## Abstract

We consider a square matrix \(A\) with real or complex elements. We denote \(\mathbb{K}=\mathbb{R}\) or \(\mathbb{C}\) and we are interested in computing \(\lambda \in \mathbb{K}\) such that there exists \(v\in \mathbb{K}^{n}\) such that \(Av-\lambda v=0\), i.e. we are interested in computing the eigenpairs (eigenvalue +eigenvector) of the matrix \(A\). In this sense, we consider the nonlinear system of equations \(F(x) =0\), where \(F(x) =\)\({Av-\lambda v}\choose{Gv-1}\), where \(G\) is a convenient mapping.

In order to solve this system we consider the Newton and the Chebyshev methods, and at each iteration step, the order 1 derivative is approximated by the Schultz method; such an approach does not require the solving of a linear system at each step.

We conditions for local convergence and errors evaluations for the r-convergence order.

## Authors

Ion **Păvăloiu**

(Tiberiu Popoviciu Institute of Numerical Analysis)

Emil **Cătinaş**

(Tiberiu Popoviciu Institute of Numerical Analysis)

## Keywords

eigenvalue and eigenvector of square matrix; eigenpair; Newton method; Chebyshev method; Schultz method; local convergence theorem; error estimation; linear systems solving-free iterative methods; r-convergence order.

## Cite this paper as:

I. Păvăloiu, E. Cătinaş, *Remarks on some Newton and Chebyshev-type methods for approximation eigenvalues and eigenvectors of matrices*, Comput. Sci. J. Mold., **7** (1999) no. 1, pp. 3-15.

Scanned paper.

Latex version of the paper (soon).

## About this paper

##### Publisher Name

##### Paper on the journal website

##### Print ISSN

1561-4042

##### Online ISSN

Not available yet.

##### Print ISSN

1561-4042

##### Online ISSN

Not available yet.

## Google Scholar citations

## References

## Paper in html form

## References

[1] M.P. Anselone and L.B. Rall, *The solution of characteristic value-vector problems by Newton method*, Numer. Math., 11 (1968), pp. 38-45.

[2] E. Catinas and I. Pavaloiu, *On the Chebyshev method for approximating the eigenvalues of linear operators*, Rev. Anal. Numer. Theor. Approx. 25 (1996) 1-2, pp. 43-56.

Post

[3] E. Catinas and I. Pavaloiu, *On the Chebyshev Method for Approximating the Eigenvalues of Linear Operators*, Proceedings of International Conference on Approximation and Optimization, ClujNapoca, July 29 – August 1, 1996, Vol. 1, pp. 219-226.

[4] E. Catinas and I. Pavaloiu, *On Approximating the Eigenvalues and Eigenvectors of Linear Continuous Operators*, Rev. Anal. Numer. Theor. Approx. 25 (1996) 1-2, pp. 43-56.

post

[5] F. Chatelin, *Valeurs propres de matrices*, Mason, Paris, 1988.

[6] L. Collatz, *Functionalanalysis und Numerische Mathematik*, Springer-Verlag, Berlin, 1964.

[7] A. Diaconu and I. Pavaloiu, *Sur quelque methodes iteratives pour la resolution des equations operationelles*, Rev. Anal. Numer. Theor. Approx. 1, 1 (1972), pp. 45-61.

[8] A. Diaconu, *On the Convergence of an Iterative Method of Chebyshev Type*, Rev. Anal. Numer. Theor. Approx., 24 (1995) 1-2, pp. 91-102.

[9] J.J. Dongarra, C.B. Moler and J.H. Wilkinson,* Improving the Accuracy of the Computed Eigenvalues and Eigenvectors*, SIAM J. Numer. Anal., 20 (1983) no. 1, pp. 23-45.

[10] S.M. Grzegorski, *On the Scaled Newton Method for the Symmetric Eigenvalue Problem*, Computing, 45 (1990), pp. 277-282.

[11] V. S. Kartisov and F. L. Iuhno, *O nekotorıh Modifikatiah Metoda Niutona dlea Resenia Nelineinoi Spektralnoi Zadaci*, J. Vicisl. matem. i matem. fiz. 33 (1973) 9, pp. 1403-1409.

[12] J.M. Ortega and W.C. Rheinboldt, *Iterative Solution of Nonlinear Equations in Several Variables*, Academic Press, New York, 1970.

[13] I. Pavaloiu, *Sur les procedes iteratifs a un ordre eleve de convergence*, Mathematica (Cluj) 12 (35) (1970) 2, pp. 309-324.

[14] I. Pavaloiu, *Introduction to the Approximation Theory for the Solutions of Equations*, Ed. Dacia, Cluj-Napoca, 1986 (in Romanian).

[15] I. Pavaloiu, *Observations concerning some Approximation Methods for the Solutions of Operator Equations*, Rev. Anal. Numer. Theor. Approx., 23 (1994) 2, pp. 185-196.

[16] G. Peters and J.H. Wilkinson, *Inverse Iteration, Ill-Conditioned Equations and Newton’s Method*, SIAM Review, 21 (1979) no. 3, pp. 339-360.

[17] M.C. Santos, *A Note on the Newton Iteration for the Algebraic Eigenvalue Problem*, SIAM J. Matrix Anal. Appl., 9 (1988) no. 4, pp. 561-569.

[18] R.A. Tapia and L.D. Whitley, *The Projected Newton Method has Order 1 + √2 for the Symmetric Eigenvalue Problem*, SIAM J. Numer. Anal., 25 (1988) 6, pp. 1376-1382.

[19] S. Ul’m, *On the Iterative Method with Simultaneous Approximation of the Inverse of the Operator*, Izv. Acad. Nauk. Estonskoi S.S.R., 16 (1967) 4, pp. 403-411.

[20] K. Wu, Y. Saad and A. Stathopoulos, *Inexact Newton Preconditioning Techniques for Eigenvalue Problems*, Lawrence Berkeley National Laboratory report number 41382 and Minnesota Supercomputing Institute report number UMSI 98-10, 1998.

[21] T. Yamamoto, *Error Bounds for Computed Eigenvalues and Eigenvectors*, Numer. Math. 34 (1980), pp. 189-199.