[1] M. Abramowits, I.A., Stegun (eds), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National of Standards Applied Mathematics Series 55, Issued June, 1964.
[2] O. Agratini, “On a certain class of approxcimation operators” Pure Mathematics and Applications, 11, 2000, in print.
[3] F. Altomare, M. Campiti, Korokvin-Type Approximation Theory and its Applications, de Guyter Series Studies in Mathematics, vol. 17, Walter de Gruyter, Berlin-New York, 1994.
[4] P. Appel, Sur une classe de polynomes, Ann. Sci. Ecole Norm. Sup (2), 9, 1980, 119-144.
[5] A. Di Bucchianico, D.E. Loeb, Natural exponential families and umbral calculus, in Mathematical Essays in Honor of Gian-Carlo Rota (Bruce E. Sagan, Richard P. Stanley, eds.), Progress in Mathematics, vol. 161, Birkhauser, 1998.
[6] B.C. Carlson, Polynomials satisfying a binomial theorem, J. Math. Anal. Appl., 32, 1970, 543-558.
[7] E.W. Cheney, A. Sharma, On generalization of Bernstein polynomials, Revista di Matematica Univ. Parma 5, 1964, 77-84.
[8] C. Cottin, H.H. Gonska, Simultaneous approximation and global smoothness preservation, Rend. Circ. Mat. Palermo, Serie 2, 33, 1993, 259-279.
[9] Z. Ditzian, V. Totik, Moduli of Smmothness, Springer Series in Computational Mathematics, vol. 9, Springer Verlag, Berlin/Heidelber/New York, 1987.
[10] A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, McGraw-Hill, New York, 1953.
[11] F.B. Hildbrand, Introduction to Numerical Analysis, Mc Graw-Hill, New York 1956.
[12] Mourad E.H. Ismail, Polynomials of binomial type and approximation theory, Journal of Approx. Theory 23, 1978, 177-186.
[13] Mourad E.H. Ismail, C.P. May, On a family of approximation operators, J. Math. Anal. Appl. 63, 1978, 446-462.
[14] C. Jordan, Calculus of Finite Differences, Chelsea Publishing Company, New York 1950.
[15] T. Lindvall, Bernstein polynomials and the law of large numbers, Math. Scientist, 7, 1982, 127-139.
[16] G.G. Lorentz, Bernstein Polynomials, Univ. of Toronto Press, Toronto 1953.
[17] A. Lupas, Approximation operators of binomial type, New developments in approximation theory (Dortmund, 1998), 175-198, International Series of Numerical Mathematics, vol. 132, Birkhauser Verlag Basel/Switerland 199
[18] L. Lupas, A. Lupas, Polynomials of binomial type and approximation operators, Studia Univ. Bab es-Bolyai, Mathematica, 32, 1987, 4, 61-69.
[19] C. Manole, Dezvoltări în serii de polinoame Appell genralizate cu aplicații la aproximarea funcțiilor, Ph.D Thesis, Cluj-Napoca 1984.
[20] C.P. May, Saturation and inverse theorems for combinations of a class of exponential-type operators, Canadian J. Math., 28, 1976, no.6, 1224-1250.
[21] V. Miheșan, Aproximarea funcțiilor continue prin operatori liniari și pozitivi, Ph. D. Thesis, Cluj-Napoca 1997.
[22] G.V. Milovanovic, D.S. Mitrinovic, Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific Publishing Co. Pte Ltd., Singapore 1994.
[23] R. Mullin, G.=C. Rota, On the Foundations of Combinatorial Theory. III. Theory of binomial enumeration, in Graph Theory and its Applications, (B. Harris, ed.), Academic Press, 1970, 167=213.
[24] T. Popoviciu, Remarques sur les polynomes binomiaux, Bul. Soc. Sci. Cluj (Roumanie), 6, 1931, 146-148 (also reproduced in Mathematica Cluj, 6, 1932, 8-10).
[25] T. Popoviciu, Les Fonctions Convexes, Actualites Scientifique et Industrielles, 992, (Publies sous la direction de Paul Montel), XVII, Herman & C^{ie}, Editeurs, Paris 1994.
[26] S. Roman, G.-C. Rota, The umbral calculus, Advances in Math., 27, 1978, 95-188.
[27] G.-C. Rota, D. Kahaner, A. Odlyzko, On the Foundations of Combinatorial Theory. VIII. Finite operator calculus, Journal of Mathematical Analysis and Applicaitons, 42, 1973, 685-760.
[28] P. Sablonniere, Positive Bernstein-Sheffer operators, Journal of Approx. Theory 83, 1995, 330-341.
[29] C. Scaravelli, Su i polinomi di Appell, Rivista di Matematica Univ. Parma, serie 2, 6, 1965, 95-108.
[30] C. Scaravelli, Polinomi di Appell nel senso del Calcolo delle differenze finite, Rivista di Matematica Univ. Parma, Serie 2, 8, 1967, 355-366.
[31] I.M. Sheffer, Some properties of polynomials sets of type zero, Duke Math.Journal 5, 1939, 590-622.
[32] D.D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roum. Pures et Appl. 13, 1968, no.8, 1173-1194.
[33] D.D. Stancu, M.R., Occorsio, On approximation by binomial operators of Tiberiu Popoviciu type, Revue d’Analyse Num.et.de Theorie de l’Approxi., Tome 27, 1998, no.1, 167=181.
[34] J.F., Steffensen, Interpolation, Williams and Wilkins Co., Baltimore 1927.
[35] X.-H. Sun, New charateristics of some polynomial sequences in combinatorial theory, J. Math. Anal. Appl. 175, 1993, 199-205.
[36] A.H. Zemanian, Generalized Integral Transformations, Interscience, New York 1965.
[37] Ding-Xuan Zhou, On a problem of Gonska, Results in Math. 28, 1995, 169-183.