On approximating the eigenvalues and eigenvectors of linear continuous operators7 years agoAbstract We consider the computing of an eigenpair (an eigenvector v=(v^{(i)})_{i=1,n} and an eigenvalue \lambda) of a matrix A\in\mathbb{R}^{n\times n}, by…
Remarks on some Newton and Chebyshev-type methods for approximation eigenvalues and eigenvectors of matrices7 years agoAbstract We consider a square matrix A with real or complex elements. We denote \mathbb{K}=\mathbb{R} or \mathbb{C} and we are…