Abstract
New proofs of existence and uniqueness results for the solution of the Cauchy problem with delay are obtained by use of Mann-Ishikawa iteration.
Authors
Ş.M. Şoltuz
Universidad de los Andes, Colombia and Tiberiu Popoviciu Institute of Numerical Analysis, Romania
D. Otrocol
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania
Keywords
delay differential equationș Mann iteration; Ishikawa iteration
Paper coordinates
Ş.M. Şoltuz, D. Otrocol, Classical results via Mann-Ishikawa iteration, Rev. Anal. Numer. Theor. Approx., 36 (2007) no. 2, 193-197, https://ictp.acad.ro/jnaat/journal/article/view/2007-vol36-no2-art8
About this paper
Journal
Rev. Anal. Numer. Theor. Approx.
Publisher Name
Romanian Academy
Print ISSN
1972-1974
Online ISSN
google scholar link
[1] Coman, Gh., Pavel, G., Rus, I.andRus, I. A.,Introduction in the theory of operatorialequation, Ed. Dacia, Cluj-Napoca, 1976 (in Romanian).
[2] Hartman, P.,Ordinary differential equations, John Wiley & Sons, Inc., New York,London, Sydney, 1964.
[3] Ishikawa, S.,Fixed points by a new iteration method, Proc. Amer. Math. Soc.,44,pp. 147–150, 1974.
[4] Mann, W. R.,Mean value in iteration, Proc. Amer. Math. Soc.,4, pp. 506–510, 1953.
[2] Hartman, P.,Ordinary differential equations, John Wiley & Sons, Inc., New York,London, Sydney, 1964.
[3] Ishikawa, S.,Fixed points by a new iteration method, Proc. Amer. Math. Soc.,44,pp. 147–150, 1974.
[4] Mann, W. R.,Mean value in iteration, Proc. Amer. Math. Soc.,4, pp. 506–510, 1953.
[5] Otrocol, D.,Data dependence for the solution of a Lotka-Volterra system with twodelays,Mathematica, Tome48(71), 1, pp. 61–68, 2006.
[6] Rus, I. A.,Principles and applications of the fixed point theory,Ed. Dacia, Cluj Napoca,1979 (in Romanian).
[7] Soltuz, S. M.,The equivalence of Picard, Mann and Ishikawa iteration dealing withquasi-contractive operators, Math. Comm.10, pp. 81–88, 2005.
[8] Soltuz, S. M.,An equivalence between the convergence of Ishikawa, Mann and Picarditerations, Math. Comm.8, pp. 15–22, 2003.Received by the editors: November 20, 2006.
[6] Rus, I. A.,Principles and applications of the fixed point theory,Ed. Dacia, Cluj Napoca,1979 (in Romanian).
[7] Soltuz, S. M.,The equivalence of Picard, Mann and Ishikawa iteration dealing withquasi-contractive operators, Math. Comm.10, pp. 81–88, 2005.
[8] Soltuz, S. M.,An equivalence between the convergence of Ishikawa, Mann and Picarditerations, Math. Comm.8, pp. 15–22, 2003.Received by the editors: November 20, 2006.
