ifNNis odd. We will constantly use this remark in what follows.
But before addressing the solution of equation (1), we must examine whether it is possible or not. It is obvious that if A is odd and not equal to 1, the equation is impossible, but it is easy to see that it can be impossible even if A is even. For example, the relation:
varphi(N)=14φ(N) = 14
is impossible.
More generally, one could propose solving the equation:
Given A. It is evident that if equation (2) is possible fori=mi=m, all equations (2), wherei=1,2,dots m-1i=1,2, \ldots m-1will be possible and if the equation withi=mi=mis impossible, all equations withi=m+1i=m+1,m+2,dotsm+2, \ldotswill be impossible.
varphi_(i)(N)\varphi_{i}(\mathrm{~N})will be the iterated indicator or simply the indicator of order i of
N.1^(0)1^{0}And2^(0)2^{0}it follows that there exists a numbernndependent on N such that:
varphi_(n)(N)\varphi_{n}(\mathrm{~N})is then the last indicator of N.
This shows us that powers of 2 can be indicators of any order. Similarly, the equality: {:(4)varphi(2^(alpha)3^(beta-1-1))=2^(alpha)3^(beta):}\begin{equation*}
\varphi\left(2^{\alpha} 3^{\beta-1-1}\right)=2^{\alpha} 3^{\beta} \tag{4}
\end{equation*}
proves to us that numbers of the form2^(alpha)3^(beta)(a!=0)2^{\alpha} 3^{\beta}(a \neq 0)can be indicators of any order.
We propose to demonstrate that:
The only numbers that can be indicators of any order are numbers of the form:
{:(5)2^(alpha)","quad" ou "2^(alpha)3^(beta)","quad" avec "quad a!=0:}\begin{equation*}
2^{\alpha}, \quad \text { ou } 2^{\alpha} 3^{\beta}, \quad \text { avec } \quad a \neq 0 \tag{5}
\end{equation*}
We need only examine the even numbers that are not of the form (5). Before continuing, note that if:
A being odd and not a power of 3 (A=1=3^(0)\mathrm{A}=1=3^{0}is a power of 3), the number N cannot be of any of the forms (5). We will always keep this remark in mind.
3. Lemma. Let p be a positive integer, in what follows:
SOp_(varphi(k_(1)))p_{\varphi\left(k_{1}\right)}is divisible byk_(1)k_{1}which is certainly smaller than him. The reasoning is flawed ifk_(1)=1k_{1}=1. In this case:
3k-1=2^(m)=2^(2n+1)3 k-1=2^{m}=2^{2 n+1}
and we have:
{:[2^(2n)*3k-=1,(mod5),n" impair "],[2^(2n+5)*3k-=1,(mod5),n" pair "]:}\begin{array}{lll}
2^{2 n} \cdot 3 k \equiv 1 & (\bmod 5) & n \text { impair } \\
2^{2 n+5} \cdot 3 k \equiv 1 & (\bmod 5) & n \text { pair }
\end{array}
The lemma is therefore proven.
4. We will now prove the property, first for the case of a number of the form:
2 A
(Odd)!=3^(p)\neq 3^{p}).
We divide the demonstration into three parts.
I. A number of the form:
2p2 p
p being prime> 3>3cannot be an indicator of just any order.
From the equation:
varphi(N)=2p\varphi(\mathrm{N})=2 p
We deduce:
N=2q^(m)\mathrm{N}=2 q^{m}
(qqfirst)
hence:
varphi(2q^(m))=q^(m-1)(q-1)=2p\varphi\left(2 q^{m}\right)=q^{m-1}(q-1)=2 p
SO: 1^(0).quad m=2,quad q=p=3quad1^{0} . \quad m=2, \quad q=p=3 \quadimpossible by hypothesis. 2^(@).quad m=1,quad q=2p+1=p_(1)2^{\circ} . \quad m=1, \quad q=2 p+1=p_{1}.
Ifp_(1)p_{1}is not first,2p2 pcannot be an indicator. Otherwise:
varphi(2p_(1))=2p\varphi\left(2 p_{1}\right)=2 p
Ifp_(2)=2p_(1)+1p_{2}=2 p_{1}+1is not first,2p_(1)2 p_{1}therefore cannot be an indicator2p2 pIt cannot be a second-order indicator. Otherwise.
varphi_(2)(2p_(2))=varphi_(1)(2p_(1))=2p\varphi_{2}\left(2 p_{2}\right)=\varphi_{1}\left(2 p_{1}\right)=2 p
We finally see that in order for2p2 peither an order indicatoriiand not of orderi+1i+1The numbers must be:
and property III then follows from property 1.
We can therefore state the following proposition:
A number of the form:
Since A is an odd number not a power of 3, it cannot be an indicator of any order.
5. We will now show that the numbers:
2^(a)Aquad(" A impair "!=3^(3))2^{a} \mathrm{~A} \quad\left(\text { A impair } \neq 3^{3}\right)
enjoy the same property. The proposition has been demonstrated fora=1a=1It is therefore sufficient to prove that it remains true fora=ka=kassuming it to be trueu=1,2,dots k-1u=1,2, \ldots k-1We break down the proof as before for the casea=1a=1IV
. A number of the form:
2^(k)p2^{k} p
(p prime > 3)
cannot be an indicator of any order.
The equation:
We can't havei > ki>k. Ifi < ki<kthe number N obtained falls into the casea < ka<kfor which the property is true by hypothesis. Ifi < ki<kwe must have:
varphi(2^(h)(2p+1))=2^(h)p\varphi\left(2^{h}(2 p+1)\right)=2^{h} p
Ifp_(1)=2p+1p_{1}=2 p+1If the product is not prime, equality is impossible. Otherwise2^(k)(2p+1)=2^(k)p_(1)2^{k}(2 p+1)=2^{k} p_{1}is of the same shape as2^(k)p2^{k} pIt is easy to see that everything boils down to showing that the following:
contains at least one non-prime number, which follows from the proven lemma.
V. A number of the form:
2^(h)p^(beta)quad(p" premier " > 3,beta > 3)2^{h} p^{\beta} \quad(p \text { premier }>3, \beta>3)
cannot be an indicator of just any order.
We always have the form (6) of N withj=0,1,2,dots beta+1j=0,1,2, \ldots \beta+1We will therefore write relations (7) and (8). 1^(@)1^{\circ}. Ifj!=0j \neq 0we have:
We can still see that the casei > ki>kis impossible and thati < ki<kreduces to a supposedly proven case. It therefore remainsi=ki=kas the last possible case. But in this casen=1n=1Andp=3p=3, which is by definition impossible. 2^(0)2^{0}. Ifj=0j=0The only case to consider isi=ki=k, SO :
assuming of course that2p^(c)+12 p^{c}+1is prime. But the number2^(h)(2p^(c)+1)2^{h}\left(2 p^{c}+1\right)taken as an indicator has already been studied and property V results from property IV.
Finally, we must demonstrate that:
VI. A number of the form:
for allp_(mu)p_{\mu}which intervene in N as factors, and forq_(mu),mu=1q_{\mu}, \mu=1,2,dots r,B_(u),B_(u)^(')2, \ldots r, \mathrm{~B}_{u}, \mathrm{~B}_{u}^{\prime}are numbers of the form:
If such an equality is possible (by interchanging the order of the factors if necessary in2^(k)p_(1)^(alpha_(1))p_(2)^(alpha_(2))dotsp_(v)^(alpha_(v))2^{k} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{v}^{\alpha_{v}}), the number N falls into a category already studied and the propertyv_(1)v_{1}results from property V: 2^(0)2^{0}. Ifj_(1)=j_(2)=dots=j_(v)=0j_{1}=j_{2}=\ldots=j_{v}=0, We have :
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur les indicateurs, Bull. Sc. de l’Ecole Polytechnique de Timişoara, 3 (1930) nos.…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Remarque sur les polynômes de meilleure approximation, Mathematica, 4 (1930), pp. 73-80 (in…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Remarque sur les polynômes de meilleure approximation, Buletinul Soc. de Ştiinţe din Cluj,…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur les fonctions convexes d’une variable réelle, Comptes Rendus de l’Academie des Sciences…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur les suites de polynômes, Mathematica, 5 (1931), pp. 36-48 (in French). PDFhttps://ictp.acad.ro/wp-content/uploads/2025/10/1931-a-100-Popoviciu-Mathematica-Sur-les-suites-de-polynomes.pdf…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Remarques sur les polynômes binomiaux, Mathematica, 6 (1932), pp. 8-10 (in French). PDFhttps://ictp.acad.ro/wp-content/uploads/2025/10/1932-e-Popoviciu-Mathematica-Remarques-sur-les-polynomes-binomiaux.pdf…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Remarques sur les polynômes binomiaux, Buletinul Soc. de Ştiinţe din Cluj, 6 (1931),…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur quelques propriétés des fonctions d’une ou de deux variables réelles, Thése, Paris,…