Stefan M. Soltuz Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
B.E. Roades Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA
Keywords
?
Paper coordinates
Stefan M. Soltuz, B.E. Roades, Characterization for the Convergence of Krasnoselskij Iteration for Non-Lipschitzian Operators, International Journal of Mathematics and Mathematical Sciences, Volume 2008, Article ID 630589, 5 pages, doi:10.1155/2008/630589
International Journal of Mathematics and Mathematical Sciences
Publisher Name
DOI
Print ISSN
0161-1712
Online ISSN
1687-0425
google scholar link
[1] M. A. Krasnosel’skii, “Two remarks on the method of successive approximations,” Uspekhi Matematich-eskikh Nauk, vol. 10, no. 1, pp. 123–127, 1955.
[2] M. O. Osilike, “Iterative solution of nonlinear equations of the φ-strongly accretive type,” Journal of Mathematical Analysis and Applications, vol. 200, no. 2, pp. 259–271, 1996.
[3] C. E. Chidume and C. O. Chidume, “Convergence theorems for fixed points of uniformly continuousgeneralized φ-hemi-contractive mappings,” Journal of Mathematical Analysis and Applications, vol. 303,no. 2, pp. 545–554, 2005.
[4] S. M. Soltuz, “New technique for proving the equivalence of Mann and Ishikawa iterations,” Revued’Analyse Numerique et de Theorie de l’Approximation, vol. 34, no. 1, pp. 103–108, 2005.
Paper (preprint) in HTML form
International Journal of Mathematics and Mathematical Sciences - 2008 - Şoltuz - Characterization fo
Characterization for the Convergence of Krasnoselskij Iteration for Non-Lipschitzian Operators
Ştefan M. Şoltuz ^(1,2){ }^{\mathbf{1 , 2}} and B. E. Rhoades ^(3){ }^{\mathbf{3}}^(1){ }^{1} Departamento de Matematicas, Universidad de Los Andes, Carrera 1 no. 18A-10, Bogota, Colombia2 "Tiberiu Popoviciu" Institute of Numerical Analysis, 400110 Cluj-Napoca, Romania^(3){ }^{3} Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA
1. Introduction
Let XX be a real Banach space; BB a nonempty, convex subset of XX; and T:B rarr BT: B \rightarrow B an operator. Let x_(0)in Bx_{0} \in B. The following iteration is known as Krasnoselskij iteration (see [1]):
{:(1.1)x_(n+1)=(1-lambda)x_(n)+lambda Tx_(n).:}\begin{equation*}
x_{n+1}=(1-\lambda) x_{n}+\lambda T x_{n} . \tag{1.1}
\end{equation*}
The map J:X rarr2^(X^(**))J: X \rightarrow 2^{X^{*}} given by Jx:={f inX^(**):(:x,f:)=||x||^(2),||f||=||x||}J x:=\left\{f \in X^{*}:\langle x, f\rangle=\|x\|^{2},\|f\|=\|x\|\right\}, for all x in Xx \in X, is called the normalized duality mapping. It is easy to see that we have
{:(1.2)(:y","j(x):) <= ||x||||y||","quad AA x","y in X","AA j(x)in J(x).:}\begin{equation*}
\langle y, j(x)\rangle \leq\|x\|\|y\|, \quad \forall x, y \in X, \forall j(x) \in J(x) . \tag{1.2}
\end{equation*}
Denote
{:(1.3)Psi:={psi∣psi:[0","+oo)longrightarrow[0","+oo)" is astrictly increasing map with "psi(0)=0}.:}\begin{equation*}
\Psi:=\{\psi \mid \psi:[0,+\infty) \longrightarrow[0,+\infty) \text { is astrictly increasing map with } \psi(0)=0\} . \tag{1.3}
\end{equation*}
Definition 1.1. Let XX be a real Banach space, and let BB be a nonempty subset of XX. A map TT : B rarr BB \rightarrow B is called uniformly pseudocontractive if there exists a map psi in Psi\psi \in \Psi and j(x-y)in J(x-y)j(x-y) \in J(x-y) such that
{:(1.4)(:Tx-Ty","j(x-y):) <= ||x-y||^(2)-psi(||x-y||)","quad AA x","y in B.:}\begin{equation*}
\langle T x-T y, j(x-y)\rangle \leq\|x-y\|^{2}-\psi(\|x-y\|), \quad \forall x, y \in B . \tag{1.4}
\end{equation*}
A map S:X rarr XS: X \rightarrow X is called uniformly accretive if there exists a map psi in Psi\psi \in \Psi and j(x-y)in J(x-y)j(x-y) \in J(x-y) such that
{:(1.5)(:Sx-Sy","j(x-y):) >= psi(||x-y||)","quad AA x","y in X:}\begin{equation*}
\langle S x-S y, j(x-y)\rangle \geq \psi(\|x-y\|), \quad \forall x, y \in X \tag{1.5}
\end{equation*}
Taking psi(a):=psi(a)*a\psi(a):=\psi(a) \cdot a, for all a in[0,+oo),(psi in Psi)a \in[0,+\infty),(\psi \in \Psi), reduces to the usual definitions of psi\psi-strongly pseudocontractive and psi\psi-strongly accretive. Taking psi(a):=gamma*a^(2),gamma in(0,1)\psi(a):=\gamma \cdot a^{2}, \gamma \in(0,1), for all a in[0,+oo),(psi in Psi)a \in[0,+\infty),(\psi \in \Psi), we get the usual definitions of strongly pseudocontractive and strongly accretive. Therefore, the class of strongly pseudocontractive maps is included stricly in the class of psi\psi-strongly pseudocontractive maps. The example from [2] shows that this inclusion is proper. Remark, further, that the class of psi\psi-strongly pseudocontractive maps is also included strictly in the class of uniformly pseudocontractive maps (see also [3]).
We will give a characterization for the convergence of (1.1) when applied to uniformly pseudocontractive operators. For this purpose, we need the following lemma similar to [4, Lemma 1]. Next, N\mathbb{N} denotes the set of all natural numbers.
Lemma 1.2. Let {a_(n)}\left\{a_{n}\right\} be a positive bounded sequence and assume that there exists n_(0)inNn_{0} \in \mathbb{N} such that
{:(1.6)a_(n+1) <= (1-lambda)a_(n)+lambdaa_(n+1)-lambda(psi(a_(n+1)))/(a_(n+1))+lambdaepsi_(n)","quad AA n >= n_(0):}\begin{equation*}
a_{n+1} \leq(1-\lambda) a_{n}+\lambda a_{n+1}-\lambda \frac{\psi\left(a_{n+1}\right)}{a_{n+1}}+\lambda \varepsilon_{n}, \quad \forall n \geq n_{0} \tag{1.6}
\end{equation*}
where lambda in(0,1),epsi_(n) >= 0\lambda \in(0,1), \varepsilon_{n} \geq 0, for all n inNn \in \mathbb{N} and lim_(n rarr oo)epsi_(n)=0\lim _{n \rightarrow \infty} \varepsilon_{n}=0. Then lim_(n rarr oo)a_(n)=0\lim _{n \rightarrow \infty} a_{n}=0.
Proof. There exists an M > 0M>0 such that a_(n) <= Ma_{n} \leq M, for all n inNn \in \mathbb{N}. Denote a:=l i m i n fa_(n)a:=\liminf a_{n}. We will prove that a=0a=0. Suppose on the contrary that a > 0a>0. Then there exists an N_(1)inNN_{1} \in \mathbb{N} such that
{:(1.7)a_(n) >= (a)/(2)","quad AA n >= N_(1):}\begin{equation*}
a_{n} \geq \frac{a}{2}, \quad \forall n \geq N_{1} \tag{1.7}
\end{equation*}
From lim_(n rarr oo)epsi_(n)=0\lim _{n \rightarrow \infty} \varepsilon_{n}=0, we know that there exists an N_(2)inNN_{2} \in \mathbb{N} such that
{:(1.8)epsi_(n) <= (psi(a//2))/(2M)","quad AA n >= N_(2):}\begin{equation*}
\varepsilon_{n} \leq \frac{\psi(a / 2)}{2 M}, \quad \forall n \geq N_{2} \tag{1.8}
\end{equation*}
Set N_(0):=max{N_(1),N_(2)}N_{0}:=\max \left\{N_{1}, N_{2}\right\}. Using the fact that -(1//M) >= -(1//a_(n+1))-(1 / M) \geq-\left(1 / a_{n+1}\right),we get the following:
which implies that (1-lambda)a_(n+1) <= (1-lambda)a_(n)-lambda((psi(a//2))//2M)(1-\lambda) a_{n+1} \leq(1-\lambda) a_{n}-\lambda((\psi(a / 2)) / 2 M), or
since -(lambda//(1-lambda)) <= -lambda-(\lambda /(1-\lambda)) \leq-\lambda. Thus lambda(psi(a//2))//2M <= a_(n)-a_(n+1)\lambda(\psi(a / 2)) / 2 M \leq a_{n}-a_{n+1}, which implies that sum lambda < oo\sum \lambda<\infty, in contradiction to sum lambda=oo\sum \lambda=\infty. Therefore, l i m i n fa_(n)=0\liminf a_{n}=0. Hence there exists a subsequence {a_(n_(j))}sub{a_(n)}\left\{a_{n_{j}}\right\} \subset \left\{a_{n}\right\} such that lim_(j rarr oo)a_(n_(j))=0\lim _{j \rightarrow \infty} a_{n_{j}}=0. Fix epsi > 0\varepsilon>0. Then there exists an n_(3)inNn_{3} \in \mathbb{N} such that
Also there exists an n_(4)inNn_{4} \in \mathbb{N} such that
{:(1.12)epsi_(n) < (psi(epsi//4))/(2M)","quad AA n >= n_(4):}\begin{equation*}
\varepsilon_{n}<\frac{\psi(\varepsilon / 4)}{2 M}, \quad \forall n \geq n_{4} \tag{1.12}
\end{equation*}
Define n_(0):=max{n_(3),n_(4),N_(0)}n_{0}:=\max \left\{n_{3}, n_{4}, N_{0}\right\}. We claim that a_(n_(j)+k) < epsi//4a_{n_{j}+k}<\varepsilon / 4 for each j > n_(0)j>n_{0} and each k > 0k>0. Suppose not. Then there exists an n_(0)n_{0} and a k > 0k>0 such that
For this n_(j)n_{j}, let kk denote the smallest positive integer for which (1.13) is true. Then a_(n_(j)+k-1) <= epsi//4a_{n_{j}+k-1} \leq \varepsilon / 4.
From (1.6),
which implies that a_(n_(j)+k) <= (epsi//4)-(lambda//(1-lambda))(psi(epsi//4)//2M)a_{n_{j}+k} \leq(\varepsilon / 4)-(\lambda /(1-\lambda))(\psi(\varepsilon / 4) / 2 M). This leads to the contradiction:
Therefore, a_(n_(j)+k) < epsi//4a_{n_{j}+k}<\varepsilon / 4, for all k inNk \in \mathbb{N}, and each j > n_(0)j>n_{0}, hence lim_(n rarr oo)a_(n)=0\lim _{n \rightarrow \infty} a_{n}=0.
2. Main result
Theorem 2.1. Let XX be a real Banach space, BB a nonempty, closed, convex, bounded subset of XX. Let TT : B rarr BB \rightarrow B be a uniformly pseudocontractive and uniformly continuous operator with F(T)!=O/F(T) \neq \varnothing. Then for x_(0)in Bx_{0} \in B, the Krasnoselskij iteration (1.1) converges to the fixed point of TT if and only if lim_(n rarr oo)||x_(n+1)-x_(n)||=0\lim _{n \rightarrow \infty} \| x_{n+1}- x_{n} \|=0.
Proof. Since TT is a self-map of BB, which is bounded and convex, then, from (1.1), each x_(n)in Bx_{n} \in B, so {x_(n)}\left\{x_{n}\right\} is bounded for each n inNn \in \mathbb{N}. Uniqueness of the fixed point follows from (1.4). If {x_(n)}\left\{x_{n}\right\} converges to the fixed point of TT, that is, lim_(n rarr oo)x_(n)=x^(**)\lim _{n \rightarrow \infty} x_{n}=x^{*}, then, obviously, lim_(n rarr oo)||x_(n+1)-x_(n)||=0\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0. Conversely, we will prove that if lim_(n rarr oo)||x_(n+1)-x_(n)||=0\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0, then lim_(n rarr oo)x_(n)=x^(**)\lim _{n \rightarrow \infty} x_{n}=x^{*}. Suppose that x_(n)=x^(**)x_{n}=x^{*} for some n inNn \in \mathbb{N}. Then from (1.1), it follows that x_(m)=x^(**)x_{m}=x^{*} for each m > nm>n, and the theorem is proved. Now suppose that x_(n)!=x^(**)x_{n} \neq x^{*} for each n inNn \in \mathbb{N}. Using (1.1) and (1.2),
Set a_(n)=||x_(n)-x^(**)||,epsi_(n)=||Tx_(n)-Tx_(n+1)||a_{n}=\left\|x_{n}-x^{*}\right\|, \varepsilon_{n}=\left\|T x_{n}-T x_{n+1}\right\| and use Lemma 1.2 to obtain the conlcusion.
Remark 2.2. (1) If BB is not bounded, then Theorem 2.1 holds under the assumption that {x_(n)}\left\{x_{n}\right\} is bounded.
(2) If T(B)T(B) is bounded, then {x_(n)}\left\{x_{n}\right\} is bounded.
(3) If TT is strongly pseudocontractive, then automatically F(T)!=O/F(T) \neq \varnothing.
3. Further results
Let II denote the identity map. A map T:B rarr BT: B \rightarrow B is called pseudocontractive if there exists j(x-y)in J(x-y)j(x-y) \in J(x-y) such that (:Tx-Ty,j(x-y):) <= ||x-y||^(2)\langle T x-T y, j(x-y)\rangle \leq\|x-y\|^{2}.
Remark 3.1. The operator TT is a (uniformly, strongly) pseudocontractive map if and only if (I-T)(I-T) is a (uniformly, strongly) accretive map.
Remark 3.2. (1) Let T,S:X rarr XT, S: X \rightarrow X, and let f in Xf \in X be given. A fixed point for the map Tx=f+(I-S)xT x= f+(I-S) x, for all x in Xx \in X, is a solution for Sx=fS x=f.
(2) Let f in Xf \in X be a given point. If SS is an accretive map, then T=f-ST=f-S is a strongly pseudocontractive map.
Consider Krasnoselskij iteration with Tx=f+(I-S)xT x=f+(I-S) x,
Remarks 3.1 and 3.2 and Theorem 2.1 lead to the following result.
Corollary 3.3. Let XX be a real Banach space and let S:X rarr XS: X \rightarrow X be a uniformly accretive and uniformly continuous operator, with (I-S)(X)(I-S)(X) bounded. Suppose that Sx=fS x=f has a solution. Then for any x_(0)in Xx_{0} \in X, the Krasnoselskij iteration (3.1) converges to the solution of Sx=fS x=f if and only if lim_(n rarr oo)||x_(n+1)-x_(n)||=0\lim _{n \rightarrow \infty} \| x_{n+1}- x_{n} \|=0.
Let SS be an accretive operator. The operator Tx=f-SxT x=f-S x is strongly pseudocontractive for a given f in Xf \in X. A solution for Tx=xT x=x becomes a solution for x+Sx=fx+S x=f. Consider Krasnoselskij iteration with Tx:=f-SxT x:=f-S x,
Again, using Remarks 3.1 and 3.2 and Theorem 2.1, we obtain the following result.
Corollary 3.4. Let XX be a real Banach space and let S:X rarr XS: X \rightarrow X be an accretive and uniformly continuous operator, with (I-S)(X)(I-S)(X) bounded. Suppose that x+Sx=fx+S x=f has a solution. Then for x_(0)in Xx_{0} \in X, the Krasnoselskij iteration (3.2) converges to the solution of x+Sx=fx+S x=f if and only if lim_(n rarr oo)||x_(n+1)-x_(n)||=0\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0.
Remark 3.5. If (1.4) holds for all x in Bx \in B and y:=x^(**)in F(T)y:=x^{*} \in F(T), then such a map is called uniformly hemicontractive. It is trivial to see that our results hold for the uniformly hemicontractive maps.
Acknowledgment
The authors are indebted to referee for carefully reading the paper and for making useful suggestions.
References
[1] M. A. Krasnosel'skii, "Two remarks on the method of successive approximations," Uspekhi Matematicheskikh Nauk, vol. 10, no. 1, pp. 123-127, 1955.
[2] M. O. Osilike, "Iterative solution of nonlinear equations of the phi\phi-strongly accretive type," Journal of Mathematical Analysis and Applications, vol. 200, no. 2, pp. 259-271, 1996.
[3] C. E. Chidume and C. O. Chidume, "Convergence theorems for fixed points of uniformly continuous generalized phi\phi-hemi-contractive mappings," Journal of Mathematical Analysis and Applications, vol. 303, no. 2, pp. 545-554, 2005.
[4] Ş. M. Şoltuz, "New technique for proving the equivalence of Mann and Ishikawa iterations," Revue d'Analyse Numérique et de Théorie de l'Approximation, vol. 34, no. 1, pp. 103-108, 2005.