Abstract
Many natural phenomena can be described by power-laws of the temporal or spatial correlations. The equivalent in frequency domain is the 1/f spectrum. A closer look at various natural data reveals more or less significant deviations from a 1/f characteristic. Such deviations are especially evident at low frequencies and less evident at high frequencies where spectra are very noisy. We exemplify such cases with a phenomenon offered by astrophysics. The X ray variability of the NGC 5506 galaxy can be better approximated by AR(1) – a first order autoregressive model, than by a 1/f model (long-range memory). The same spectra can be more or less easily confused and/or approximated by power-laws. A key step to detect non-power laws in the spectra, already suggested by Mandelbrot, is to average out the spectra.
Authors
V.V. Morariu
– National Institute of Research and Development for Isotopic and Molecular Technologies,
Department of Molecular and Biomolecular Physics, Cluj-Napoca, Romania
– Academy of Romanian Scientists, 54, Splaiul Independentei, Sector 5, Bucharest, Romania
C. Vamoș
-Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
A. Pop
S.M. Soltuz
-Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
L. Buimaga-Iarinca
– National Institute of Research and Development for Isotopic and Molecular Technologies,
Department of Molecular and Biomolecular Physics, Cluj-Napoca, Romania
Keywords
Cite this paper as:
V.V. Morariu, C. Vamoş, A. Pop, Ş.M. Şoltuz, L. Buimaga-Iarinca, Autoregressive modeling of the variability of an active galaxy, Romanian Journal of Physics, vol. 55 (2010) pp. 676-686.
References
see the expansion block below.
About this paper
Journal
Romanian Journal of Physics
Publisher Name
DOI
Print ISSN
Online ISSN
1221-146X
MR
?
ZBL
?
[1] Stanley H.E., Ostrowsky N., Dordrecht, Correlations and connectivity: geometric aspects of physics, chemistry and biology: Kluwer (1990).
[2] Bunde A., Havlin S., Berlin, Fractals in science: Springer (1994).
[3] Milotti E., 1/f noise: a pedagogical review. Arxiv preprint, Physics /0204033 (2002).
[4] Mandelbrot B.B., Multifractals and 1/f noise, New York: Springer (1998).
[5] Bassingthwaighte J.B. et al., Fractal physiology, New York: Oxford University Press (1994).
[6] Morariu V.V., Coza A., Physica A, 320, 461–474 (2003).
[7] Morariu V.V., Isvoran A., Zainea O., Chaos, Solitons and Fractals, 32, 1305–1315 (2007).
[8] Morariu V.V., Coza A., Fluctuation and Noise Letters, 1, L111–L116 (2001).
[9] Morariu V.V., Coza A., Chis M. A., Isvoran A., Morariu L.C., Fractals, 9, 379–391 (2001).
[10] König M., Timmer J., Suppl. Ser., 124, 589–596 (1997).
[11] Timmer J., Schwarz U., Voss H.U., Kurths, J. Phys. Rev. E, 61, 1342–1352 (2000).
[12] Thornton Th.L., Gilden D.L., Provenance Psychonomic Bulletin & Rev., 12, 409–441 (2005). [13] Brockwel P.J., Davies R.A. Time series: theory and methods, 2nd edn. New York: Springer (1991).
[14] Hamilton J.D., Time series analysis, Princeton University Press (1994).
[15] Vamos, C., Soltuz, S.M., Craciun, M. arxiv:0709.2963 (2007).
[16] Stoica P., Moses R.L, Introduction to spectral analysis, New Jersey: Prentice Hall (1997).
[17] Morariu V.V., Vamoş C., Pop A., Şoltuz S.M., Buimaga-Iarinca L., Zainea O., arxiv [q-bio] 0808.1021 [2008].
[18] Elsworth Y.P., James J.F., Mon. Not. R. Astr. Soc., 198, 889–896 (1982). {19] Lochner J.C., Swank J.H., Szymkowiak A.E Astrophys. J., 376, 295–311 (1991).
[20] Smith M.A., Robinson R.D., ASP Conf. Ser., 292, 263-274 (2003).
[21] Gaskell C.M., Klimek E.S., Astron. Astrophys. Trans., 22, 661–679 (2003).
[22] Uttley P., McHardy I.M., Mon. Not. R. Astr. Soc., 323, L26L30 (2001).
[23] Papadakis I.E., Lawrence A., Mon. Not. R. Astr. Soc. 272, 161–183 (1995).
[24] McHardy I.M., Papadakis I.E., Uttley P., Page M.J., Mason K.O., Mon. Not. R. Astr. Soc., 348, 783–801 (2004).
[25] Peng C.-K., Buldyrev S.V., Havlin S., Simons M., Stanley H.E., Goldberger A.L., Phys. Rev. E, 49, 1685–1689 (1994).
[26] Vamos C., Phys. Rev. E, 75, 036705 (2007).
soon