Bilateral inequalities for harmonic, geometric and Hölder means

Abstract

For \(0<a<b\), the harmonic, geometric and Holder means satisfy \newline\( H<G<Q\). They are special cases \((p=-1,0,2)\) of power means \(M_{p}\).
We consider the following problem: find all \(\U{3b1} ,\U{3b2} \in R\) for which the bilateral inequalities  \(\U{3b1} H(a,b)+(1-\U{3b1} )Q(a,b)<G(a,b)<\U{3b2} H(a,b)+(1-\U{3b2} )Q(a,b)\) hold \(\forall0<a<b\). Then we replace in the bilateral inequalities the mean \(Q\) by \(Mp\), \(p>0\) and address the same problem

Authors

Mira-Cristiana Anisiu
“Tiberiu Popoviciu” Institute of Numerical Analysis Romanian Academy

Valeriu Anisiu
“Babes-Bolyai” University Faculty of Mathematics and Computer Sciences

Keywords

Means; power means; bilateral inequalities

Paper coordinates

M.-C. Anisiu, V. Anisiu, Bilateral inequalities for harmonic, geometric and Hölder means, Stud. Univ. Babes-Bolyai Math., 59 (2014) no. 4, pp. 463-468.

PDF

About this paper

Journal

Studia Universitatis Babes-Bolyai, Mathematica

Publisher Name

Babes-Bolyai Univeristy Cluj-Napoca, Romania

Print ISSN
Online ISSN

2065-961x

google scholar link

[1] Alzer, H., Qiu, S.-L., Inequalities for means in two variables, Arch. Math. (Basel), 80(2003), 201-215.
[2] Anisiu, M.-C., Anisiu, V., Bilateral inequalities for means, Revue d’Analyse Numerique et de Theorie de l’Approximation, 42(2)(2013), 85-93.
[3] Bullen, P.S., Handbook of Means and Their Inequalities, 2nd edn., Mathematics and Its Applications, Springer, Berlin, 1987.
[4] Chu, Y.-M., Wang, M.-K., Gong, W.-M., Two sharp double inequalities for Seiffert mean, J. Inequal. Appl. 2010, 2010: Article ID 44.
[5] Neuman, E., S´andor, J., Companion inequalities for certain bivariate means, Appl. Anal. Discr. Math., 3(2009), 46–51.
[6] Xia, W.-F., Chu, Y.-M., Optimal inequalities related to the logarithmic, identric, arithmetic and harmonic means, Revue d’Analyse Numerique et de Theorie de l’Approximation, 39(2)(2010), 176-183.

2014

Related Posts