Posts by Radu Precup

Abstract

The work is concerned with systems of abstract integrodifferential equations with general nonlocal initial conditions. To allow the nonlinear terms of the equations to behave as independently as possible, we employ a vector approach based on matrices, vector-valued norms, and a vector version of Krasnoselskii’s fixed point theorem for a sum of two operators. The assumptions take into account the system’s hybridity and the support for nonlocal initial conditions. To demonstrate the principle, two examples are given.

Authors

Sylvain Koumla

Radu Precup
Babes-Bolyai University,
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Keywords

Integrodifferential equations; nonlinear evolution equation; nonlocal initial condition; delay; krasnoselskii’s fixed point theorem for a sum of operators

PDF

?

Cite this paper as:

S. Koumla and R. Precup, Study on Integrodifferential Evolution Systems with Nonlocal Initial Conditions, Recent Advances in Mathematical Research and Computer Science, vol. 5, 2021, pp. 13-27, https://doi.org/10.9734/bpi/ramrcs/v5/3535F

About this paper

Print ISSN

Not available yet.

Online ISSN

Not available yet.

Google Scholar Profile

[1] Kolmanovskii V, Myshkis A., Applied Theory of Functional Differential Equations, Kluwer, DorDrecht; 1992, https://link.springer.com/book/10.1007/978-94-015-8084-7
[2] Cioranescu N., Sur les conditions lineaires dans l’integration des equations differentielles ordinaires, Math. Z. 1932;35:601–608.
[3] Whyburn WM., Differential equations with general boundary conditions, Bull. Amer. Math. Soc. 1942;48:692–704, https://www.ams.org/bull/1942-48-10/S0002-9904-1942-07760-3/
[4] Conti R., Recent trends in the theory of boundary value problems for ordinary differential equations, Boll. Un. Mat. Ital. 1967;22:135–178, http://www.ams.org/mathscinet-getitem?mr=218650
[5] Bolojan-Nica O, Infante G, Precup R., Existence results for systems with coupled nonlocal initial conditions, Nonlinear Anal. 2014;94:231–242, https://doi.org/10.1016/j.na.2013.08.019
[6] Bolojan O, Infante G, Precup R., Existence results for systems with coupled nonlocal nonlinear initial conditions, Math. Bohem. 2015;140:371–384, https://mb.math.cas.cz/mb140-4/1.html
[7] Boucherif A, Precup R., On the nonlocal initial value problem for first order differential equations, Fixed Point Theory. 2003;4:205–212, https://www.researchgate.net/publication/284814064_On_the_nonlocal_initial_value_problem_for_first_order_differential_equations
[8] Garcıa-Falset J, Reich S., Integral solutions to a class of nonlocal evolution equations, Commun. Contemp. Math. 2010;12:1032–1054 https://doi.org/10.1142/S021919971000410X
[9] Karakostas GL, Tsamatos PCh., Existence of multiple positive solutions for a nonlocal boundary value problem, Topol. Methods Nonlinear Anal. 2002;19:109–121.
[10] Nica O., Initial-value problems for first-order differential systems with general nonlocal conditions, Electron. J. Differential Equations. 2012;2012(74):1–15, https://ejde.math.txstate.edu/Volumes/2012/74/abstr.html
[11] Nica O, Precup R., On the nonlocal initial value problem for first order differential systems, Stud. Univ. Babes-Bolyai Math. 2011;56(3):125–137, https://www.researchgate.net/publication/250615114_Initial-value_problems_for_first-order_differential_systems_with_general_nonlocal_conditions#:~:text=1072%2D6691.-,URL%3A,ejde.math.txstate.edu,-INITIAL%2DVALUE
[12] Webb JRL, Infante G., Positive solutions of nonlocal initial boundary value problems involving integral conditions, NoDEA Nonlinear Differential Equations Appl. 2008;15:45–67. [13] Stikonas A., A survey on stationary problems, Green’s functions and spectrum of Sturm–Liouville problem with nonlocal boundary conditions, Nonlinear Anal. Model. Control. 2014;19:301–334,  http://dx.doi.org/10.15388/NA.2014.3.1
[14] Kerefov A.A., Nonlocal boundary value problems for parabolic equations (Russian), Differ. Uravn. 1979;15:74–78.
[15] Vabishchevich PN., Non-local parabolic problems and the inverse heat-conduction problem (Russian), Differ. Uravn. 1981;17:761–765.
[16] Chabrowski J., On nonlocal problems for parabolic equations, Nagoya Math. J. 1984;93:109–131.
[17] Pao CV., Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions, J. Math. Anal. Appl. 1995;195:702–718, https://doi.org/10.1006/jmaa.1995.1384
[18] Olmstead WE, Roberts CA., The one-dimensional heat equation with a nonlocal initial condition, Appl. Math. Lett. 1997;10:89–94.
[19] McKibben M., Discovering Evolution Equations with Applications, Chapman &Hall/CRC. 2011;I.
[20] Byszewski L., Theorems about the existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problems, J. Math. Anal. Appl. 1991;162:494–505, https://doi.org/10.1016/0022-247X(91)90164-U
[21] Jackson D., Existence and uniqueness of solutions to semilinear nonlocal parabolic equations, J. Math. Anal. Appl. 1993;172;256–265, https://doi.org/10.1006/jmaa.1993.1022
[22] Lin Y, Liu JH., Semilinear integrodifferential equations with nonlocal Cauchy problem, Nonlinear Anal. 1996;26:1023–1033.
[23] Bolojan O, Precup R., Semilinear evolution systems with nonlinear constraints, Fixed Point Theory. 2016;17:275–288.
[24] Boucherif A, Akca H., Nonlocal Cauchy problems for semilinear evolution equations, Dynam. Systems Appl. 2002;11:415–420.
[25] Boucherif A, Precup R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl. 2007;16:507–516.
[26] Burlica M, Rosu D, Vrabie II.,  Abstract reaction-diffusion systems with nonlocal initial conditions, Nonlinear Anal. 2014;94:107–119, https://doi.org/10.1016/j.na.2013.07.033
[27] Cardinali T, Precup R, Rubbioni P., A unified existence theory for evolution equations and systems under nonlocal conditions, J. Math. Anal. Appl. 2015;432:1039–1057, https://arxiv.org/pdf/1406.6825.pdf
[28] Infante G, Maciejewski M., Multiple positive solutions of parabolic systems with nonlinear, nonlocal initial conditions, J. London Math. Soc. 2016;94:859–882, http://dx.doi.org/10.1112/jlms/jdw061
[29] Liu JH., A remark on the mild solutions of non-local evolution equations, Semigroup Forum. 2003;66:63– 67.
[30] Necula M, Vrabie II., Nonlinear delay evolution inclusions with general nonlocal initial conditions, Ann. Acad. Rom. Sci. Ser. Math. 2015;7:67–97.
[31] Ntouyas SK, Tsamatos PCh., Global existence for semilinear evolution equations with nonlocal conditions, J. Math. Anal. Appl. 1997;210:679–687.
[32] Paicu A, Vrabie II., A class of nonlinear evolution equations subjected to nonlocal initial conditions, Nonlinear Anal. 2010;72:4091–4100.
[33] Vrabie II., Global solutions for nonlinear delay evolution inclusions with nonlocal initial conditions, SetValued Var. Anal. 2012;20:477–497.
[34] Kumar K, Karnatak M, Kumar R., Nonlinear Integrodifferential Equations with Time Varying Delay. Advances in the Theory of Nonlinear Analysis and its Application.2021;5(3):433-444, https://doi.org/10.31197/atnaa.814109
[35] Yang H, Zhao Y., Existence and optimal controls of non-autonomous impulsive integro-differential evolution equation with nonlocal conditions. Chaos, Solitons & Fractals. 2021 Jul 1;148:111027, https://doi.org/10.1016/j.chaos.2021.111027
[36] Munusamy K, Ravichandran C, Nisar KS, Ghanbari B., Existence of solutions for some functional integrodifferential equations with nonlocal conditions. Mathematical Methods in the Applied Sciences. 2020 Nov 30;43(17):10319-31, https://doi.org/10.1002/mma.6698
[37] Burlica MD, Necula M, Rosu D, Vrabie II., Delay Differential Evolutions Subjected to Nonlocal Initial Conditions, Chapman and Hall/CRC Press; 2016, https://doi.org/10.1201/b20368
[38] Bolojan O, Precup R., Hybrid delay evolution systems with nonlinear constraints, Dynam. Systems Appl., to appear.
[39] Webb GF., An abstract semilinear Volterra integrodifferential equation, Proc. Amer. Math. Soc. 1978;69:255–260.
[40] Viorel A., Contributions to the Study of Nonlinear Evolution Equations, Ph.D. Thesis, Cluj-Napoca; 2011.
[41] Precup R., The role of matrices that are convergent to zero in the study of semilinear operator systems, Math. Comp. Modelling. 2009;49:703–708, http://dx.doi.org/10.1016/j.mcm.2008.04.006
[42] Baras P, Hassan JC, Veron L., Compacite de l’operateur definissant la solution d’une equation d’evolution non homogene, C. R. Acad. Sci. Paris. 1977;284:779–802.
[43] Cazenave T, Haraux A., An Introduction to Semilinear Evolution Equations, Oxford University Press, New York; 1998.
[44] Goldstein JA., Semigroups of Linear Operators and Applications, Oxford University Press, New York; 1985.
[45] Vrabie, C0-Semigroups and Applications, Elsevier, Amsterdam; 2003.

Study on integrodifferential evolution systems with nonlocal initial conditions

Sylvain Koumla Département de Mathématiques, Faculté des Sciences et Techniques, Université Adam Barka, B.P. 1173, Abéché, Chad, E-mail: skoumla@gmail.com and Radu Precup Department of Mathematics, Faculty of Mathematics and Computer Science, Babeş–Bolyai University, 400084 Cluj-Napoca, Romania, E-mail: r.precup@math.ubbcluj.ro
Abstract.

The paper deals with systems of abstract integrodifferential equations subject to general nonlocal initial conditions. In order to allow the nonlinear terms of the equations to behave independently as much as possible, we use a vector approach based on matrices, vector-valued norms and a vector version of Krasnoselskii’s fixed point theorem for a sum of two operators. The assumptions take into account the support of the nonlocal initial conditions and the hybrid character of the system. Two examples are given to illustrate the theory.

Key words: Integrodifferential equations, Nonlinear evolution equation; nonlocal initial condition; delay; Krasnoselskii’s fixed point theorem for a sum of operators.

Mathematics Subject Classification: 34K30, 35K90, 47J35.

1. Introduction

In this paper, we are concerned with the existence of solutions to the semilinear system of abstract integrodifferential equations with nonlocal initial conditions, of the type

(1.1) {ui(t)+Aiui(t)=0tKi(ts,us)𝑑s+Fi(t,ut),t[0,T]ui(t)=αi(u)(t),t[τ,0],i=1,,n.\left\{\begin{array}[]{l}u_{i}^{\prime}\left(t\right)+A_{i}u_{i}(t)=\displaystyle\int_{0}^{t}K_{i}(t-s,u_{s})ds+F_{i}\left(t,u_{t}\right),\quad t\in[0,T]\vskip 3.0pt plus 1.0pt minus 1.0pt\\ u_{i}\left(t\right)=\alpha_{i}\left(u\right)\left(t\right),\ \ \ t\in\left[-\tau,0\right],\ \ i=1,...,n.\end{array}\right.

Here n1,n\geq 1, and for each iI:={1,,n},i\in I:=\left\{1,...,n\right\}, the linear operator Ai:D(Ai)XiXi-A_{i}:D(A_{i})\subseteq X_{i}\rightarrow X_{i} generates a C0C_{0}-semigroup of contractions {Si(t);t0}\left\{S_{i}(t);t\geq 0\right\} on a Banach space (Xi,|.|Xi),\left(X_{i},\left|.\right|_{X_{i}}\right), τ0,\tau\geq 0, uC([τ,T],X),u\in C\left(\left[-\tau,T\right],X\right), where X=X1××Xn,X=X_{1}\times...\times X_{n}, u=(u1,,un),u=\left(u_{1},...,u_{n}\right), and for each t,t, utu_{t} is the restriction of uu to [tτ,t]\left[t-\tau,t\right] shifted to the interval [τ,0],\left[-\tau,0\right], i.e., utC([τ,0],X)u_{t}\in C\left(\left[-\tau,0\right],X\right) and

(1.2) ut(s)=u(t+s),s[τ,0].u_{t}(s)=u(t+s),\ \ \ s\in\left[-\tau,0\right].

The nonlinear perturbations in equations are given by the continuous mappings FiF_{i} from [0,T]×C([τ,0],X)[0,T]\times C\left(\left[-\tau,0\right],X\right) to Xi,X_{i}, KiK_{i} from [0,T]×C([τ,0],X)\left[0,T\right]\times C\left(\left[-\tau,0\right],X\right) to Xi,X_{i}, and the nonlocal initial conditions are expressed by the continuous mappings αi\alpha_{i} from C([τ,T],X)C\left(\left[-\tau,T\right],X\right) to C([τ,0],Xi).C\left(\left[-\tau,0\right],X_{i}\right).

We note that the nonlocal initial conditions include in particular:

  • the initial condition:

    ui(t)=φi(t),t[τ,0],i=1,,nu_{i}\left(t\right)=\varphi_{i}\left(t\right),\ \ \ t\ \in\left[-\tau,0\right],\ \ i=1,...,n

    where φ=(φ1,,φn)C([τ,0],X)\varphi=\left(\varphi_{1},...,\varphi_{n}\right)\in C\left(\left[-\tau,0\right],X\right) is given;

  • linear multi-point conditions (linear nonlocal initial conditions of discrete type):

    (1.3) ui(t)=φi(t)+j=1miaij(t)ui(t+tij),t[τ,0],i=1,,n,u_{i}\left(t\right)=\varphi_{i}\left(t\right)+\sum_{j=1}^{m_{i}}a_{ij}\left(t\right)u_{i}\left(t+t_{ij}\right),\ \ \ t\in\left[-\tau,0\right],\ i=1,...,n,

    where 0<tij<ti,j+1T0<t_{ij}<t_{i,j+1}\leq T for j=1,,mij=1,...,m_{i} and i=1,,n.i=1,...,n. The linear multi-point conditions include in particular the initial condition, and the periodicity condition

    ui(t)=ui(T+t),t[τ,0],i=1,,n;u_{i}\left(t\right)=u_{i}\left(T+t\right),\ \ \ t\in\left[-\tau,0\right],\ \ i=1,...,n;
  • linear nonlocal initial conditions of continuous type, given by integrals:

    ui(t)\displaystyle u_{i}\left(t\right) =\displaystyle= φi(t)+0Tki(t,s)ui(t+s)𝑑s\displaystyle\varphi_{i}\left(t\right)+\int_{0}^{T}k_{i}\left(t,s\right)u_{i}\left(t+s\right)ds
    =\displaystyle= φi(t)+tT+tki(t,st)ui(s)𝑑s,t[τ,0],i=1,,n.\displaystyle\varphi_{i}\left(t\right)+\int_{t}^{T+t}k_{i}\left(t,s-t\right)u_{i}\left(s\right)ds,\ \ \ t\in\left[-\tau,0\right],\ \ i=1,...,n.

Starting with Volterra’s pioneering works on integrodifferential equations with delayed effects in population dynamics and materials with memory, the theory of delay differential equations has progressed continuously following the development of functional analysis and being stimulated by numerous applications in physics, chemistry, biology, medicine, economy, etc., see e.g., [23]), aimed to described evolution processes whose future states depend not only on the present, but also on the past history.

As concerns differential equations with nonlocal initial conditions of multi-point or integral type, we mention as some pioneering contributions, the papers of Cioranescu [15], Whyburn [42] and Conti [16]). Among further developments, we refer the readers to the works [2], [3], [7], [17], [21], [28], [29], [41], to the recent survey paper [35], and the references therein.

Parabolic problems with nonlocal initial conditions were considered in the papers of Kerefov [22], Vabishchevich [36], Chabrowski [14], Pao [33], Olmstead and Roberts [31], and Chapter 10 in [26], as nonlocal versions of some deterministic models from physics, mechanics, biology and medicine. Abstract evolution equations with nonlocal initial conditions were considered by Byszewski [11], Jackson [20], Lin and Liu [24]. For more recent contributions, we refer the readers to the papers [4], [6], [8], [10], [12], [19], [24], [25], [27], [30], [32], [39] and the recent monograph [9].

This paper has a double motivation. First, it is motivated by the second author’s recent paper [5], which mainly inspires the operator technique of proof, and secondly, by the paper of Webb [40] for the class of integrodifferential equations.

There are several aspects in the present paper which are mixed together requiring a laboured technique of proof and yielding to a very general result:

\blacktriangleright\ The use of the notion of support of a nonlocal initial condition and of a corresponding split norm. Throughout the paper, by [τ,T0]\left[-\tau,T_{0}\right] we shall denote the support of the nonlocal initial condition, that is the smallest subinterval [τ,T0]\left[-\tau,T_{0}\right] of [τ,T][-\tau,T] with T00T_{0}\geq 0 such that

αi(u)\displaystyle\alpha_{i}\left(u\right) =\displaystyle= αi(v),i=1,,n, for everyu,vC([τ,T],X)\displaystyle\alpha_{i}\left(v\right),\,i=1,...,n,\,\text{ for every}\quad u,v\in C\left(\left[-\tau,T\right],X\right)
with u|[τ,T0]\displaystyle\text{ with \ }\left.u\right|_{\left[-\tau,T_{0}\right]} =\displaystyle= v|[τ,T0].\displaystyle\left.v\right|_{\left[-\tau,T_{0}\right]}.

Here by u|[τ,T0]\left.u\right|_{\left[-\tau,T_{0}\right]} we mean the restriction of the function uu to the interval [τ,T0].\left[-\tau,T_{0}\right]. Physically, this means that the evolution of a process is subjected to some constraints until a given moment of time T0,T_{0}, and becomes free of any constraints after that moment.

The notion of support of a nonlocal initial condition was first used in the papers [7] and [8], and used after in [29], [2], [12], [4], [5]. As explained in these papers, and as we shall see in the following, stronger conditions on nonlinearities have to be asked on the support subinterval, compared to those required on the rest of the interval. Mathematically, the integral equation equivalent to the nonlocal initial problem is of Fredholm type on the support interval, and of Volterra type on the rest of the interval. This makes useful to consider a split norm on the functional space where the problem is studied. Thus, in connection with the delay system (1.1) and with the support [τ,T0]\left[-\tau,T_{0}\right] of the nonlocal initial condition, on a space of the type C([τ,T],E),C\left(\left[-\tau,T\right],E\right), where (E,||E)\left(E,\left|\cdot\right|_{E}\right) is a Banach space, we shall consider the split norm

(1.4) |u|τ=max{|u|C([τ,T0],E),|u|Cθ([T0τ,T],E)},\left|u\right|_{\tau}=\max\left\{\left|u\right|_{C\left([-\tau,T_{0}],E\right)},\ \ \left|u\right|_{C_{\theta}\left([T_{0}-\tau,T],E\right)}\right\},

where |u|C([τ,T0],E)\left|u\right|_{C\left([-\tau,T_{0}],E\right)} is the usual max norm

|u|C([τ,T0],E)=maxt[τ,T0]|u(t)|E,\left|u\right|_{C\left([-\tau,T_{0}],E\right)}=\max_{t\in\left[-\tau,T_{0}\right]}\left|u(t)\right|_{E},

while for any θ>0,\theta>0, |u|Cθ([T0τ,T],E)\left|u\right|_{C_{\theta}\left([T_{0}-\tau,T],E\right)} is the Bielecki type norm on C([T0τ,T],E),C\left([T_{0}-\tau,T],E\right),

|u|Cθ([T0τ,T],E)=maxt[T0,T](|ut|C([τ,0],E)eθ(tT0))=maxt[T0,T](|u|C([tτ,t],E)eθ(tT0)).\left|u\right|_{C_{\theta}\left([T_{0}-\tau,T],E\right)}=\max_{t\in\left[T_{0},T\right]}\left(\left|u_{t}\right|_{C\left([-\tau,0],E\right)}e^{-\theta\left(t-T_{0}\right)}\right)=\max_{t\in\left[T_{0},T\right]}\left(\left|u\right|_{C\left([t-\tau,t],E\right)}e^{-\theta\left(t-T_{0}\right)}\right).

In particular, when there is no a delay, i.e., when τ=0,\tau=0, the norm (1.4) reduces to the split norm previously considered in [7], [2], [28] and [29].

\mathbf{\blacktriangleright} The hybrid character of the system. The system is split into to subsystems: the first mm equations for which Lipschitz conditions are assumed to guarantee that the corresponding integral operators are contractive, and the last nmn-m equations (0mn)\left(0\leq m\leq n\right) for which only at most linear growth conditions are required on the nonlinear terms, but in return, the compactness of the semigroups of operators is assumed to insure the compactness of the integral operators. In this way the proof will be a perfect illustration of Krasnoselskii’s fixed point theorem for a sum of a compact map and a contraction, more exactly of its vector version of Viorel [37].

\mathbf{\blacktriangleright} The presence of integral terms. There is not only the bounded delay in the equations of system (1.1), but also cumulative integral terms which bring into the equations the whole history of the process. Such kind of equations arise from mathematical modeling of many real processes with memory from physics, biology and economics. These cumulative terms play a special role in the split analysis on two intervals as discussed previously.

2. Preliminaries

For the treatment of systems we use the vector approach based on vector-valued metrics and norms, and matrices instead of constants.

Let us make the convention that the elements of n\mathbb{R}^{n} are seen as column vectors. By a vector-valued metric on a set EE we mean a mapping d:E×E+nd:E\times E\rightarrow\mathbb{R}_{+}^{n} such that d(x,y)=0d(x,y)=0 if and only if x=y;x=y; d(x,y)=d(y,x)\ d(x,y)=d(y,x) for all x,yEx,y\in E and d(x,y)d(x,z)+d(z,y)d(x,y)\leq d(x,z)+d(z,y) for all x,y,zE.x,y,z\in E. Here by \leq\ we mean the natural componentwise order relation of n,\ \mathbb{R}^{n}, more exactly, if r,sn,\ r,s\in\mathbb{R}^{n}, r=(r1,,rn),r=(r_{1},...,r_{n}), s=(s1,,sn),s=(s_{1},...,s_{n}), then by rsr\leq s one means that risir_{i}\leq s_{i} for i=1,,n.i=1,...,n. A set EE together with a vector-valued metric dd is called a generalized metric space. For such a space, the notions of Cauchy sequence, convergence, completeness, open and closed set, are similar to those in usual metric spaces.

Similarly, a vector-valued norm on a linear space E,E, is defined as being a mapping :E+n\left\|\cdot\right\|:E\rightarrow\mathbb{R}_{+}^{n} with x=0\left\|x\right\|=0 only for x=0;x=0;\ λx=|λ|x\left\|\lambda x\right\|=\left|\lambda\right|\left\|x\right\| for xE,x\in E, λ,\lambda\in\mathbb{R}, and x+yx+y\left\|x+y\right\|\leq\left\|x\right\|+\left\|y\right\| for every x,yE.x,y\in E. To any vector-valued norm .\left\|.\right\| one can associate the vector-valued metric d(x,y):=xy.d\left(x,y\right):=\left\|x-y\right\|. A linear space EE endowed with a vector-valued norm \left\|\cdot\right\| is called a generalized Banach space if EE is complete with respect to the associated vector-valued metric d.d.

If (E,d)\left(E,d\right) is a generalized metric space with dd taking values in n,\mathbb{R}^{n}, we say that a mapping Γ:EE\Gamma:E\rightarrow E is a generalized contraction (in Perov’s sense) if there exists a square matrix MM of size nn with nonnegative entries such that its powers MkM^{k} tend to the zero matrix 0 as k,k\rightarrow\infty, and

d(Γ(x),Γ(y))Md(x,y)for all x,yE.d(\Gamma(x),\Gamma(y))\leq Md(x,y)\;\,\,\text{for all\ \ }x,y\in E.

Such a matrix is said to be a Lipschitz matrix. Notice that for a matrix MM the property Mk0M^{k}\rightarrow 0 as kk\rightarrow\infty is equivalent to the fact that the spectral radius ρ(M)\rho\left(M\right) of the matrix MM is less than one. The role of matrices with spectral radius less than one in the study of operator systems was pointed out in [34], in connection with several abstract principles from nonlinear functional analysis.

For generalized contractions, the following extension of Banach’s contraction principle holds.

Theorem 2.1 (Perov).

If (E,d)(E,d) is a complete generalized metric space, then any generalized contraction Φ:EE\Phi:E\rightarrow E with the Lipschitz matrix MM has a unique fixed point x,x^{\ast}, and

d(Φk(x),x)Mk(JM)1d(x,Φ(x)),d(\Phi^{k}(x),x^{\ast})\leq M^{k}(J-M)^{-1}d(x,\Phi(x)),

for all xEx\in E and kk\in\mathbf{\mathbb{N}} ((where JJ stands for the identity matrix of the same size as M).M).

In this paper we use the following generalization of Theorem 2.1, a vector version of Krasnoselskii’s fixed point theorem for a sum of two operators, owed to Viorel [37].

Theorem 2.2.

Let (E,)\left(E,\left\|\cdot\right\|\right) be a generalized Banach space, DED\subset E a nonempty bounded closed convex set and Γ:DE\Gamma:D\rightarrow E a mapping such that

(i):

Γ=Φ+Ψ\Gamma=\Phi+\Psi with Φ:DE\Phi:D\rightarrow E a generalized contraction in Perov’s sense, and Ψ:DE\Psi:D\rightarrow E a compact operator;

(ii):

Φ(u)+Ψ(v)D\Phi\left(u\right)+\Psi\left(v\right)\in D for every u,vD.u,v\in D.

Then Γ\Gamma has at least one fixed point in D.D.

The following obvious proposition will be used in the proof of the main result.

Proposition 2.3.

(a) If Mn×n(+)M\in\mathcal{M}_{n\times n}\left(\mathbb{R}_{+}\right) is a matrix with ρ(M)<1,\rho\left(M\right)<1, then ρ(M~)<1\rho\left(\widetilde{M}\right)<1 for every matrix M~n×n(+)\ \widetilde{M}\in\mathcal{M}_{n\times n}\left(\mathbb{R}_{+}\right) whose elements are close enough to the corresponding elements of M.M.

(b) If Mn×n(+)M\in\mathcal{M}_{n\times n}\left(\mathbb{R}_{+}\right) is a matrix with ρ(M)<1,\rho\left(M\right)<1, then ρ(M^)<1\rho\left(\widehat{M}\right)<1 for every matrix M^n×n(+)\ \widehat{M}\in\mathcal{M}_{n\times n}\left(\mathbb{R}_{+}\right) such that M^M\ \widehat{M}\leq M componentwise.

We conclude this preliminary section by a result about the compactness of the solution operator associated to a non-homogenous evolution equation [1].

Lemma 2.4 (Baras-Hassan-Veron).

Let A:D(A)EEA:D\left(A\right)\subset E\rightarrow E be the generator of a compact C0C_{0}-semigroup {S(t);t0}.\left\{S\left(t\right);t\geq 0\right\}. Then for every uniformly integrable family of functions L1(0,T;E),\mathcal{F}\subset L^{1}\left(0,T;E\right), the set of functions

{0tS(ts)f(s)𝑑s:f}\left\{\int_{0}^{t}S\left(t-s\right)f\left(s\right)ds:\ f\in\mathcal{F}\right\}

is relatively compact in C([0,T],E).C\left(\left[0,T\right],E\right).

For other basic notions and results of semigroup theory we mention the books [13], [18] and [38].

3. Main result

Looking for mild solutions to the problem (1.1), with uiC([τ,T],Xi)u_{i}\in C\left(\left[-\tau,T\right],X_{i}\right) for i=1,,ni=1,...,n we are led in a standard way to the following integral system

(3.1) {ui(t)=αi(u)(t),t[τ,0],ui(t)=Si(t)αi(u)(0)+0tSi(ts)0sKi(sσ,uσ)𝑑σ𝑑s+0tSi(ts)Fi(s,us)𝑑s,t[0,T],i=1,,n.\left\{\begin{array}[]{ll}u_{i}\left(t\right)&=\alpha_{i}\left(u\right)\left(t\right),\quad t\in\left[-\tau,0\right],\vskip 3.0pt plus 1.0pt minus 1.0pt\\ u_{i}\left(t\right)&=\displaystyle S_{i}\left(t\right)\alpha_{i}\left(u\right)\left(0\right)+\int_{0}^{t}S_{i}\left(t-s\right)\int_{0}^{s}K_{i}\left(s-\sigma,u_{\sigma}\right)d\sigma ds\vskip 3.0pt plus 1.0pt minus 1.0pt\\ &+\displaystyle\int_{0}^{t}S_{i}\left(t-s\right)F_{i}\left(s,u_{s}\right)ds,\quad t\in\left[0,T\right],\quad i=1,...,n.\end{array}\right.

Our assumptions are given differently for two sets of indices,

I1:={1,,m}and I2:={m+1,,n},I_{1}:=\left\{1,...,m\right\}\ \ \ \text{and\ \ \ }I_{2}:=\left\{m+1,...,n\right\},

where 0mn,\ 0\leq m\leq n, and it is understood that I1=\ I_{1}=\emptyset if m=0,m=0, and I2=\ I_{2}=\emptyset if m=n.m=n. Let p>1p>1 be any fixed number.

The hypotheses are:

(H0{}_{\text{0}}) (a) For each iI1,i\in I_{1}, the linear operator Ai:D(Ai)XiXi-A_{i}:D(A_{i})\subset X_{i}\rightarrow X_{i} generates a

C0C_{0}-semigroup of contractions on the Banach space Xi.X_{i}.

(b) For each iI2,i\in I_{2}, the linear operator Ai:D(Ai)XiXi-A_{i}:D(A_{i})\subset X_{i}\rightarrow X_{i} generates a compact

C0C_{0}-semigroup of contractions on the Banach space Xi.X_{i}.

(H1{}_{\text{1}}) (a) For each iI1,i\in I_{1},\ Ki:[0,T]×C([τ,0],X)Xi,K_{i}:\left[0,T\right]\times C([-\tau,0],X)\rightarrow X_{i}, is continuous, and there

exist aijC([0,T],+)a_{ij}\in C(\left[0,T\right],\mathbb{R}_{+}) for jI,j\in I, such that

|Ki(t,u)Ki(t,v)|Xij=1naij(t)|ujvj|C([τ,0],Xj)\left|K_{i}(t,u)-K_{i}(t,v)\right|_{X_{i}}\leq\sum_{j=1}^{n}a_{ij}(t)\left|u_{j}-v_{j}\right|_{C([-\tau,0],X_{j})}

for all u,vC([τ,0],X)u,v\in C\left(\left[-\tau,0\right],X\right) and t[0,T].t\in[0,T].

(b) For each iI2,i\in I_{2},\ Ki:[0,T]×C([τ,0],X)Xi,K_{i}:\left[0,T\right]\times C([-\tau,0],X)\rightarrow X_{i}, is continuous, and there exist

di,aijC([0,T],+)d_{i},\ a_{ij}\in C\left(\left[0,T\right],\mathbb{R}_{+}\right) for all jI,j\in I, such that

|Ki(t,u)|Xij=1naij(t)|uj|C([τ,0],Xj)+di(t)\left|K_{i}(t,u)\right|_{X_{i}}\leq\sum_{j=1}^{n}a_{ij}(t)\left|u_{j}\right|_{C([-\tau,0],X_{j})}+d_{i}(t)

for all uC([τ,0],X)u\in C\left(\left[-\tau,0\right],X\right) and t[0,T].t\in[0,T].\vskip 6.0pt plus 2.0pt minus 2.0pt

(H2{}_{\text{2}}) (a) For each iI1,i\in I_{1},\ Fi:[0,T]×C([τ,0],X)XiF_{i}:[0,T]\times C\left(\left[-\tau,0\right],X\right)\rightarrow X_{i} is continuous and there

exists bijC([0,T],+)b_{ij}\in C\left(\left[0,T\right],\mathbb{R}_{+}\right) for all jI,j\in I, such that

|Fi(t,u)Fi(t,v)|Xij=1nbij(t)|ujvj|C([τ,0],Xj)\left|F_{i}(t,u)-F_{i}(t,v)\right|_{X_{i}}\leq\sum_{j=1}^{n}b_{ij}\left(t\right)\left|u_{j}-v_{j}\right|_{C\left(\left[-\tau,0\right],X_{j}\right)}

for u,vu,v\in C([τ,0],X)C([-\tau,0],X) and t[0,T].t\in\left[0,T\right].

(b) For each iI2,i\in I_{2},\ Fi:[0,T]×C([τ,0],Xi)XiF_{i}:[0,T]\times C\left(\left[-\tau,0\right],X_{i}\right)\rightarrow X_{i} is continuous and there exist

fi,bijC([0,T],+)f_{i},\ b_{ij}\in C\left(\left[0,T\right],\mathbb{R}_{+}\right)\ for all jI,\ j\in I, such that

|Fi(t,u)|Xij=1nbij(t)|uj|C([τ,0],Xj)+fi(t)\left|F_{i}(t,u)\right|_{X_{i}}\leq\sum_{j=1}^{n}b_{ij}\left(t\right)\left|u_{j}\right|_{C\left(\left[-\tau,0\right],X_{j}\right)}+f_{i}\left(t\right)

for all uu\in C([τ,0],X)C([-\tau,0],X) and t[0,T].t\in\left[0,T\right].\vskip 6.0pt plus 2.0pt minus 2.0pt

(H3{}_{\text{3}}) For each iI,i\in I,\ αi:C([τ,T],X)C([τ,0],Xi)\alpha_{i}:C\left(\left[-\tau,T\right],X\right)\rightarrow C\left(\left[-\tau,0\right],X_{i}\right) and there exist cij+c_{ij}\in\mathbb{R}_{+}\

for all jI,j\in I, such that

|αi(u)αi(v)|C([τ,0],Xi)j=1ncij|ujvj|C([τ,T0],Xj)\left|\alpha_{i}\left(u\right)-\alpha_{i}\left(v\right)\right|_{C([-\tau,0],X_{i})}\leq\sum_{j=1}^{n}c_{ij}\left|u_{j}-v_{j}\right|_{C\left(\left[-\tau,T_{0}\right],X_{j}\right)}

for all u,vC([τ,T],X).u,v\in C\left(\left[-\tau,T\right],X\right).

Theorem 3.1.

Assume that the conditions (H0{}_{\text{0}})-(H3{}_{\text{3}}) hold. In addition assume that the spectral radius of the n×nn\times n square matrix M=[mij],M=\left[m_{ij}\right], where

(3.2) mij=T0|aij|L1(0,T0)+a¯ij+|bij|L1(0,T0)+cijfor i,jI,m_{ij}=T_{0}\left|a_{ij}\right|_{L^{1}\left(0,T_{0}\right)}+\overline{a}_{ij}+\left|b_{ij}\right|_{L^{1}\left(0,T_{0}\right)}+c_{ij}\ \ \ \ \text{for \ }i,j\in I,

and

a¯ij=T0T𝑑ξ0T0aij(ξσ)𝑑σ,\overline{a}_{ij}=\int_{T_{0}}^{T}d\xi\int_{0}^{T_{0}}a_{ij}\left(\xi-\sigma\right)d\sigma,

is less than one. Then the problem (1.1) has at least one mild solution uC([τ,T],X).u\in C\left(\left[-\tau,T\right],X\right). In case that m=n,\ m=n, the solution uu is unique.

Proof.

The integral system (3.1) can be seen as a fixed point equation u=Γ(u)u=\Gamma\left(u\right) in C([τ,T],X)C\left(\left[-\tau,T\right],X\right) for the nonlinear operator Γ\Gamma from the space C([τ,T],X)C\left(\left[-\tau,T\right],X\right) to itself, Γ=(Γ1,,Γn),\Gamma=\left(\Gamma_{1},...,\Gamma_{n}\right), where Γi:C([τ,T],X)C([τ,T],Xi)\Gamma_{i}:C\left(\left[-\tau,T\right],X\right)\rightarrow C\left(\left[-\tau,T\right],X_{i}\right) are defined by

(3.3) {Γi(u)(t)=αi(u)(t),t[τ,0],Γi(u)(t)=Si(t)αi(u)(0)+0tSi(ts)0sKi(sσ,uσ)𝑑σ𝑑s+0tSi(ts)Fi(s,us)𝑑s,t[0,T].\left\{\begin{array}[]{ll}\Gamma_{i}\left(u\right)\left(t\right)&=\alpha_{i}\left(u\right)\left(t\right),\quad t\in\left[-\tau,0\right],\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \Gamma_{i}\left(u\right)\left(t\right)&=\displaystyle S_{i}\left(t\right)\alpha_{i}\left(u\right)\left(0\right)+\int_{0}^{t}S_{i}\left(t-s\right)\int_{0}^{s}K_{i}\left(s-\sigma,u_{\sigma}\right)d\sigma ds\vskip 3.0pt plus 1.0pt minus 1.0pt\\ &+\displaystyle\int_{0}^{t}S_{i}\left(t-s\right)F_{i}\left(s,u_{s}\right)ds,\quad t\in\left[0,T\right].\end{array}\right.

Clearly, the operator Γ\Gamma admits the representation Γ=Φ+Ψ,\Gamma=\Phi+\Psi, where

Φ=(Γ1,,Γm,Φm+1,,Φn),Ψ=(0,,0,Ψm+1,,Ψn),\Phi=\left(\Gamma_{1},...,\Gamma_{m},\Phi_{m+1},...,\Phi_{n}\right),\ \ \ \Psi=\left(0,...,0,\Psi_{m+1},...,\Psi_{n}\right),

where for iJ2,i\in J_{2},

Φi(u)(t)={αi(u)(t),t[τ,0],Si(t)αi(u)(0),t[0,T],\Phi_{i}\left(u\right)\left(t\right)=\left\{\begin{array}[]{ll}\alpha_{i}\left(u\right)\left(t\right),&t\in\left[-\tau,0\right],\\ S_{i}\left(t\right)\alpha_{i}\left(u\right)\left(0\right),&t\in\left[0,T\right],\end{array}\right.

and

Ψi(u)(t)\displaystyle\Psi_{i}\left(u\right)\left(t\right)
=\displaystyle= {0,t[τ,0],0tSi(ts)0sKi(sσ,uσ)𝑑σ𝑑s+0tSi(ts)Fi(s,us)𝑑s,t[0,T].\displaystyle\left\{\begin{array}[]{ll}0,&t\in\left[-\tau,0\right],\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \displaystyle\int_{0}^{t}S_{i}(t-s)\int_{0}^{s}K_{i}(s-\sigma,u_{\sigma})d\sigma ds+\int_{0}^{t}S_{i}\left(t-s\right)F_{i}\left(s,u_{s}\right)ds,&t\in\left[0,T\right].\end{array}\right.

We shall apply the vector version of Krasnoselskii’s fixed point theorem to the operator Γ\Gamma on the space

E:=C([τ,T],X)=C([τ,T],X1)××C([τ,T],Xn)E:=C\left(\left[-\tau,T\right],X\right)=C\left(\left[-\tau,T\right],X_{1}\right)\times...\times C\left(\left[-\tau,T\right],X_{n}\right)

endowed with the vector-valued norm

u=(|u1|τ,,|un|τ)tr,\left\|u\right\|=\left(\left|u_{1}\right|_{\tau},...,\left|u_{n}\right|_{\tau}\right)^{tr},

where for each i,i, by |ui|τ\left|u_{i}\right|_{\tau} we mean the norm in C([τ,T],Xi)C\left(\left[-\tau,T\right],X_{i}\right) given by (1.4), with θ>0\theta>0 large enough chosen below, and to a bounded closed convex subset DD of the form

D\displaystyle D =\displaystyle= {u=(u1,,un)C([τ,T],X):|ui|τRi for iI}\displaystyle\left\{u=\left(u_{1},...,u_{n}\right)\in C\left(\left[-\tau,T\right],X\right):\ \left|u_{i}\right|_{\tau}\leq R_{i}\text{\ \ for }i\in I\right\}
=\displaystyle= {uC([τ,T],X):uR}\displaystyle\left\{u\in C\left(\left[-\tau,T\right],X\right):\ \left\|u\right\|\leq R\right\}

with conveniently chosen radii Ri,R_{i}, iI.i\in I. Here the notation RR stands for the vector column (R1,,Rn)tr.\left(R_{1},...,R_{n}\right)^{tr}. The result will follow from Theorem 2.2 once the following lemmas have been proved: ∎

Lemma 3.2.

There exists R+n\ R\in\mathbb{R}_{+}^{n}\ \ such that Φ(u)+Ψ(v)R\ \left\|\Phi\left(u\right)+\Psi\left(v\right)\right\|\leq R\ for all u,v\ u,v C([τ,T],X)\in C(\left[-\tau,T\right],X)\ satisfyingu,vR.\ \ \left\|u\right\|,\left\|v\right\|\leq R.

Lemma 3.3.

The operator Φ\Phi is a generalized contraction in Perov’s sense on C([τ,T],X).C\left(\left[-\tau,T\right],X\right).

Lemma 3.4.

The operator Ψ\Psi is completely continuous on C([τ,T],X).C\left(\left[-\tau,T\right],X\right).

Proof of Lemma.

3.2. Let R+n.R\in\mathbb{R}_{+}^{n}. The result will follow once we have proved that

(3.5) Φ(u)+Ψ(v)M~R+Λ,\left\|\Phi\left(u\right)+\Psi\left(v\right)\right\|\leq\widetilde{M}R+\Lambda,

for all u,vC([τ,T],X)u,v\in C\left(\left[-\tau,T\right],X\right) withu,vR,\ \left\|u\right\|,\left\|v\right\|\leq R, and some vector Λ+n\Lambda\in\mathbb{R}_{+}^{n} and matrix M~\widetilde{M} close enough MM such that ρ(M~)<1.\rho\left(\widetilde{M}\right)<1. Indeed, in this case, we can find a vector R+nR\in\mathbb{R}_{+}^{n} such that

M~R+ΛR,\widetilde{M}R+\Lambda\leq R,

that is (JM~)RΛ,\left(J-\widetilde{M}\right)R\geq\Lambda, for example, the vector R=(JM~)1Λ.R=\left(J-\widetilde{M}\right)^{-1}\Lambda. The vector RR belongs to +n\mathbb{R}_{+}^{n} since the matrix JM~J-\widetilde{M} is inverse-positive as a consequence of the fact that ρ(M~)<1\rho\left(\widetilde{M}\right)<1 (see, e.g., [34]).

Thus, in order to obtain (3.5) we need estimates of the norms |Φi(u)+Ψi(v)|τ.\ \left|\Phi_{i}\left(u\right)+\Psi_{i}\left(v\right)\right|_{\tau}.\ Clearly, Φi(u)+Ψi(v)=Γi(u)\ \Phi_{i}\left(u\right)+\Psi_{i}\left(v\right)=\Gamma_{i}\left(u\right) for iI1.i\in I_{1}.

First note that from (H1)(a),(H_{1})\left(a\right), for v=0,v=0,

|Ki(t,u)|Xij=1naij(t)|uj|C([τ,0],Xj)+|Ki(t,0)|Xi,\left|K_{i}(t,u)\right|_{X_{i}}\leq\sum_{j=1}^{n}a_{ij}(t)\left|u_{j}\right|_{C\left(\left[-\tau,0\right],X_{j}\right)}+\left|K_{i}\left(t,0\right)\right|_{X_{i}},

hence the inequality in (H1)(b)(H_{1})\left(b\right) also holds for iI1,i\in I_{1}, with di(t)=|Ki(t,0)|Xi.d_{i}\left(t\right)=\left|K_{i}\left(t,0\right)\right|_{X_{i}}. Similarly, the inequality in (H2)(b)(H_{2})\left(b\right) holds for iI1i\in I_{1} with fi=|Fi(0)|C([τ,0],Xi).\ f_{i}=\left|F_{i}\left(0\right)\right|_{C([-\tau,0],X_{i})}. Also, from (H3{}_{\text{3}}), one has

|αi(u)|C([τ,0],Xi)j=1ncij|uj|C([τ,T0],Xj)+hi\left|\alpha_{i}\left(u\right)\right|_{C([-\tau,0],X_{i})}\leq\sum_{j=1}^{n}c_{ij}\left|u_{j}\right|_{C\left(\left[-\tau,T_{0}\right],X_{j}\right)}+h_{i}

for all iIi\in I with hi=|αi(0)|C([τ,0],Xi).h_{i}=\left|\alpha_{i}\left(0\right)\right|_{C([-\tau,0],X_{i})}.
For t[τ,0],t\in\left[-\tau,0\right], we have

|αi(u)(t)|Xi\displaystyle\left|\alpha_{i}\left(u\right)\left(t\right)\right|_{X_{i}} \displaystyle\leq |αi(u)|C([τ,0],Xi)j=1ncij|uj|C([τ,T0],Xj)+hi\displaystyle\left|\alpha_{i}\left(u\right)\right|_{C([-\tau,0],X_{i})}\leq\sum_{j=1}^{n}c_{ij}\left|u_{j}\right|_{C\left(\left[-\tau,T_{0}\right],X_{j}\right)}+h_{i}
\displaystyle\leq j=1ncij|uj|τ+hij=1ncijRj+hi\displaystyle\sum_{j=1}^{n}c_{ij}\left|u_{j}\right|_{\tau}+h_{i}\leq\sum_{j=1}^{n}c_{ij}R_{j}+h_{i}

For t[0,T0]t\in\left[0,T_{0}\right] and iI1,i\in I_{1}, since the semigroups are of contractions,

(3.7) |Γi(u)(t)|Xi|αi(u)(0)|Xi+0t0s|Ki(sσ,uσ)|Xi𝑑σ𝑑s+0t|Fi(s,us)|Xi𝑑s.\left|\Gamma_{i}\left(u\right)\left(t\right)\right|_{X_{i}}\leq\left|\alpha_{i}\left(u\right)\left(0\right)\right|_{X_{i}}+\int_{0}^{t}\int_{0}^{s}\left|K_{i}\left(s-\sigma,u_{\sigma}\right)\right|_{X_{i}}d\sigma ds+\int_{0}^{t}\left|F_{i}\left(s,u_{s}\right)\right|_{X_{i}}ds.

From (3), the first term is estimated as above, that is

(3.8) |αi(u)(0)|Xij=1ncijRj+hi,\left|\alpha_{i}\left(u\right)\left(0\right)\right|_{X_{i}}\leq\sum_{j=1}^{n}c_{ij}R_{j}+h_{i},

while the integrals are estimated as follows:

0t0s|Ki(sσ,uσ)|Xi𝑑σ𝑑s\displaystyle\int_{0}^{t}\int_{0}^{s}\left|K_{i}\left(s-\sigma,u_{\sigma}\right)\right|_{X_{i}}d\sigma ds
\displaystyle\leq 0t0s(j=1naij(sσ)|(uj)σ|C([τ,0],Xj)+di(sσ))𝑑σ𝑑s\displaystyle\int_{0}^{t}\int_{0}^{s}\left(\sum_{j=1}^{n}a_{ij}\left(s-\sigma\right)\left|\left(u_{j}\right)_{\sigma}\right|_{C\left(\left[-\tau,0\right],X_{j}\right)}+d_{i}\left(s-\sigma\right)\right)d\sigma ds
=\displaystyle= j=1n0t0saij(sσ)|uj|C([στ,σ],Xj)𝑑σ𝑑s+T0|di|L1(0,T0)\displaystyle\sum_{j=1}^{n}\int_{0}^{t}\int_{0}^{s}a_{ij}\left(s-\sigma\right)\left|u_{j}\right|_{C\left(\left[\sigma-\tau,\sigma\right],X_{j}\right)}d\sigma ds+T_{0}\left|d_{i}\right|_{L^{1}\left(0,T_{0}\right)}

and

0t|Fi(s,us)|Xi𝑑s\displaystyle\int_{0}^{t}\left|F_{i}\left(s,u_{s}\right)\right|_{X_{i}}ds \displaystyle\leq 0t(j=1nbij(s)|(uj)s|C([τ,0],Xj)+fi(s))𝑑s\displaystyle\int_{0}^{t}\left(\sum_{j=1}^{n}b_{ij}\left(s\right)\left|\left(u_{j}\right)_{s}\right|_{C\left(\left[-\tau,0\right],X_{j}\right)}+f_{i}\left(s\right)\right)ds
=\displaystyle= j=1n0tbij(s)|uj|C([sτ,s],Xj)𝑑s+T0|fi|L1(0,T0).\displaystyle\sum_{j=1}^{n}\int_{0}^{t}b_{ij}\left(s\right)\left|u_{j}\right|_{C\left(\left[s-\tau,s\right],X_{j}\right)}ds+T_{0}\left|f_{i}\right|_{L^{1}\left(0,T_{0}\right)}.

Since 0stT0,0\leq s\leq t\leq T_{0}, one has |uj|C([sτ,s],Xj)|uj|C([τ,T0],Xj)|uj|τ.\left|u_{j}\right|_{C\left(\left[s-\tau,s\right],X_{j}\right)}\leq\left|u_{j}\right|_{C\left(\left[-\tau,T_{0}\right],X_{j}\right)}\leq\left|u_{j}\right|_{\tau}.
Then (3) and (3) give

0t0s|Ki(sσ,uσ)|Xi𝑑σ𝑑s\displaystyle\int_{0}^{t}\int_{0}^{s}\left|K_{i}\left(s-\sigma,u_{\sigma}\right)\right|_{X_{i}}d\sigma ds \displaystyle\leq j=1n0t0saij(sσ)|uj|τ𝑑σ𝑑s+T0|di|L1(0,T0)\displaystyle\sum_{j=1}^{n}\int_{0}^{t}\int_{0}^{s}a_{ij}\left(s-\sigma\right)\left|u_{j}\right|_{\tau}d\sigma ds+T_{0}|d_{i}|_{L^{1}(0,T_{0})}
=\displaystyle= j=1n|uj|τ0t0saij(sσ)𝑑σ𝑑s+T0|di|L1(0,T0)\displaystyle\sum_{j=1}^{n}\left|u_{j}\right|_{\tau}\int_{0}^{t}\int_{0}^{s}a_{ij}(s-\sigma)d\sigma ds+T_{0}|d_{i}|_{L^{1}(0,T_{0})}
\displaystyle\leq T0j=1n|aij|L1(0,T0)Rj+T0|di|L1(0,T0)\displaystyle T_{0}\sum_{j=1}^{n}|a_{ij}|_{L^{1}(0,T_{0})}R_{j}+T_{0}|d_{i}|_{L^{1}(0,T_{0})}

and

(3.12) 0t|Fi(s,us)|Xi𝑑sj=1n|bij|L1(0,T0)Rj+|fi|L1(0,T0).\int_{0}^{t}\left|F_{i}\left(s,u_{s}\right)\right|_{X_{i}}ds\leq\sum_{j=1}^{n}\left|b_{ij}\right|_{L^{1}\left(0,T_{0}\right)}R_{j}+\left|f_{i}\right|_{L^{1}\left(0,T_{0}\right)}.

Hence for t[τ,T0]t\in\left[-\tau,T_{0}\right] and all iI1,i\in I_{1}, from (3.8), (3) and (3.12), we deduce that

(3.13) |Γi(u)(t)|Xij=1n(T0|aij|L1(0,T0)+|bij|L1(0,T0)+cij)|uj|τ+λi=j=1n(mija¯ij)|uj|τ+λi\left|\Gamma_{i}\left(u\right)\left(t\right)\right|_{X_{i}}\leq\sum_{j=1}^{n}\left(T_{0}\left|a_{ij}\right|_{L^{1}\left(0,T_{0}\right)}+\left|b_{ij}\right|_{L^{1}\left(0,T_{0}\right)}+c_{ij}\right)\left|u_{j}\right|_{\tau}+\lambda_{i}=\sum_{j=1}^{n}\left(m_{ij}-\overline{a}_{ij}\right)\left|u_{j}\right|_{\tau}+\lambda_{i}

where λi=T0|di|L1(0,T0)+|fi|L1(0,T0)+hi.\lambda_{i}=T_{0}\left|d_{i}\right|_{L^{1}\left(0,T_{0}\right)}+\left|f_{i}\right|_{L^{1}\left(0,T_{0}\right)}+h_{i}. Therefore

(3.14) |Γi(u)|C([τ,T0],Xi)j=1n(mija¯ij)|uj|τ+λi.\left|\Gamma_{i}\left(u\right)\right|_{C\left([-\tau,T_{0}],X_{i}\right)}\leq\sum_{j=1}^{n}\left(m_{ij}-\overline{a}_{ij}\right)\left|u_{j}\right|_{\tau}+\lambda_{i}.

Next we estimate |Γi(u)|Cθ([T0τ,T],Xi)=maxt[T0,T](|Γi(u)|C([tτ,t],Xi)eθ(tT0))\ \left|\Gamma_{i}\left(u\right)\right|_{C_{\theta}\left([T_{0}-\tau,T],X_{i}\right)}=\max_{t\in\left[T_{0},T\right]}\left(\left|\Gamma_{i}\left(u\right)\right|_{C\left([t-\tau,t],X_{i}\right)}e^{-\theta\left(t-T_{0}\right)}\right) (iI1).\left(i\in I_{1}\right).\ To do this, take any t[T0,T]t\in\left[T_{0},T\right] and s[tτ,t].s\in\left[t-\tau,t\right]. For sT0,s\leq T_{0}, we already have the estimate given by (3.14). Let s[T0,t].s\in[T_{0},t]. Then

Γi(u)(s)\displaystyle\Gamma_{i}\left(u\right)\left(s\right)
=\displaystyle= Γi(u)(T0)+T0sSi(sξ)Fi(ξ,uξ)𝑑ξ+T0sSi(sξ)0ξKi(ξσ,uσ)𝑑σ𝑑ξ\displaystyle\Gamma_{i}\left(u\right)\left(T_{0}\right)+\int_{T_{0}}^{s}S_{i}\left(s-\xi\right)F_{i}\left(\xi,u_{\xi}\right)d\xi+\int_{T_{0}}^{s}S_{i}\left(s-\xi\right)\int_{0}^{\xi}K_{i}\left(\xi-\sigma,u_{\sigma}\right)d\sigma d\xi
=\displaystyle= Γi(u)(T0)+T0sSi(sξ)Fi(ξ,uξ)𝑑ξ+T0sSi(sξ)0T0Ki(ξσ,uσ)𝑑σ𝑑ξ\displaystyle\Gamma_{i}\left(u\right)\left(T_{0}\right)+\int_{T_{0}}^{s}S_{i}\left(s-\xi\right)F_{i}\left(\xi,u_{\xi}\right)d\xi+\int_{T_{0}}^{s}S_{i}\left(s-\xi\right)\int_{0}^{T_{0}}K_{i}\left(\xi-\sigma,u_{\sigma}\right)d\sigma d\xi
+T0sSi(sξ)T0ξKi(ξσ,uσ)𝑑σ𝑑ξ.\displaystyle+\int_{T_{0}}^{s}S_{i}\left(s-\xi\right)\int_{T_{0}}^{\xi}K_{i}\left(\xi-\sigma,u_{\sigma}\right)d\sigma d\xi.

Using (H1{}_{\text{1}})(b), one has

|T0sSi(sξ)0T0Ki(ξσ,uσ)𝑑σ𝑑ξ|Xij=1na¯ij|uj|τ+|fi|L1(0,T0),\left|\int_{T_{0}}^{s}S_{i}\left(s-\xi\right)\int_{0}^{T_{0}}K_{i}\left(\xi-\sigma,u_{\sigma}\right)d\sigma d\xi\right|_{X_{i}}\leq\sum_{j=1}^{n}\overline{a}_{ij}\left|u_{j}\right|_{\tau}+\left|f_{i}\right|_{L^{1}\left(0,T_{0}\right)},

where

a¯ij=T0T𝑑ξ0T0aij(ξσ)𝑑σ.\overline{a}_{ij}=\int_{T_{0}}^{T}d\xi\int_{0}^{T_{0}}a_{ij}\left(\xi-\sigma\right)d\sigma.

Furthermore

|T0sSi(sξ)T0ξKi(ξσ,uσ)𝑑σ𝑑ξ|Xi\displaystyle\left|\int_{T_{0}}^{s}S_{i}\left(s-\xi\right)\int_{T_{0}}^{\xi}K_{i}\left(\xi-\sigma,u_{\sigma}\right)d\sigma d\xi\right|_{X_{i}}
\displaystyle\leq T0sT0ξ(j=1naij(ξσ)|(uj)σ|C([τ,0],Zj)eθ(σT0)eθ(σT0)+di(ξσ))𝑑σ𝑑ξ\displaystyle\int_{T_{0}}^{s}\int_{T_{0}}^{\xi}\left(\sum_{j=1}^{n}a_{ij}\left(\xi-\sigma\right)\left|\left(u_{j}\right)_{\sigma}\right|_{C\left(\left[-\tau,0\right],Z_{j}\right)}e^{-\theta\left(\sigma-T_{0}\right)}e^{\theta\left(\sigma-T_{0}\right)}+d_{i}\left(\xi-\sigma\right)\right)d\sigma d\xi
\displaystyle\leq j=1n|uj|τT0sT0ξaij(ξσ)eθ(σT0)𝑑σ𝑑ξ+(TT0)|di|L1(0,TT0).\displaystyle\sum_{j=1}^{n}\left|u_{j}\right|_{\tau}\int_{T_{0}}^{s}\int_{T_{0}}^{\xi}a_{ij}\left(\xi-\sigma\right)e^{\theta\left(\sigma-T_{0}\right)}d\sigma d\xi+\left(T-T_{0}\right)\left|d_{i}\right|_{L^{1}\left(0,T-T_{0}\right)}.

Next using Holder’s inequality gives

|T0sSi(sξ)T0ξKi(ξσ,uσ)𝑑σ𝑑ξ|Xi\displaystyle\left|\int_{T_{0}}^{s}S_{i}\left(s-\xi\right)\int_{T_{0}}^{\xi}K_{i}\left(\xi-\sigma,u_{\sigma}\right)d\sigma d\xi\right|_{X_{i}} \displaystyle\leq 1θ(qθ)1/qeθ(tT0)j=1n|aij|Lp(0,TT0)|uj|τ\displaystyle\frac{1}{\theta\left(q\theta\right)^{1/q}}e^{\theta\left(t-T_{0}\right)}\sum_{j=1}^{n}\left|a_{ij}\right|_{L^{p}\left(0,T-T_{0}\right)}\left|u_{j}\right|_{\tau}
+(TT0)|di|L1(0,TT0).\displaystyle+\left(T-T_{0}\right)\left|d_{i}\right|_{L^{1}\left(0,T-T_{0}\right)}.

Similar arguments yield

|T0sSi(sξ)Fi(ξ,uξ)𝑑ξ|Xi1θeθ(tT0)j=1n|bij|Lp(T0,T)|uj|τ+|fi|L1(T0,T)\left|\int_{T_{0}}^{s}S_{i}\left(s-\xi\right)F_{i}\left(\xi,u_{\xi}\right)d\xi\right|_{X_{i}}\leq\frac{1}{\theta}e^{\theta\left(t-T_{0}\right)}\sum_{j=1}^{n}\left|b_{ij}\right|_{L^{p}\left(T_{0},T\right)}\left|u_{j}\right|_{\tau}+\left|f_{i}\right|_{L^{1}\left(T_{0},T\right)}

It follows that

|Γi(u)(s)|Xij=1nmij~|uj|τeθ(tT0)+Λifor s[tτ,t],\left|\Gamma_{i}\left(u\right)\left(s\right)\right|_{X_{i}}\leq\sum_{j=1}^{n}\widetilde{m_{ij}}\left|u_{j}\right|_{\tau}e^{\theta\left(t-T_{0}\right)}+\Lambda_{i}\ \ \ \text{for\ \ }s\in\left[t-\tau,t\right],

where

mij~=mij+1θ(qθ)1/q|aij|L1(0,TT0)+1θ|bij|Lp(T0,T),\widetilde{m_{ij}}=m_{ij}+\frac{1}{\theta\left(q\theta\right)^{1/q}}\left|a_{ij}\right|_{L^{1}\left(0,T-T_{0}\right)}+\frac{1}{\theta}\left|b_{ij}\right|_{L^{p}\left(T_{0},T\right)},
Λi=λi+|fi|L1(0,T)+(TT0)|di|L1(0,TT0).\Lambda_{i}=\lambda_{i}+\left|f_{i}\right|_{L^{1}\left(0,T\right)}+(T-T_{0})\left|d_{i}\right|_{L^{1}\left(0,T-T_{0}\right)}.

This gives the estimate

|Γi(u)|Cθ([T0τ,T],Xi)j=1nmij~Rj+Λi.\ \left|\Gamma_{i}\left(u\right)\right|_{C_{\theta}\left([T_{0}-\tau,T],X_{i}\right)}\leq\sum_{j=1}^{n}\widetilde{m_{ij}}R_{j}+\Lambda_{i}.

Also taking into account (3.14), we may conclude that

|Φi(u)+Ψi(v)|τ=|Γi(u)|τj=1nmij~Rj+Λifor iI1.\left|\Phi_{i}\left(u\right)+\Psi_{i}\left(v\right)\right|_{\tau}=\left|\Gamma_{i}\left(u\right)\right|_{\tau}\leq\sum_{j=1}^{n}\widetilde{m_{ij}}R_{j}+\Lambda_{i}\ \ \ \text{for \ }i\in I_{1}.

Since for iI2,i\in I_{2}, the structure of Φi(u)+Ψi(v)\Phi_{i}\left(u\right)+\Psi_{i}\left(v\right) is analogue to that of Γi,\Gamma_{i}, we easily see that we also have

|Φi(u)+Ψi(v)|τj=1nmij~Rj+Λifor iI2.\left|\Phi_{i}\left(u\right)+\Psi_{i}\left(v\right)\right|_{\tau}\leq\sum_{j=1}^{n}\widetilde{m_{ij}}R_{j}+\Lambda_{i}\ \ \ \text{for \ }i\in I_{2}.

Hence (3.5) holds with M~=[mij~]\widetilde{M}=\left[\widetilde{m_{ij}}\right] and Λ=(Λ1,,Λn)tr.\Lambda=\left(\Lambda_{1},...,\Lambda_{n}\right)^{tr}. Clearly, the matrix M~\widetilde{M} is close enough to MM if θ\theta is sufficiently large. ∎

Proof of Lemma.

3.3. Similar estimations to those in the proof of Lemma 3.2 give for iI1i\in I_{1} and any u,vC([τ,T],X),u,v\in C\left(\left[-\tau,T\right],X\right),

|Γi(u)Γi(v)|C([τ,T0],Xi)j=1nmij|ujvj|C([τ,T0],Xj)\left|\Gamma_{i}\left(u\right)-\Gamma_{i}\left(v\right)\right|_{C\left(\left[-\tau,T_{0}\right],X_{i}\right)}\leq\sum_{j=1}^{n}m_{ij}\left|u_{j}-v_{j}\right|_{C\left(\left[-\tau,T_{0}\right],X_{j}\right)}

and

|Γi(u)Γi(v)|Cθ([T0τ,T],Xi)j=1nm~ij|ujvj|τ.\left|\Gamma_{i}\left(u\right)-\Gamma_{i}\left(v\right)\right|_{C_{\theta}\left(\left[T_{0}-\tau,T\right],X_{i}\right)}\leq\sum_{j=1}^{n}\widetilde{m}_{ij}\left|u_{j}-v_{j}\right|_{\tau}.

Hence

|Γi(u)Γi(v)|τj=1nm~ij|ujvj|τ(iI1).\left|\Gamma_{i}\left(u\right)-\Gamma_{i}\left(v\right)\right|_{\tau}\leq\sum_{j=1}^{n}\widetilde{m}_{ij}\left|u_{j}-v_{j}\right|_{\tau}\ \ \ \left(i\in I_{1}\right).

For iI2,i\in I_{2}, from (H3{}_{\text{3}}), we obtain

|Φi(u)Φi(v)|τj=1ncij|ujvj|τ(iI2).\left|\Phi_{i}\left(u\right)-\Phi_{i}\left(v\right)\right|_{\tau}\leq\sum_{j=1}^{n}c_{ij}\left|u_{j}-v_{j}\right|_{\tau}\ \ \ \left(i\in I_{2}\right).

Consequently,

(3.15) Φ(u)Φ(v)M^uv,\left\|\Phi\left(u\right)-\Phi\left(v\right)\right\|\leq\widehat{M}\left\|u-v\right\|,

where M^\widehat{M} is the n×nn\times n square matrix [m^ij],\left[\widehat{m}_{ij}\right], with

m^ij={m~ijfor iI1,jIcijfor iI2,jI.\widehat{m}_{ij}=\left\{\begin{array}[]{ll}\widetilde{m}_{ij}&\text{for }i\in I_{1},\ j\in I\\ c_{ij}&\text{for }i\in I_{2},\ j\in I.\end{array}\right.

Clearly M^M~,\widehat{M}\leq\widetilde{M}, hence according to Proposition 2.3, the spectral radius of M^\widehat{M} is less than one. Then (3.15) shows that Φ\Phi is a generalized contraction in Perov’s sense. ∎

Proof of Lemma.

3.4. The first components of Ψ\Psi for iI1i\in I_{1} are zero, so compact. The growth conditions for FiF_{i} and KiK_{i} (iI2)\left(i\in I_{2}\right) and the boundedness of DD guarantee the uniform integrability of the set {Ψi(u):uD}.\left\{\Psi_{i}\left(u\right):\ u\in D\right\}. Since in addition for iI2,i\in I_{2}, the semigroups generated by AiA_{i} are compact, we may apply the compactness criterion from Lemma 2.4 to conclude that the operator Ψi\Psi_{i} is compact on DD for every iI2.i\in I_{2}.

Remark 3.5.

It is useful to analyze the elements of the matrix MM to conclude about the contributions of the nonlinear terms to the sufficient condition for the existence of solutions. They show that bij(t)b_{ij}\left(t\right) can be however large for T0<tT.T_{0}<t\leq T. The same happens for aij(t)(t[0,T])a_{ij}\left(t\right)\ \left(t\in\left[0,T\right]\right) and bij(t)b_{ij}\left(t\right) (t[0,T0])\left(t\in\left[0,T_{0}\right]\right) provided that T0T_{0} is sufficiently small. Also note the special contribution of a¯ij\overline{a}_{ij} in connection with the ”convolution type” integral term of problem (1.1), which is null if T0=0T_{0}=0 or T0=T.T_{0}=T.

We conclude by two examples illustrating our main result.

Example 1.

Consider the semilinear integrodifferential equation

tu(t,x)Δu(t,x)=0tκ(ts,u(s,x))𝑑s+μ(t)u(tτ,x),t[0,T],xΩ,\frac{\partial}{\partial t}u(t,x)-\Delta u(t,x)=\int_{0}^{t}\kappa(t-s,u(s,x))ds+\mu(t)u(t-\tau,x),\ \ \ t\in\left[0,T\right],\ x\in\Omega,

subject to the Dirichlet condition u(t,x)=0\ u\left(t,x\right)=0 for xΩ,x\in\partial\Omega, and to the nonlocal initial condition

u(t,x)=λu(t+T,x),for xΩ,t[τ,0].u\left(t,x\right)=\lambda u\left(t+T,x\right),\ \ \ \ \text{\emph{for}\ \ }\ x\in\Omega,\ t\in\left[-\tau,0\right].

Here ΩN\Omega\subset\mathbb{R}^{N} is a smooth bounded domain, τ0,\tau\geq 0, 0<λ<1,0<\lambda<1, κ:[0,T]×\kappa:\left[0,T\right]\times\mathbb{R}\rightarrow\mathbb{R} and μ:[0,T]\mu:\left[0,T\right]\rightarrow\mathbb{R} are continuous functions. The problem is of type (1.1), where n=m=1,n=m=1, X=L2(Ω),X=L^{2}\left(\Omega\right), A=Δ,A=-\Delta, D(A)=H2(Ω)H01(Ω),D\left(A\right)=H^{2}\left(\Omega\right)\cap H_{0}^{1}\left(\Omega\right), and K,F,αK,F,\alpha are defined as follows:

K,F\displaystyle K,F :\displaystyle: [0,T]×C([τ,0],L2(Ω))L2(Ω),\displaystyle\left[0,T\right]\times C([-\tau,0],L^{2}\left(\Omega\right))\rightarrow L^{2}\left(\Omega\right),
K(t,v)\displaystyle K\left(t,v\right) =\displaystyle= κ(t,v(0)),vC[[τ,0],L2(Ω)]\displaystyle\kappa\left(t,v\left(0\right)\right),\ \ \ \ \ v\in C\left[\left[-\tau,0\right],L^{2}\left(\Omega\right)\right]
F(t,v)\displaystyle F\left(t,v\right) =\displaystyle= μ(t)v(τ);\displaystyle\mu\left(t\right)v\left(-\tau\right);
α:C([τ,T],L2(Ω))C([τ,0],L2(Ω)),α(v)(t)=λv(t+T).\alpha:C\left(\left[-\tau,T\right],L^{2}\left(\Omega\right)\right)\rightarrow C\left(\left[-\tau,0\right],L^{2}\left(\Omega\right)\right),\ \ \ \alpha\left(v\right)\left(t\right)=\lambda v\left(t+T\right).

It is clear that T0=TT_{0}=T and (H2{}_{\text{2}}) and (H3{}_{\text{3}}) hold with b11(t)=μ(t)b_{11}\left(t\right)=\mu\left(t\right) and c11=λ.c_{11}=\lambda. Also (H1{}_{\text{1}}) holds if there is a function γC([0,T],+)\gamma\in C\left(\left[0,T\right],\mathbb{R}_{+}\right) such that

|κ(t,y)κ(t,z)|γ(t)|yz|for all t[0,T] and y,z.\left|\kappa\left(t,y\right)-\kappa\left(t,z\right)\right|\leq\gamma\left(t\right)\left|y-z\right|\ \ \ \ \text{\emph{for all} \ }t\in\left[0,T\right]\ \text{ \emph{and} \ }y,z\in\mathbb{R}.

It is easy to check that a11(t)=γ(t).a_{11}\left(t\right)=\gamma\left(t\right). Also a¯11=0.\overline{a}_{11}=0. Therefore, Theorem 3.1 yields the following conclusion: If

T|γ|L1(0,T)+|μ|L1(0,T)<1λ,T\left|\gamma\right|_{L^{1}\left(0,T\right)}+\left|\mu\right|_{L^{1}\left(0,T\right)}<1-\lambda,

then the problem has a unique mild solution uC([τ,T],L2(Ω)).u\in C\left(\left[-\tau,T\right],L^{2}\left(\Omega\right)\right).\vskip 6.0pt plus 2.0pt minus 2.0pt

Example 2.

Let us consider a semilinear reaction-diffusion integrodifferential system with Neumann boundary conditions and multi-point nonlocal initial conditions

(3.16) {ut(t,x)ϰ1Δu(t,x)=0tκ1(ts,u(s,x))𝑑sλ1u(t,x)+μ1(t)v(tτ,x),in Q,vt(t,x)ϰ2Δv(t,x)=0tκ2(ts,v(s,x))𝑑s+μ2(t)u(tτ,x)λ2v(t,x),in Q,νu(t,x)=νv(t,x)=0,on Σ,u(t,x)=φ(t)(x)+k=1p1β1ku(t1k+t,x),in Qτ,v(t,x)=ψ(t)(x)+k=1p2β2kv(t2k+t,x),in Qτ,\left\{\begin{array}[]{ll}\frac{\partial u}{\partial t}\left(t,x\right)-\varkappa_{1}\Delta u\left(t,x\right)=\int_{0}^{t}\kappa_{1}(t-s,u(s,x))ds-\lambda_{1}u(t,x)+\mu_{1}(t)v(t-\tau,x),&\text{\emph{in}\ }Q,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \frac{\partial v}{\partial t}\left(t,x\right)-\varkappa_{2}\Delta v\left(t,x\right)=\int_{0}^{t}\kappa_{2}(t-s,v(s,x))ds+\mu_{2}(t)u(t-\tau,x)-\lambda_{2}v(t,x),&\text{\emph{in}\ }Q,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \frac{\partial}{\partial\nu}u\left(t,x\right)=\frac{\partial}{\partial\nu}v\left(t,x\right)=0,&\text{\emph{on} }\Sigma,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ u\left(t,x\right)=\varphi\left(t\right)\left(x\right)+\sum_{k=1}^{p_{1}}\beta_{1k}u\left(t_{1k}+t,x\right),&\text{\emph{in} }Q_{\tau},\vskip 3.0pt plus 1.0pt minus 1.0pt\\ v\left(t,x\right)=\psi\left(t\right)\left(x\right)+\sum_{k=1}^{p_{2}}\beta_{2k}v\left(t_{2k}+t,x\right),&\text{\emph{in }}Q_{\tau},\end{array}\right.

where Q=[0,T]×Ω,Q=\left[0,T\right]\times\Omega, Σ=[0,T]×Ω,\Sigma=\left[0,T\right]\times\partial\Omega, Qτ=[τ,0]×Ω,Q_{\tau}=\left[-\tau,0\right]\times\Omega, ΩRN\Omega\subset R^{N} is a smooth bounded domain, ϰ1,ϰ2,λ1,λ2>0,τ0\varkappa_{1},\varkappa_{2},\lambda_{1},\lambda_{2}>0,\ \tau\geq 0 and 0<ti1<<tipiT0<t_{i1}<...<t_{ip_{i}}\leq T for i=1,2.i=1,2. We assume that κ1,\kappa_{1}, κ2:[0,T]×R\kappa_{2}:\left[0,T\right]\times\mathbb{R}\rightarrow R are continuous; φ,\varphi, ψC([τ,0],L2(Ω)),\psi\in C\left(\left[-\tau,0\right],L^{2}\left(\Omega\right)\right), and μiC([0,T];+),\mu_{i}\in C\left(\left[0,T\right];\mathbb{R}_{+}\right), i=1,2.i=1,2.

We apply Theorem 3.1 with X1=X2=L2(Ω),X_{1}=X_{2}=L^{2}\left(\Omega\right), and to the operators Ai:D(Ai)L2(Ω)(i=1,2)A_{i}:D\left(A_{i}\right)\rightarrow L^{2}\left(\Omega\right)\ \left(i=1,2\right) given by

D(Ai)\displaystyle D\left(A_{i}\right) =\displaystyle= {uH2(Ω):uν=0 on Ω},\displaystyle\left\{u\in H^{2}\left(\Omega\right):\ \frac{\partial u}{\partial\nu}=0\text{ \emph{on} }\partial\Omega\right\},
Aiu\displaystyle A_{i}u =\displaystyle= ϰiΔuλiu,\displaystyle\varkappa_{i}\Delta u-\lambda_{i}u,

which generate compact semigroups [9, Theorem 1.11.8]. Here I1=I_{1}=\emptyset and I2=I={1,2},I_{2}=I=\left\{1,2\right\}, cii=k=1pi|βik|(i=1,2),c_{ii}=\sum_{k=1}^{p_{i}}\left|\beta_{ik}\right|\ \left(i=1,2\right), c12=c21=0,c_{12}=c_{21}=0, b11=b22=0b_{11}=b_{22}=0 and b12(t)=μ1(t),b_{12}\left(t\right)=\mu_{1}\left(t\right), b21(t)=μ2(t).b_{21}\left(t\right)=\mu_{2}\left(t\right). Also T0=max{tij:j=1,,pi;i=1,2}.T_{0}=\max\left\{t_{ij}:\ j=1,...,p_{i};\ i=1,2\right\}.

Assume that the functions κ1\kappa_{1} and κ2\kappa_{2} are bounded, i.e.,

|κi(t,y)|di,i=1,2,for all t[0,T]and y.\left|\kappa_{i}\left(t,y\right)\right|\leq d_{i},\ \ \ i=1,2,\ \ \text{\emph{for all}\ \ }t\in\left[0,T\right]\ \ \text{\emph{and}\ \ }y\in\mathbb{R}.

Then aij=0a_{ij}=0 for i,j=1,2.i,j=1,2. Therefore, according to Theorem 3.1, if the spectral radius of the matrix

M=[k=1p1|β1k||μ1|L1(0,T0)|μ2|L1(0,T0)k=1p2|β2k|]M=\left[\begin{array}[]{cc}\sum_{k=1}^{p_{1}}\left|\beta_{1k}\right|&\left|\mu_{1}\right|_{L^{1}\left(0,T_{0}\right)}\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \left|\mu_{2}\right|_{L^{1}\left(0,T_{0}\right)}&\sum_{k=1}^{p_{2}}\left|\beta_{2k}\right|\end{array}\right]

is less than one, then the problem (3.16) has at least one mild solution in C([τ,T],C(\left[-\tau,T\right], L2(Ω)×L2(Ω)).L^{2}\left(\Omega\right)\times L^{2}\left(\Omega\right)).

Acknowledgements

The work of Sylvain Koumla was supported by a grant from the University Agency of the Francophonie (AUF) in relation to the Romanian National Authority for Scientific Research as part of “Eugen Ionescu” Postdoctoral Fellowship Programme 2017-2018.

References

  • [1] P. Baras, J.C. Hassan and L. Veron, Compacité de l’opérateur définissant la solution d’une équation d’évolution non homogène, C. R. Acad. Sci. Paris 284 (1977), 779–802.
  • [2] O. Bolojan-Nica, G. Infante and R. Precup, Existence results for systems with coupled nonlocal initial conditions, Nonlinear Anal. 94 (2014), 231–242.
  • [3] O. Bolojan, G. Infante and R. Precup, Existence results for systems with coupled nonlocal nonlinear initial conditions, Math. Bohem. 140 (2015), 371–384.
  • [4] O. Bolojan and R. Precup, Semilinear evolution systems with nonlinear constraints, Fixed Point Theory 17 (2016), 275–288.
  • [5] O. Bolojan and R. Precup, Hybrid delay evolution systems with nonlinear constraints, Dynam. Systems Appl. 27 (2018), 773–790.
  • [6] A. Boucherif and H. Akca, Nonlocal Cauchy problems for semilinear evolution equations, Dynam. Systems Appl. 11 (2002), 415–420.
  • [7] A. Boucherif and R. Precup, On the nonlocal initial value problem for first order differential equations, Fixed Point Theory 4 (2003), 205–212.
  • [8] A. Boucherif and R. Precup, Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl. 16 (2007), 507–516.
  • [9] M.-D. Burlică, M. Necula, D. Roşu and I.I. Vrabie, Delay Differential Evolutions Subjected to Nonlocal Initial Conditions, Chapman and Hall/CRC Press, 2016.
  • [10] M. Burlică, D. Roşu and I.I. Vrabie, Abstract reaction-diffusion systems with nonlocal initial conditions, Nonlinear Anal. 94 (2014), 107–119.
  • [11] L. Byszewski, Theorems about the existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problems, J. Math. Anal. Appl. 162 (1991), 494–505.
  • [12] T. Cardinali, R. Precup and P. Rubbioni, A unified existence theory for evolution equations and systems under nonlocal conditions, J. Math.Anal.Appl. 432 (2015), 1039–1057.
  • [13] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford University Press, New York, 1998.
  • [14] J. Chabrowski, On nonlocal problems for parabolic equations, Nagoya Math. J. 93 (1984), 109–131.
  • [15] N. Cioranescu, Sur les conditions linéaires dans l’intégration des équations différentielles ordinaires, Math. Z. 35 (1932), 601–608.
  • [16] R. Conti, Recent trends in the theory of boundary value problems for ordinary differential equations, Boll. Un. Mat. Ital. 22 (1967), 135–178.
  • [17] J. García-Falset and S. Reich, Integral solutions to a class of nonlocal evolution equations, Commun. Contemp. Math. 12 (2010), 1032–1054.
  • [18] J.A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985.
  • [19] G. Infante and M. Maciejewski, Multiple positive solutions of parabolic systems with nonlinear, nonlocal initial conditions, J. London Math. Soc. 94 (2016), 859–882.
  • [20] D. Jackson, Existence and uniqueness of solutions to semilinear nonlocal parabolic equations, J. Math. Anal. Appl. 172 (1993), 256–265.
  • [21] G.L. Karakostas and P.Ch. Tsamatos, Existence of multiple positive solutions for a nonlocal boundary value problem, Topol. Methods Nonlinear Anal. 19 (2002), 109–121.
  • [22] A.A. Kerefov, Nonlocal boundary value problems for parabolic equations (Russian), Differ. Uravn. 15 (1979), 74–78.
  • [23] V. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer, Dordrecht, 1992.
  • [24] Y. Lin and J.H. Liu, Semilinear integrodifferential equations with nonlocal Cauchy problem, Nonlinear Anal. 26 (1996), 1023–1033.
  • [25] J.H. Liu, A remark on the mild solutions of non-local evolution equations, Semigroup Forum 66 (2003), 63–67.
  • [26] M. McKibben, Discovering Evolution Equations with Applications, Vol. I, Chapman &Hall/CRC, 2011.
  • [27] M. Necula and I.I. Vrabie, Nonlinear delay evolution inclusions with general nonlocal initial conditions, Ann. Acad. Rom. Sci. Ser. Math. 7 (2015), 67–97.
  • [28] O. Nica, Initial-value problems for first-order differential systems with general nonlocal conditions, Electron. J. Differential Equations 2012 (2012), no. 74, 1–15.
  • [29] O. Nica and R. Precup, On the nonlocal initial value problem for first order differential systems, Stud. Univ. Babeş-Bolyai Math. 56 (2011), no. 3, 125–137.
  • [30] S.K. Ntouyas and P.Ch. Tsamatos, Global existence for semilinear evolution equations with nonlocal conditions, J. Math. Anal. Appl. 210 (1997), 679–687.
  • [31] W.E. Olmstead and C.A. Roberts, The one-dimensional heat equation with a nonlocal initial condition, Appl. Math. Lett. 10 (1997), 89–94.
  • [32] A. Paicu and I.I. Vrabie, A class of nonlinear evolution equations subjected to nonlocal initial conditions, Nonlinear Anal. 72 (2010), 4091–4100.
  • [33] C. V. Pao, Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions, J. Math. Anal. Appl. 195 (1995), 702–718.
  • [34] R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Math. Comp. Modelling 49 (2009), 703–708.
  • [35] A. Štikonas, A survey on stationary problems, Green’s functions and spectrum of Sturm–Liouville problem with nonlocal boundary conditions, Nonlinear Anal. Model. Control 19 (2014), 301–334.
  • [36] P.N. Vabishchevich, Non-local parabolic problems and the inverse heat-conduction problem (Russian), Differ. Uravn. 17 (1981), 761–765.
  • [37] A. Viorel, Contributions to the Study of Nonlinear Evolution Equations, Ph.D. Thesis, Cluj-Napoca, 2011.
  • [38] I.I. Vrabie, C0C_{0}-Semigroups and Applications, Elsevier, Amsterdam, 2003.
  • [39] I.I. Vrabie, Global solutions for nonlinear delay evolution inclusions with nonlocal initial conditions, Set-Valued Var. Anal. 20 (2012), 477–497.
  • [40] G.F. Webb, An abstract semilinear Volterra integrodifferential equation, Proc. Amer. Math. Soc. 69 (1978), 255–260.
  • [41] J.R.L. Webb and G. Infante, Positive solutions of nonlocal initial boundary value problems involving integral conditions, NoDEA Nonlinear Differential Equations Appl. 15 (2008), 45–67.
  • [42] W. M. Whyburn, Differential equations with general boundary conditions, Bull. Amer. Math. Soc. 48 (1942), 692–704.

Related Posts