Balance equations for a finite number of particles


In this article an abstract discrete system is considered, consisting of an arbitrary, finite numer of particles modelled as mathematical points to which analytic funcitons of time are attached. We prove that a space-time  average of these analytic functions can be defined, satisfying a relation of the same form with the balance equations in continuum mechanics.


C. Vamos
Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy

A. Georgescu

N. Suciu
Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy


Paper coordinates

C. Vamoş, A. Georgescu, N. Suciu (1996), Balance equations for a finite number of particles, Stud. Cerc. Mat., 48(1-2), 115-127.


see the expansion block below.



About this paper


Stud. Cerc. Mat.

Publisher Name

Not available yet.

Print ISSN

Not available yet.

Online ISSN

Not available yet.


[1] A. Akhiezer and P. Peletminski,  Les methodes de la physique statistique,  Mir. Moscou, 1980.

[2] R. Balescu,  Equilibium and Noneequilibrium Statistical Mechanics, Wiley, New York, 1975.

[3] C. Cercignani, Mathematical Metods in Kinetic Theory,  Plenum, New York, 1990.

[4] S. Chapman and T. G. Cowling,  The Mathematical Theory of Non-uniform Gases. University Press, Cambridge, 1953.

[5] E. G. D. Cohen,  Fifty years of kinetic theory. Physica A 194 (1993), 229-257.

[6] P. Glansdorff and  I. Prigogine,  Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley, London, 1971.

[7] J. K. Irfinb and J. G. Kirkwood,  The statistical mechanical theory of transport processes, IV. The equations of hydrodynamics. J. Chem. Phys. 18 (1950) 817-40.

[8] A. Kolmogorov and S. Fomine,  Elements de la theorie des fonctions et de l’analyse fonctionelle. Mir. Moscou, 1974.

[9] J. Muller,  Thermodynamics.  Pitman, London, 1985.

[10] A. Sveshnikov and A. Tikhonov,  The Theory of Functions of a Complex Variable,  Mir. Moscou, 1978.

[11] C. Truesdell and R. A. Toupin,  The Classical Field Theories. In: Handbuch der Physik, III, Part. I, ed. S. Flugge, Springer, Berlin, 1960.

[12] C. Vamoș, A. Georgescu, N. Suciu and I. Turcu, Balance equations for physical systems with corpuscular structure.  In press at Physica A.


Related Posts