## Abstract

We study the convergence of a method of Steffensen-type, which is obtained from the Lagrange polynomial of inverse interpolation with controlled nodes. Conditions are given such that the sequences bilaterally approximate the solution of an equation.

## Author

Ion **Păvăloiu**

(Tiberiu Popoviciu Institute of Numerical Analysis)

## Keywords

nonlinear equations in R; Steffensen type method; monotone iterations.

##### Cite this paper as:

I. Păvăloiu, *Bilateral approximations of solutions of equations by order three Steffensen-type methods*, Studia Univ. Babeş-Bolyai, Mathematica, vol. **51** (2006) no. 3, pp. 105-114.

## About this paper

##### Publisher Name

Babes-Bolyai University

##### Article on the journal website

##### Print ISSN

0252-1938

##### Online ISSN

2065-961x

## References

[1] Costabile, F., Gualtieri, I.M., Luceri, R.,* A new iterative method for the computation of the solution of nonlinear equations*, Numer. Algorithms, 28, pp. 87-100, 2001.

[2] Frontini, M., *Hermite interpolation and a new iterative method for the computation of the roots of non-linear equations*, Calcolo 40, pp. 109-119, 2003.

[3] Grau, M., *An improvement to the computing of nonlinear equation solutions*, Numer. Algorithms. 34, pp.1-12, 2003.

[4] Ostrowski, A., *Solution of Equations in Euclidian and Banach Spaces*, Academic Press New York and London, 1973.

[5] Pavaloiu, I., *Optimal efficiency index for iterative methods of interpolatory type*, Computer Science Journal of Moldova 1, 5, pp. 20-43,1997. 113

[6] Pavaloiu, I., *Approximation of the roots of equations by Aitken-Steffensen-type monotonic sequences*, Calcolo 32, 1-2, pp.69-82, 1995.

[7] Pavaloiu, I., Optimal problems concerning interpolation methods of solution of equations, Publications de L’Institut Mathematique 52 (66) pp 113-126, 1992.

[8] Pavaloiu, I., *Optimal effiency index of a class of Hermite iterative methods, with two steps*, Rev. Anal. Numer. Theor. Approx. 29, 1, pp. 83-89, 2000.

[9] Pavaloiu, I., *Local convergence of general Steffensen type methods*, Rev. Anal. Numer. Theor. Approx. 33,1, 79-86, 2004.

[10] Pavaloiu, I., Pop, N., *Interpolation and Applications,* Risoprint, Cluj-Napoca, 2005 (in Romanian).

[11] Traub, J.F., *Iterative Methods for Solutions of Equations*, Pretence-Hall Inc., Englewood Cliffs, New Jersey, 1964.

[12] Turowicz, B.A., *Sur les derivees d’ordre superieur d’une function inverse*, Ann. Polon. Math. 8 pp. 265-269, 1960.