Abstract
Many natural phenomena can be described by power-laws of temporal or spatial correlations. The equivalence in frequency domain is the 1/f spectrum. A closer look at various experimental data reveals more or less significant deviations from a 1/f characteristic. Such deviations are especially evident at low frequencies and less evident at high frequencies where spectra are very noisy. We exemplify such cases with four different types of phenomena offered by molecular biology (series of coding sequence lengths from microbial genomes, series of the atomic mobility of the protein main chain), cell biophysics (flickering of red blood cells), cognitive psychology (mentally generated series of apparent random numbers) and astrophysics (the X-ray flux variability of a galaxy). All these examples appear to be described by autoregressive models of the first-order AR(1) or higher-order models. This further shows that a spectrum needs to be first subjected to averaging as, long ago, suggested by Mandelbrot otherwise the spectra can be more or less easily confused and/or approximated by power-laws.
Authors
V.V. Morariu
– National Institute of Research and Development for Isotopic and Molecular Technologies,
– Department of Molecular and Biomolecular Physics, Cluj-Napoca, Romania
C. Vamoș
-Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
S.M. Soltuz
-Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
A. Pop
Astronomical Institute of the Romanian Academy, Astronomical Observatory Cluj-Napoca
L. Buimaga-Iarinca
National Institute of Research and Development for Isotopic and Molecular Technologies, Department of Molecular and Biomolecular Physics, Cluj-Napoca, Romania
Keywords
Autoregresive model; molecular biology; cell biophysics; cognitive psychology
Cite this paper as:
V.V. Morariu, C. Vamoş, Ş.M. Şoltuz, A. Pop, L. Buimaga-Iarinca, O. Zainea, Autoregressive modeling of biological phenomena, Biophysical Reviews and Letters, vol. 5 (2010) no. 3, pp. 109-128.
References
see the expansion block below.
Not available yet.
About this paper
Print ISSN
1793-0480
Online ISSN
1793-7035
MR
?
ZBL
?
[1] H. E. Stanley and N. Ostrowsky ,Correlations and Connectivity: Geometric Aspects of Physics, Chemistry and Biology ( Kluwer , Dordrecht , 1990 ) . Crossref, Google Scholar
[2] A. Bunde and S. Havlin , Fractals in Science ( Springer , Berlin , 1994 ) . Google Scholar
[3] E. Milotti, 1/f noise: a pedagogical review , arXiv:physics/0204033 . Google Scholar
[4] B. B. Mandelbrot , Multifractals and 1/f Noise ( Springer , New York , 1998 ) . Google Scholar
[5] J. B. Bassingthwaighte , Fractal Physiology ( Oxford University Press , New York , 1994 ) Crossref, Google Scholar
[6] V. V. Morariu and A. Coza, Physica A 320, 461 (2003), DOI: 10.1016/S0378-4371(02)01661-8.Crossref, ISI, Google Scholar
[7] V. V. Morariu, A. Isvoran and O. Zainea, Chaos Soliton. Fract. 32, 1305 (2007), DOI: 10.1016/j.chaos.2005.12.023.Crossref, ISI, Google Scholar
[8] V. V. Morariu and A. Coza, Fluct. Noise Lett 1 (2001) p. L111.Google Scholar
[9] V. V. Morariuet al., Fractals 9, 379 (2001), DOI: 10.1142/S0218348X01000919.Link, ISI, Google Scholar
[10] M. König and J. Timmer, Astron. Astrophys. Suppl. Ser. 124, 589 (1997), DOI: 10.1051/aas:1997104.Crossref, Google Scholar
[11] J. Timmeret al., Phys. Rev. E 61, 1342 (2000), DOI: 10.1103/PhysRevE.61.1342.Crossref, ISI, Google Scholar
[12] Th. L. Thornton and D. L. Gilden, Psychon. Bull. Rev. 12, 409 (2005).Crossref, ISI, Google Scholar
[13] P. J. Brockwel and R. A. Davies , Time Series: Theory and Methods , 2nd edn. ( Springer , New York , 1991 ) . Crossref, Google Scholar
[14] J. D. Hamilton , Time Series Analysis ( Princeton University Press , 1994 ) . Google Scholar
[15] C. Vamoş, S. M. Şoltuz and M. Crăciun, Order 1 autoregressive process of finite length , arXiv:0709.2963 . Google Scholar
[16] P. Stoica and R. L. Moses ,Introduction to Spectral Analysis ( Prentice Hall , 1997 ) . Google Scholar
[17] W. S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij, 1997-2010 . Google Scholar
[18] Y. P. Elsworth and J. F. James, Mon. Not. R. Astron. Soc. 198, 889 (1982).Crossref, ISI, Google Scholar
[19] J. C. Lochner, J. H. Swank and A. E. Szymkowiak, Astrophys. J. 76, 295 (1991).Google Scholar
[20] M. A. Smith and R. D. Robinson, ASP Conf. Ser. 292, 263 (2003).Google Scholar
[21] C. M. Gaskell and E. S. Klimek, Astron. Astrophys. Trans. 22, 661 (2003), DOI: 10.1080/1055679031000153851.Crossref, Google Scholar
[22] P. Uttley and I. M. McHardy, Mon. Not. R. Astron. Soc. 323, (2001), DOI: 10.1046/j.1365-8711.2001.04496.x.Google Scholar
[23] I. E. Papadakis and A. Lawrence, Mon. Not. R. Astron. Soc. 272, 161 (1995).Crossref, ISI, Google Scholar
[24] I. M. McHardyet al., Mon. Not. R. Astron. Soc. 348, 783 (2004), DOI: 10.1111/j.1365-2966.2004.07376.x.Crossref, ISI, Google Scholar
[25] C. K. Penget al., Phys. Rev. E 49, 1685 (1994), DOI: 10.1103/PhysRevE.49.1685.Crossref, ISI, Google Scholar
[26] C. Vamoş, Phys. Rev. E 75, 036705 (2007), DOI: 10.1103/PhysRevE.75.036705.Crossref, Google Scholar
[27] D. J. Li and S. Zhang , Prediction of Genomic Properties and Classification of Life by Protein Length Distribution ( ) , arXiv:0806.0205v1 . Google Scholar
[28] D. J. Li and S. Zhang, Mod. Phys. Lett. B 23, 3563 (2009), DOI: 10.1142/S0217984909021624.Link, ISI, Google Scholar
[29] D. J. Li and S. Zhang, Mod. Phys. Lett. B 23, 3471 (2009), DOI: 10.1142/S0217984909021533.Link, ISI, Google Scholar
[30] V. V. Morariu and L. Buimagă-Iarinca, Fluct. Noise Lett. 9, 47 (2010).Link, ISI, Google Scholar
soon