

(๐ˆ(t),๐œบ(๐’—))Q+โˆซฮ“3pv(uv(t))vvda+b~(๐’—,๐€(t))โˆ’โˆซฮ“3ฮณvฮฒ2(t)R~(uv(t))vvda\displaystyle(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\int_{\Gamma_{3}}p_{v}\left(u_{v}(t)\right)v_{v}\mathrm{~d}a+\widetilde{b}(\boldsymbol{v},\boldsymbol{\lambda}(t))-\int_{\Gamma_{3}}\gamma_{v}\beta^{2}(t)\widetilde{R}\left(u_{v}(t)\right)v_{v}\mathrm{~d}a
+โˆซฮ“3pฯ„(ฮฒ(t))๐‘นโˆ—(๐’–ฯ„(t))โ‹…๐’—ฯ„da+โˆซฮ“3(โˆซ0tb(tโˆ’s)uv+(s)ds)vvda=(๐’‡(t),๐’—)V\displaystyle\quad+\int_{\Gamma_{3}}p_{\tau}(\beta(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right)\cdot\boldsymbol{v}_{\tau}\mathrm{d}a+\int_{\Gamma_{3}}\left(\int_{0}^{t}b(t-s)u_{v}^{+}(s)\mathrm{d}s\right)v_{v}\mathrm{~d}a=(\boldsymbol{f}(t),\boldsymbol{v})_{V} (4.10)

for all ๐’—โˆˆV\boldsymbol{v}\in V. The previous equality shows the importance of Lagrange multiplier ฮป(t)\lambda(t) defined by duality in (4.8). More exactly, it removes the unilateral constraint and concerning the test functions we can use the entire space VV. In this case, it plays the role of a normal force.

We introduce the element ๐’‰โˆˆV\boldsymbol{h}\in V by

๐’‰=g๐œฝ~\boldsymbol{h}=g\widetilde{\boldsymbol{\theta}} (4.11)

Using assumption (3.38), definitions (4.1), (4.2), (4.6), and contact condition (3.33) we deduce that

b~(๐’–(t),๐โˆ’ฮป(t))โ‰คb~(g๐œฝ~,๐โˆ’ฮป(t))โˆ€๐โˆˆฮ›.\widetilde{b}(\boldsymbol{u}(t),\boldsymbol{\mu}-\lambda(t))\leq\widetilde{b}(g\widetilde{\boldsymbol{\theta}},\boldsymbol{\mu}-\lambda(t))\quad\forall\boldsymbol{\mu}\in\Lambda. (4.12)

We gather equalities (3.6), (4.4) and (4.10) and inequality (4.12) to obtain the following mixed variational formulation of problem ๐’ซ\mathcal{P}.

Problem ๐’ซV\mathcal{P}^{V}. Find a stress field ๐ˆ:โ„+โ†’Q\boldsymbol{\sigma}:\mathbb{R}_{+}\rightarrow Q, a displacement field ๐’–:โ„+โ†’V\boldsymbol{u}:\mathbb{R}_{+}\rightarrow V, a bonding field ฮฒ:โ„+โ†’Z\beta:\mathbb{R}_{+}\rightarrow Z and a Lagrange multiplier ฮป:โ„+โ†’ฮ›\lambda:\mathbb{R}_{+}\rightarrow\Lambda such that

๐ˆ(t)=\displaystyle\boldsymbol{\sigma}(t)= โ„ฐ๐œบ(๐’–(t))+โˆซ0t๐’ข(๐ˆ(s),๐œบ(๐’–(s)))ds+๐ˆ0โˆ’โ„ฐ๐œบ(๐’–0)\displaystyle\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\int_{0}^{t}\mathcal{G}(\boldsymbol{\sigma}(s),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)))\mathrm{d}s+\boldsymbol{\sigma}_{0}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0}\right) (4.13)
ฮฒ(t)=\displaystyle\beta(t)= ฮฒ0โˆ’โˆซ0t(ฮณvฮฒ(s)[R(uv(s))]2โˆ’ฮตa)+ds\displaystyle\beta_{0}-\int_{0}^{t}\left(\gamma_{v}\beta(s)\left[R\left(u_{v}(s)\right)\right]^{2}-\varepsilon_{a}\right)^{+}\mathrm{d}s (4.14)
(๐ˆ(t),๐œบ(๐’—))Q+โˆซฮ“3pv(uv(t))vvda+b~(๐’—,๐€(t))+โˆซฮ“3(โˆซ0tb(tโˆ’s)uv+(s)ds)vvda\displaystyle(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\int_{\Gamma_{3}}p_{v}\left(u_{v}(t)\right)v_{v}\mathrm{~d}a+\tilde{b}(\boldsymbol{v},\boldsymbol{\lambda}(t))+\int_{\Gamma_{3}}\left(\int_{0}^{t}b(t-s)u_{v}^{+}(s)\mathrm{d}s\right)v_{v}\mathrm{~d}a
โˆ’โˆซฮ“3ฮณvฮฒ2(t)R~(uv(t))vvda+โˆซฮ“3pฯ„(ฮฒ(t))๐‘นโˆ—(๐’–ฯ„(t))โ‹…๐’—ฯ„da=(๐’‡(t),๐’—)V\displaystyle-\int_{\Gamma_{3}}\gamma_{v}\beta^{2}(t)\widetilde{R}\left(u_{v}(t)\right)v_{v}\mathrm{~d}a+\int_{\Gamma_{3}}p_{\tau}(\beta(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right)\cdot\boldsymbol{v}_{\tau}\mathrm{d}a=(\boldsymbol{f}(t),\boldsymbol{v})_{V} (4.15)
b~(๐’–(t),๐โˆ’ฮป(t))โ‰คb~(g๐œฝ~,๐โˆ’ฮป(t))\displaystyle\tilde{b}(\boldsymbol{u}(t),\boldsymbol{\mu}-\lambda(t))\leq\tilde{b}(g\tilde{\boldsymbol{\theta}},\boldsymbol{\mu}-\lambda(t)) (4.16)

for all ๐โˆˆฮ›,๐’—โˆˆV,tโˆˆโ„+\boldsymbol{\mu}\in\Lambda,\boldsymbol{v}\in V,t\in\mathbb{R}_{+}.
Problem ๐’ซV\mathcal{P}^{V} represents a mixed-variational formulation which includes two implicit integral equations for the stress field and bonding field, respectively. A history-dependent variational equation for displacement field and a first-order time-dependent variational inequality for the Lagrange multiplier complete the problem.

We have the following existence and uniqueness result.
Theorem 4.1: Assume that (3.2), (3.3), (3.5), (3.10), (3.16), (3.17), (3.20), (3.21), and (3.28) hold. There exists e0>0e_{0}>0 which depends only on โ„ฐ,pv,ฮฉ,ฮ“1\mathcal{E},p_{v},\Omega,\Gamma_{1}, and ฮ“3\Gamma_{3} such that if

Mฯ„+โ€–ฮณฮฝโ€–Lโˆž(ฮ“3)<e0M_{\tau}+\left\|\gamma_{\nu}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}<e_{0} (4.17)

then Problem ๐’ซV\mathcal{P}^{V} has a unique solution ( ๐ˆ,๐’–,ฮฒ,๐€\boldsymbol{\sigma},\boldsymbol{u},\beta,\boldsymbol{\lambda} ). Moreover, the solution satisfies

๐ˆโˆˆC(โ„+;Q),๐’–โˆˆC(โ„+;V),ฮฒโˆˆC(โ„+;Z),๐€โˆˆC(โ„+;ฮ›).\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q\right),\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\beta\in C\left(\mathbb{R}_{+};Z\right),\boldsymbol{\lambda}\in C\left(\mathbb{R}_{+};\Lambda\right). (4.18)

For the convenience of the readers, we recall that Mฯ„M_{\tau} is the constant introduced in (3.28) (c). The proof of Theorem 4.1 will be carried out in two steps in the next section. In the first step, an equivalence result, Lemma 5.1, is established. Second step includes an existence and uniqueness result for an intermediate problem, Lemma 5.3.

5. Proof of Theorem 4.1

In this section, we present the proof of Theorem 4.1. To this end, in what follows we assume that (3.2), (3.3), (3.5), (3.10), (3.16), (3.17) (3.20), (3.21), and (3.28) hold.

In order to provide an equivalence form of Problem ๐’ซV\mathcal{P}^{V}, we introduce two history-dependent operators. More exactly, we define operator ๐’ฎ1:C(โ„+;V)โ†’C(โ„+;Q)\mathcal{S}_{1}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};Q\right) by

๐’ฎ1๐’–(t)=โˆซ0t๐’ข(๐’ฎ1๐’–(s)+โ„ฐ๐œบ(๐’–(s)),๐œบ(๐’–(s)))ds+ฯƒ0โˆ’โ„ฐ๐œบ(๐’–0),\mathcal{S}_{1}\boldsymbol{u}(t)=\int_{0}^{t}\mathcal{G}\left(\mathcal{S}_{1}\boldsymbol{u}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s))\right)\mathrm{d}s+\sigma_{0}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0}\right), (5.1)

for all tโˆˆโ„+t\in\mathbb{R}_{+}. The unique existence of ๐’ฎ1\mathcal{S}_{1} was proved in [32] using assumptions (3.2), (3.3), (3.5), and fixed point arguments.

We use Rieszโ€™s representation theorem to define operator ๐’ฎ2:C(โ„+;V)โ†’C(โ„+;V)\mathcal{S}_{2}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};V\right) by

(๐’ฎ2๐’–(t),๐’—)V=(โˆซ0tb(tโˆ’s)uv+(s)ds,vv)L2(ฮ“3)โˆ€๐’–โˆˆC(โ„+;V),๐’—โˆˆV.\left(\mathcal{S}_{2}\boldsymbol{u}(t),\boldsymbol{v}\right)_{V}=\left(\int_{0}^{t}b(t-s)u_{v}^{+}(s)\mathrm{d}s,v_{v}\right)_{L^{2}\left(\Gamma_{3}\right)}\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\boldsymbol{v}\in V. (5.2)

Finally, let ๐’ฎ:C(โ„+;V)โ†’C(โ„+;V)\mathcal{S}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};V\right) be the operator defined by

(๐’ฎ๐’–(t),๐’—)V=(๐’ฎ1๐’–(t),๐œบ(๐’—))Q+(๐’ฎ2๐’–(t),๐’—)Vโˆ€๐’–โˆˆC(โ„+;V),๐’—โˆˆV.(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v})_{V}=\left(\mathcal{S}_{1}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q}+\left(\mathcal{S}_{2}\boldsymbol{u}(t),\boldsymbol{v}\right)_{V}\quad\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\boldsymbol{v}\in V. (5.3)

In [33] was proved that ๐’ฎ\mathcal{S} is a history-dependent operator, i.e. โˆ€nโˆˆโ„•\forall n\in\mathbb{N} there exists sn>0s_{n}>0 such that

โ€–๐’ฎ๐’–(t)โˆ’๐’ฎ๐’—(t)โ€–Vโ‰คsnโˆซ0tโ€–๐’–(s)โˆ’๐’—(s)โ€–Vds\displaystyle\|\mathcal{S}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{v}(t)\|_{V}\leq s_{n}\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}\mathrm{~d}s
โˆ€๐’–,๐’—โˆˆC(โ„+;V),tโˆˆ[0,n]\displaystyle\forall\boldsymbol{u},\boldsymbol{v}\in C\left(\mathbb{R}_{+};V\right),\quad t\in[0,n] (5.4)

In addition, in [11,19][11,19] it was proved that there exists an operator โ„ฌ:C(โ„+;V)โ†’C(โ„+;Z)\mathcal{B}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};Z\right) such that

โ„ฌ๐’–(t)=ฮฒ0โˆ’โˆซ0t(ฮณvโ„ฌ๐’–(s)[R(uv(s))]2โˆ’ฮตa)+ds on ฮ“3.\mathcal{B}\boldsymbol{u}(t)=\beta_{0}-\int_{0}^{t}\left(\gamma_{v}\mathcal{B}\boldsymbol{u}(s)\left[R\left(u_{v}(s)\right)\right]^{2}-\varepsilon_{a}\right)^{+}\mathrm{d}s\quad\text{ on }\Gamma_{3}. (5.5)

Moreover, โ„ฌ\mathcal{B} is a history-dependent operator, i.e. โˆ€nโˆˆโ„•\forall n\in\mathbb{N} there exists bn>0b_{n}>0 such that

โ€–โ„ฌ๐’–(t)โˆ’โ„ฌ๐’—(t)โ€–L2(ฮ“3)โ‰คbnโˆซ0tโ€–๐’–(s)โˆ’๐’—(s)โ€–Vds\displaystyle\|\mathcal{B}\boldsymbol{u}(t)-\mathcal{B}\boldsymbol{v}(t)\|_{L^{2}\left(\Gamma_{3}\right)}\leq b_{n}\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}\mathrm{~d}s
โˆ€๐’–,๐’—โˆˆC(โ„+;V),tโˆˆ[0,n]\displaystyle\forall\boldsymbol{u},\boldsymbol{v}\in C\left(\mathbb{R}_{+};V\right),\quad t\in[0,n] (5.6)

Using previous notations, we have the following equivalence result.
Lemma 5.1: Let ( ๐ˆ,๐’–,ฮฒ,๐€\boldsymbol{\sigma},\boldsymbol{u},\beta,\boldsymbol{\lambda} ) with regularity (4.18). Then ( ๐ˆ,๐’–,ฮฒ,๐€\boldsymbol{\sigma},\boldsymbol{u},\beta,\boldsymbol{\lambda} ) is a solution of Problem ๐’ซV\mathcal{P}^{V} if and only if

๐ˆ(t)=โ„ฐ๐œบ(๐’–(t))+๐’ฎ1๐’–(t)\displaystyle\boldsymbol{\sigma}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\mathcal{S}_{1}\boldsymbol{u}(t) (5.7)
ฮฒ(t)=โ„ฌ๐’–(t)\displaystyle\beta(t)=\mathcal{B}\boldsymbol{u}(t) (5.8)
(โ„ฐ๐œบ(๐’–(t)),๐œบ(๐’—))Q+โˆซฮ“3pv(uv(t))vvda+(๐’ฎ๐’–(t),๐’—)Vโˆ’โˆซฮ“3ฮณv[โ„ฌ๐’–(t)]2R~(uv(t))vvda\displaystyle(\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\int_{\Gamma_{3}}p_{v}\left(u_{v}(t)\right)v_{v}\mathrm{~d}a+(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v})_{V}-\int_{\Gamma_{3}}\gamma_{v}[\mathcal{B}\boldsymbol{u}(t)]^{2}\widetilde{R}\left(u_{v}(t)\right)v_{v}\mathrm{~d}a
+โˆซฮ“3pฯ„(โ„ฌ๐’–(t))๐‘นโˆ—(๐’–ฯ„(t))โ‹…๐’—ฯ„da+b~(๐’—,๐€(t))=(๐’‡(t),๐’—)Vโˆ€๐’—โˆˆV\displaystyle\quad+\int_{\Gamma_{3}}p_{\tau}(\mathcal{B}\boldsymbol{u}(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right)\cdot\boldsymbol{v}_{\tau}\mathrm{d}a+\widetilde{b}(\boldsymbol{v},\boldsymbol{\lambda}(t))=(\boldsymbol{f}(t),\boldsymbol{v})_{V}\quad\forall\boldsymbol{v}\in V (5.9)
b~(๐’–(t),๐โˆ’๐€(t))โ‰คb~(g๐œฝ~,๐โˆ’๐€(t))โˆ€๐โˆˆฮ›\displaystyle\widetilde{b}(\boldsymbol{u}(t),\boldsymbol{\mu}-\boldsymbol{\lambda}(t))\leq\widetilde{b}(g\widetilde{\boldsymbol{\theta}},\boldsymbol{\mu}-\boldsymbol{\lambda}(t))\quad\forall\boldsymbol{\mu}\in\Lambda (5.10)

for all tโˆˆโ„+t\in\mathbb{R}_{+}.
Proof: Let tโˆˆโ„+t\in\mathbb{R}_{+}and we assume that ( ๐ˆ,๐’–,ฮฒ,๐€\boldsymbol{\sigma},\boldsymbol{u},\beta,\boldsymbol{\lambda} ) is solution of Problem ๐’ซV\mathcal{P}^{V}. Taking into account (3.6), (4.4), and definitions of operators ๐’ฎ1\mathcal{S}_{1} and โ„ฌ\mathcal{B} we deduce that (5.7) and (5.8) hold. We combine (4.15), (5.2), (5.3), (5.7), and (5.8) to obtain (5.9). Finally, (5.10) is a direct consequence of (4.16).

Conversely, we assume that ( ๐ˆ,๐’–,ฮฒ,๐€\boldsymbol{\sigma},\boldsymbol{u},\beta,\boldsymbol{\lambda} ) verifies (5.7)-(5.10). Definitions (5.1), (5.5), and (5.7), (5.8) imply that (4.13) and (4.14) hold. Moreover, combining (5.9) with (5.7) and (5.8) we find that (4.15) holds. Finally, (4.16) is a direct consequence of (5.10).

The previous lemma shows that proving the unique solvability of Problem ๐’ซV\mathcal{P}^{V} is equivalent to prove that there exists a unique couple of functions ( ๐’–,๐€\boldsymbol{u},\boldsymbol{\lambda} ), which satisfies (5.9) and (5.10) for all tโˆˆโ„+t\in\mathbb{R}_{+}. To this end, we use the following existence and uniqueness result for an abstract historydependent mixed variational problem.

Let (X,(โ‹…,โ‹…)X,โˆฅโ‹…โˆฅX)\left(X,(\cdot,\cdot)_{X},\|\cdot\|_{X}\right) and (Y,(โ‹…,โ‹…)Y,โˆฅโ‹…โˆฅY)\left(Y,(\cdot,\cdot)_{Y},\|\cdot\|_{Y}\right) be two real Hilbert spaces and C(โ„+;X),C(โ„+;Y)C\left(\mathbb{R}_{+};X\right),C\left(\mathbb{R}_{+};Y\right) the spaces of continuous functions defined on โ„+\mathbb{R}_{+}with values in XX and YY, respectively. We consider two operators A:Xโ†’X,โ„›:C(โ„+;X)ร—C(โ„+;Y)โ†’C(โ„+;X)A:X\rightarrow X,\mathcal{R}:C\left(\mathbb{R}_{+};X\right)\times C\left(\mathbb{R}_{+};Y\right)\rightarrow C\left(\mathbb{R}_{+};X\right), a bilinear form b~:Xร—Yโ†’โ„\tilde{b}:X\times Y\rightarrow\mathbb{R}, two functions f,h:โ„+โ†’Xf,h:\mathbb{R}_{+}\rightarrow X and a set ฮ›YโŠ‚Y\Lambda_{Y}\subset Y. We suppose that these data satisfy the following
assumptions. More exactly, the operator AA is strongly monotone and Lipschitz continuous, i.e.

{ (a) There exists mA>0 such that (Au1โˆ’Au2,u1โˆ’u2)Xโ‰ฅmAโ€–u1โˆ’u2โ€–X2โˆ€u1,u2โˆˆX. (b) There exists MA>0 such that โ€–Au1โˆ’Au2โ€–Xโ‰คMAโ€–u1โˆ’u2โ€–Xโˆ€u1,u2โˆˆX.\left\{\begin{array}[]{l}\text{ (a) There exists }m_{A}>0\text{ such that }\\ \quad\left(Au_{1}-Au_{2},u_{1}-u_{2}\right)_{X}\geq m_{A}\left\|u_{1}-u_{2}\right\|_{X}^{2}\quad\forall u_{1},u_{2}\in X.\\ \text{ (b) There exists }M_{A}>0\text{ such that }\\ \quad\left\|Au_{1}-Au_{2}\right\|_{X}\leq M_{A}\left\|u_{1}-u_{2}\right\|_{X}\quad\forall u_{1},u_{2}\in X.\end{array}\right.

The operator โ„›\mathcal{R} verifies

{ For each nโˆˆโ„• there exist dnโ‰ฅ0 and rnโ‰ฅ0 such that โˆฅโ„›(u1,ฮป1)(t)โˆ’โ„›(u2,ฮป2)(t)โˆฅXโ‰คdn(โˆฅu1(t)โˆ’u2(t)โˆฅX+โˆฅฮป1(t)โˆ’ฮป2(t)โˆฅY)+rnโˆซ0t(โˆฅu1(s)โˆ’u2(s)โˆฅX+โˆฅฮป1(s)โˆ’ฮป2(s)โˆฅY)dsโˆ€u1,u2โˆˆC(โ„+;X),ฮป1,ฮป2โˆˆC(โ„+;Y),tโˆˆ[0,n].\left\{\begin{array}[]{l}\text{ For each }n\in\mathbb{N}\text{ there exist }d_{n}\geq 0\text{ and }r_{n}\geq 0\text{ such that }\\ \left\|\mathcal{R}\left(u_{1},\lambda_{1}\right)(t)-\mathcal{R}\left(u_{2},\lambda_{2}\right)(t)\right\|_{X}\leq d_{n}\left(\left\|u_{1}(t)-u_{2}(t)\right\|_{X}\right.\\ \left.+\left\|\lambda_{1}(t)-\lambda_{2}(t)\right\|_{Y}\right)+r_{n}\int_{0}^{t}\left(\left\|u_{1}(s)-u_{2}(s)\right\|_{X}+\left\|\lambda_{1}(s)-\lambda_{2}(s)\right\|_{Y}\right)\mathrm{d}s\\ \quad\forall u_{1},u_{2}\in C\left(\mathbb{R}_{+};X\right),\lambda_{1},\lambda_{2}\in C\left(\mathbb{R}_{+};Y\right),t\in[0,n].\end{array}\right.

The bilinear form b~\widetilde{b} is continuous and verifies an inf-sup condition, i.e.

{ (a) There exists Mb>0 such that |b~(v,ฮผ)|โ‰คMbโ€–vโ€–Xโ€–ฮผโ€–Yโˆ€vโˆˆX,ฮผโˆˆY. (b) There exists ฮฑb>0 such that infฮผโˆˆY,ฮผโ‰ 0YsupvโˆˆX,vโ‰ 0Xb~(v,ฮผ)โ€–vโ€–Xโ€–ฮผโ€–Yโ‰ฅฮฑb.\left\{\begin{array}[]{l}\text{ (a) There exists }M_{b}>0\text{ such that }\\ |\widetilde{b}(v,\mu)|\leq M_{b}\|v\|_{X}\|\mu\|_{Y}\quad\forall v\in X,\mu\in Y.\\ \text{ (b) There exists }\alpha_{b}>0\text{ such that }\\ \inf_{\mu\in Y,\mu\neq 0_{Y}}\sup_{v\in X,v\neq 0_{X}}\frac{\widetilde{b}(v,\mu)}{\|v\|_{X}\|\mu\|_{Y}}\geq\alpha_{b}.\end{array}\right.

More details concerning the inf-sup condition can be found in [34]. Finally, we assume that

fโˆˆC(โ„+;X),hโˆˆC(โ„+;X)f\in C\left(\mathbb{R}_{+};X\right),\quad h\in C\left(\mathbb{R}_{+};X\right) (5.14)

and

ฮ›Y is a closed, convex, unbounded subset of Y and 0Yโˆˆฮ›Y\Lambda_{Y}\text{ is a closed, convex, unbounded subset of }Y\text{ and }0_{Y}\in\Lambda_{Y}\text{. } (5.15)

With these data, we introduce the following abstract evolutionary problem.
Problem ๐’ซa\mathcal{P}_{a}. Find the functions u:โ„+โ†’Xu:\mathbb{R}_{+}\rightarrow X and ฮป:โ„+โ†’ฮ›Y\lambda:\mathbb{R}_{+}\rightarrow\Lambda_{Y} such that

(Au(t),v)X+(โ„›(u,ฮป)(t),v)X+b~(v,ฮป(t))=(f(t),v)Xโˆ€vโˆˆX,\displaystyle(Au(t),v)_{X}+(\mathcal{R}(u,\lambda)(t),v)_{X}+\widetilde{b}(v,\lambda(t))=(f(t),v)_{X}\quad\forall v\in X, (5.16)
b~(u(t),ฮผโˆ’ฮป(t))โ‰คb~(h(t),ฮผโˆ’ฮป(t))โˆ€ฮผโˆˆฮ›Y,tโˆˆโ„+.\displaystyle\widetilde{b}(u(t),\mu-\lambda(t))\leq\widetilde{b}(h(t),\mu-\lambda(t))\quad\forall\mu\in\Lambda_{Y},t\in\mathbb{R}_{+}. (5.17)

We have the following existence and uniqueness result.
Theorem 5.2: Assume (5.11)-(5.15). There exists d0>0d_{0}>0 which depends only on AA and b~\tilde{b} such that if dn<d0d_{n}<d_{0} for all nโˆˆโ„•n\in\mathbb{N} then Problem ๐’ซa\mathcal{P}_{a} has a unique solution ( u,ฮปu,\lambda ). Moreover,

uโˆˆC(โ„+;X) and ฮปโˆˆC(โ„+;ฮ›Y).u\in C\left(\mathbb{R}_{+};X\right)\text{ and }\lambda\in C\left(\mathbb{R}_{+};\Lambda_{Y}\right).

Theorem 5.2 was proved in [17] using results on generalized saddle point problems combined with fixed point arguments. We use it to prove the following existence and uniqueness result.
Lemma 5.3: Assume that (3.2), (3.5), (3.10), (3.16), (3.20), (3.21), and (3.28) hold. There exists e0>0e_{0}>0 which depends only on โ„ฐ,pv,ฮฉ,ฮ“1\mathcal{E},p_{v},\Omega,\Gamma_{1} and ฮ“3\Gamma_{3} such that if

Mฯ„+โ€–ฮณฮฝโ€–Lโˆž(ฮ“3)<e0M_{\tau}+\left\|\gamma_{\nu}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}<e_{0} (5.18)

then there exists a unique couple of functions ( ๐’–,๐€\boldsymbol{u},\boldsymbol{\lambda} ) which satisfies (5.9) and (5.10) for all tโˆˆโ„+t\in\mathbb{R}_{+}. Moreover,

๐’–โˆˆC(โ„+;V) and ๐€โˆˆC(โ„+;ฮ›).\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right)\quad\text{ and }\quad\boldsymbol{\lambda}\in C\left(\mathbb{R}_{+};\Lambda\right). (5.19)

Proof: We use the Rieszโ€™s representation theorem to define operators A:Vโ†’VA:V\rightarrow V and ๐’ฎ~\widetilde{\mathcal{S}} : C(โ„+;V)โ†’C(โ„+;V)C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};V\right) by equalities

(A๐’–,๐’—)V=(โ„ฐ๐œบ(๐’–),๐œบ(๐’—))Q+โˆซฮ“3pv(uv)vvdaโˆ€๐’–,๐’—โˆˆV(A\boldsymbol{u},\boldsymbol{v})_{V}=(\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\int_{\Gamma_{3}}p_{v}\left(u_{v}\right)v_{v}\mathrm{~d}a\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (5.20)

and

(๐’ฎ~๐’–(t),๐’—)V=\displaystyle(\widetilde{\mathcal{S}}\boldsymbol{u}(t),\boldsymbol{v})_{V}= (๐’ฎ๐’–(t),๐’—)Vโˆ’โˆซฮ“3ฮณฮฝ[โ„ฌ๐’–(t)]2R~(uฮฝ(t))vฮฝda\displaystyle(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v})_{V}-\int_{\Gamma_{3}}\gamma_{\nu}[\mathcal{B}\boldsymbol{u}(t)]^{2}\widetilde{R}\left(u_{\nu}(t)\right)v_{\nu}\mathrm{d}a
+โˆซฮ“3pฯ„(โ„ฌ๐’–(t))๐‘นโˆ—(๐’–ฯ„(t))โ‹…๐’—ฯ„daโˆ€๐’–โˆˆC(โ„+;V),๐’—โˆˆV,tโˆˆโ„+\displaystyle+\int_{\Gamma_{3}}p_{\tau}(\mathcal{B}\boldsymbol{u}(t))\boldsymbol{R}^{*}\left(\boldsymbol{u}_{\tau}(t)\right)\cdot\boldsymbol{v}_{\tau}\mathrm{d}a\quad\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\boldsymbol{v}\in V,t\in\mathbb{R}_{+} (5.21)

It is easy to see that (5.9) is equivalent with the following equality

(A๐’–(t),๐’—)V+(๐’ฎ~๐’–(t),๐’—)V+b~(๐’—,๐€(t))=(๐’‡(t),๐’—)Vโˆ€๐’—โˆˆV.(A\boldsymbol{u}(t),\boldsymbol{v})_{V}+(\widetilde{\mathcal{S}}\boldsymbol{u}(t),\boldsymbol{v})_{V}+\widetilde{b}(\boldsymbol{v},\boldsymbol{\lambda}(t))=(\boldsymbol{f}(t),\boldsymbol{v})_{V}\quad\forall\boldsymbol{v}\in V. (5.22)

Moreover, using definition (4.11) we deduce that inequality (5.10) is equivalent with

b~(๐’–(t),๐โˆ’ฮป(t))โ‰คb~(๐’‰,๐โˆ’ฮป(t))โˆ€๐โˆˆฮ›.\widetilde{b}(\boldsymbol{u}(t),\boldsymbol{\mu}-\lambda(t))\leq\widetilde{b}(\boldsymbol{h},\boldsymbol{\mu}-\lambda(t))\quad\forall\boldsymbol{\mu}\in\Lambda. (5.23)

Therefore, the proof resumes to show that there exists a unique couple of functions ( ๐’–,๐€\boldsymbol{u},\boldsymbol{\lambda} ) which verifies (5.22)-(5.23) with regularity (5.19). To this end, we apply Theorem 5.2 with X=V,Y=DX=V,Y=D, ฮ›Y=ฮ›\Lambda_{Y}=\Lambda and โ„›:C(โ„+;V)ร—C(โ„+;D)โ†’C(โ„+;V)\mathcal{R}:C\left(\mathbb{R}_{+};V\right)\times C\left(\mathbb{R}_{+};D\right)\rightarrow C\left(\mathbb{R}_{+};V\right) given by

โ„›(๐’–(t),ฮป(t))=๐’ฎ~๐’–(t)โˆ€(๐’–,ฮป)โˆˆC(โ„+;Vร—D),tโˆˆโ„+\mathcal{R}(\boldsymbol{u}(t),\lambda(t))=\widetilde{\mathcal{S}}\boldsymbol{u}(t)\quad\forall(\boldsymbol{u},\lambda)\in C\left(\mathbb{R}_{+};V\times D\right),t\in\mathbb{R}_{+} (5.24)

Using definition (5.20) inequalities (2.4), (2.6) and assumptions (3.2), (3.20) we deduce that operator AA verifies (5.11) with constants mA=mโ„ฐm_{A}=m_{\mathcal{E}} and MA=dโ€–โ„ฐโ€–๐โˆž+c02LฮฝM_{A}=d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}+c_{0}^{2}L_{\nu}, respectively.

Next, as it was shown in [16], definition (4.6) implies that the bilinear form b~(โ‹…,โ‹…)\widetilde{b}(\cdot,\cdot) satisfies (5.13), i.e. there exist Mb>0M_{b}>0 and ฮฑb>0\alpha_{b}>0 such that

|b~(๐’—,๐)|โ‰คMbโ€–๐’—โ€–Vโ€–๐โ€–Dโˆ€๐’—โˆˆV,๐โˆˆD|\widetilde{b}(\boldsymbol{v},\boldsymbol{\mu})|\leq M_{b}\|\boldsymbol{v}\|_{V}\|\boldsymbol{\mu}\|_{D}\quad\forall\boldsymbol{v}\in V,\boldsymbol{\mu}\in D (5.25)

and

inf๐โˆˆD,๐โ‰ ๐ŸŽDsup๐’—โˆˆV,๐’—โ‰ ๐ŸŽVb~(๐’—,๐)โ€–๐’—โ€–Vโ€–๐โ€–Dโ‰ฅฮฑb\inf_{\boldsymbol{\mu}\in D,\boldsymbol{\mu}\neq\mathbf{0}_{D}}\sup_{\boldsymbol{v}\in V,\boldsymbol{v}\neq\mathbf{0}_{V}}\frac{\widetilde{b}(\boldsymbol{v},\boldsymbol{\mu})}{\|\boldsymbol{v}\|_{V}\|\boldsymbol{\mu}\|_{D}}\geq\alpha_{b} (5.26)

Taking into account definitions (3.11), (4.11), and assumptions (3.10), (3.38) we conclude that ๐’‡\boldsymbol{f} and ๐’‰\boldsymbol{h} verify (5.14), i.e.

๐’‡โˆˆC(โ„+;V) and ๐’‰โˆˆC(โ„+;V).\boldsymbol{f}\in C\left(\mathbb{R}_{+};V\right)\text{ and }\boldsymbol{h}\in C\left(\mathbb{R}_{+};V\right). (5.27)

We show that the operator ๐’ฎ~\widetilde{\mathcal{S}} satisfies (5.12). To this end, let nโˆˆโ„•โˆ—n\in\mathbb{N}^{*} and tโˆˆ[0,n]t\in[0,n]. Using definition (5.21), inequality (2.4), assumptions (3.16), (3.28), definitions (3.24), (3.27), estimates (5.4), (5.6) and properties of operators R~,๐‘นโˆ—\widetilde{R},\boldsymbol{R}^{*} (see Lemma 4.9 in [9]) we obtain

โ€–๐’ฎ~๐’–1(t)โˆ’๐’ฎ~๐’–2(t)โ€–Vโ‰ค\displaystyle\left\|\widetilde{\mathcal{S}}\boldsymbol{u}_{1}(t)-\widetilde{\mathcal{S}}\boldsymbol{u}_{2}(t)\right\|_{V}\leq c02(Mฯ„+โ€–ฮณฮฝโ€–Lโˆž(ฮ“3))โ€–๐’–1(t)โˆ’๐’–2(t)โ€–V\displaystyle c_{0}^{2}\left(M_{\tau}+\left\|\gamma_{\nu}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)\left\|\boldsymbol{u}_{1}(t)-\boldsymbol{u}_{2}(t)\right\|_{V}
+(sn+c0L(Lฯ„+2โ€–ฮณฮฝโ€–Lโˆž(ฮ“3))bn)โˆซ0tโ€–๐’–1(s)โˆ’๐’–2(s)โ€–Vds\displaystyle+\left(s_{n}+c_{0}L\left(L_{\tau}+2\left\|\gamma_{\nu}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)b_{n}\right)\int_{0}^{t}\left\|\boldsymbol{u}_{1}(s)-\boldsymbol{u}_{2}(s)\right\|_{V}\mathrm{~d}s (5.28)

for all ๐’–1,๐’–2โˆˆC(โ„+;V)\boldsymbol{u}_{1},\boldsymbol{u}_{2}\in C\left(\mathbb{R}_{+};V\right). Thus, the previous inequality implies that operator ๐’ฎ~\widetilde{\mathcal{S}} satisfies (5.12) with

dn=c02(Mฯ„+โ€–ฮณฮฝโ€–Lโˆž(ฮ“3))d_{n}=c_{0}^{2}\left(M_{\tau}+\left\|\gamma_{\nu}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)

and

rn=sn+c0L(Lฯ„+2โ€–ฮณฮฝโ€–Lโˆž(ฮ“3))bn.r_{n}=s_{n}+c_{0}L\left(L_{\tau}+2\left\|\gamma_{\nu}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)b_{n}.

Finally, definition (4.2) implies that ฮ›\Lambda verifies (5.15). We conclude that hypotheses of Theorem 5.2 are verified. We deduce that there exists d0>0d_{0}>0 which depends only on AA and b~\widetilde{b} such that if dn<d0d_{n}<d_{0} for all nโˆˆโ„•โˆ—n\in\mathbb{N}^{*} then there exists a unique couple of functions ( ๐’–,๐€\boldsymbol{u},\boldsymbol{\lambda} ) โˆˆC(โ„+;Vร—ฮ›)\in C\left(\mathbb{R}_{+};V\times\Lambda\right) which verifies (5.22) and (5.23) for all tโˆˆโ„+t\in\mathbb{R}_{+}. We define

e0=d0c0โˆ’2e_{0}=d_{0}c_{0}^{-2} (5.29)

where c0c_{0} is given in (2.4). Definitions (4.6) and (5.20) of bilinear form b~\widetilde{b} and operator AA, respectively, and inequality (2.4) imply that e0e_{0} depends on โ„ฐ,pฮฝ,ฮฉ,ฮ“1\mathcal{E},p_{\nu},\Omega,\Gamma_{1}, and ฮ“3\Gamma_{3}. We note that dn<d0d_{n}<d_{0} iff Mฯ„+โ€–ฮณฮฝโ€–Lโˆž(ฮ“3)<e0M_{\tau}+\left\|\gamma_{\nu}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}<e_{0} which concludes the proof.

We use the previous results to prove Theorem 4.1.
Proof: Let e0e_{0} be given by (5.29) and assume that Mฯ„+โ€–ฮณฮฝโ€–Lโˆž(ฮ“3)<e0M_{\tau}+\left\|\gamma_{\nu}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}<e_{0}. Lemma 5.3 implies that there exists a unique couple of functions ( ๐’–,๐€\boldsymbol{u},\boldsymbol{\lambda} ) which verifies (5.9)-(5.10) for all tโˆˆโ„+t\in\mathbb{R}_{+}with regularity (5.19). We deduce that there exists ( ๐ˆ,๐’–,ฮฒ,ฮป\boldsymbol{\sigma},\boldsymbol{u},\beta,\lambda ) solution of problem (5.7)-(5.10) with regularity (4.18). Lemma 5.1 implies the existence part of Theorem 4.1. Finally, we combine Lemma 5.1 with the uniqueness of the solution of system (5.9) and (5.10), guaranteed by Lemma 5.3, to deduce the uniqueness part of Theorem 4.1.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The work of the author has been partially supported by projects LEA Math Mode 2014/2015 and POSDRU/159/1.5/S/ 132400: Young successful researchers-professional development in an international and interdisciplinary environment at BabeลŸ-Bolyai University.

References

[1] Bonetti E, Bonfanti G, Rossi R. Analysis of a unilateral contact problem taking into account adhesion and friction. J. Differ. Equ. 2012;253:438-462.
[2] Drozdov AD. Finite elasticity and viscoelasticity: a course in the nonlinear mechanics of solids. Singapore: World Scientific Publishing Co Inc.; 1996.
[3] Han W, Sofonea M. Quasistatic contact problems in viscoelasticity and viscoplasticity. Vol. 30, Studies in advanced mathematics. Somerville: American Mathematical Society-International Press; 2002.
[4] Kikuchi N, Oden JT. Contact problems in elasticity: a study of variational inequalities and finite element methods. Philadelphia: SIAM; 1988.
[5] Nassar SA, Andrews KT, Kruk S, et al. Modelling and simulations of a bonded rod. Math. Comput. Model. 2002;42:553-572.
[6] Pฤƒtrulescu F, Ramadan A. Convergence results for contact problems with memory term. Math. Rep. 2015;17: 24-41.
[7] Raous M, Cangรฉmi L, Cocu M. A consistent model coupling adhesion, friction and unilateral contact. Comput. Methods Appl. Mech. Eng. 1999;177:383-399.
[8] Shillor M, Sofonea M, Telega JJ. Models and analysis of quasistatic contact. Vol. 655, Lecture notes in physics. Berlin: Springer-Verlag; 2004.
[9] Sofonea M, Han W, Shillor M. Analysis and approximation of contact problems with adhesion or damage. Vol. 276, Pure and applied mathematics. New York (NY): Chapman-Hall/CRC Press; 2006.
[10] Wriggers P. Computational contact mechanics. Chichester: Wiley; 2002.
[11] Sofonea M, Pฤƒtrulescu F. A viscoelastic contact problem with adhesion and surface memory effects. Math. Model. Anal. 2014;19:607-626.
[12] Cรฉa J. Optimization. Thรฉorie et algorithmes. Paris: Dunond Gauthier-Villars; 1971.
[13] Ekeland I, Temam R. Convex analysis and variational problems. Vol. 28, Classics in applied mathematics. Philadelphia (PA): SIAM; 1999.
[14] Hueber S, Matei A, Wohlmuth B. A mixed variational formulation and optimal a priori error estimate for a frictional contact problem in elasto-piezoelectricity. Bull. Math. Soc. Sci. Math. Roumanie (N.S.). 2005;48:209232.
[15] Lions J-L, Glowinski R, Trรฉmoliรจres R. Numerical analysis of variational inegalities. Amsterdam: North-Holland; 1981.
[16] Matei A, Ciurcea R. Contact problems for nonlinearly elastic materials: weak solvability involving dual Lagrange multipliers. ANZIAM J. 2010;52:160-178.
[17] Sofonea M, Matei A. History-dependent mixed variational problems in contact mechanics. J. Glob. Optim. 2015;61:591-614.
[18] Sofonea M, Pฤƒtrulescu F. Analysis of a history-dependent frictionless contact problem. Math. Mech. Solids. 2013;18:409-430.
[19] Chau O, Fernรกndez JR, Shillor M, et al. Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion. J. Comput. Appl. Math. 2003;159:431-465.
[20] Cocu M, Rocca R. Existence results for unilateral quasistatic contact problems with friction and adhesion. ESAIM Math. Model Numer. Anal. 2000;34:981-1001.
[21] Frรฉmond M. Non-smooth thermomechanics. Berlin: Springer-Verlag; 2002.
[22] Han J, Li Y, Migorski S. Analysis of an adhesive contact problem for viscoelastic materials with long memory. J. Math. Anal. Appl. 2015;427:646-668.
[23] Dumont Y, Goeleven D, Rochdi M, et al. A dynamic model with friction and adhesion with applications to rocks. J. Math. Anal. Appl. 2000;247:87-109.
[24] Rojek J, Telega JJ. Contact problems with friction, adhesion and wear in orthopaedic biomechanics. Part I: general developments. J. Theor. Appl. Mech. 2001;39:655-677.
[25] Rojek J, Telega JJ, Stupkiewicz S. Contact problems with friction, adhesion and wear in orthopaedic biomechanics. Part II: numerical implementation and application to implanted knee joints. J. Theor. Appl. Mech. 2001;39:679706.
[26] Oden JT, Martins JAC. Models and computational methods for dynamic friction phenomena. Comput. Methods Appl. Mech. Eng. 1985;52:527-634.
[27] Klarbring A, Mikeliฤ A, Shillor M. Frictional contact problems with normal compliance. Int. J. Eng. Sci. 1988;26:811-832.
[28] Klarbring A, Mikeliฤ A, Shillor M. On friction problems with normal compliance. Nonlinear Anal. 1989;13:935955.
[29] Signorini A. Sopra alcune questioni di elastostatica, Atti della Societร  Italiana per il Progresso delle Scienze; 1933.
[30] Barboteu M, Matei A, Sofonea M. On the behavior of the solution of a viscoplastic contact problem. Quart. Appl. Math. 2014;72:625-647.
[31] Sofonea M, Danan D, Zheng C. Primal and dual variational formulation of a frictional contact problem. Mediterr. J. Math. 2014. doi: 10.1007/s00009-014-0504-0.
[32] Barboteu M, Matei A, Sofonea M. Analysis of quasistatic viscoplastic contact problems with normal compliance. Q. J. Mech. Appl. Math. 2012;65:555-579.
[33] Barboteu M, Pฤƒtrulescu F, Ramadan A, et al. History-dependent contact models for viscoplastic materials. IMA J. Appl. Math. 2014;79:1180-1200.
[34] Ciarlet PhG. Linear and nonlinear functional analysis with applications. Philadelphia: SIAM; 2013.

Related Posts